
Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-1

 28 Vergleich mit anderen Programmiersprachen

 GWBASIC, Turbo-Basic, Quick-Basic, Turbo-C

Gliederung

28.1 Allgemeines zum Vergleich der Programmiersprachen 2

28.2 Allgemeines zu den Demo-Programmen ... 3

28.3 Zu den Sprachunterschieden in den Demo-Programmen 4

28.4 Programmversion 1: Turbo-Pascal .. 5

28.5 Programmversion 2: GWBASIC/BASICA (Nostalgie) 6

28.6 Programmversion 3: Turbo-Basic/Quick-Basic 8

28.7 Programmversion 4: Turbo-C .. 9

28.8 Weitere Tropfen auf den heißen C-Stein .. 10

28.9 Druckerausgabe in C, Dateien in C ... 14

28-2 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

28.1 Allgemeines zum Vergleich der Programmiersprachen

Ein Vergleich einer Programmiersprache mit einer anderen ist immer problematisch.

Letztlich muß die Aufgabenstellung entscheiden. Für Systemprogrammierung

(Betriebssysteme, Compiler u.ä.), aber auch für anspruchsvolle Anwenderprogramme

wird heute häufig die Sprache C der Assemblersprache vorgezogen, da C zum größten

Teil prozessorunabhängig ist und in der Leistung dem Assembler ziemlich nahekommt.

Für Gelegenheitsanwendungen ist die Sprache C weniger geeignet, wenn auch moderne

Konzepte, wie sie in Turbo-C (Borland) und Quick-C (Microsoft) vorliegen, das C-Pro-

grammieren wesentlich erleichtern.

Auf der anderen Seite wurden die Basic-Dialekte weiterentwickelt; mit Turbo-Basic

bzw. seinem Nachfolger Power-Basic und QuickBasic liegen auch hier moderne

Konzepte vor. Sie enthalten viele Eigenschaften von Pascal, wie z.B. echte Unter-

programme (Prozeduren und Funktionen) mit lokalen Variablen und Rekursionen.

Hinzu kommen komfortable Entwicklungsumgebungen, ähnlich wie in Turbo-Pascal.

Mit Visual Basic und Visual Basic for Application stehen leistungsfähige Basic-Versio-

nen für Windows zur Verfügung. Mit der Urform von Basic haben diese Dialekte nicht

mehr viel gemeinsam.

Die folgenden Programmbeispiele zeigen die Lösung einer sehr einfachen Program-

mieraufgabe aus dem Bereich der Technischen Mechanik. Diese Beispiele sind auf

keinen Fall repräsentativ. Es wird lediglich der Versuch unternommen, eine leicht über-

schaubare Aufgabe von der Programmiersprache Turbo-Pascal ausgehend in anderen

Sprachen umzusetzen. Die Lösungen in den anderen Sprachen wurden so gewählt, daß

sich möglichst viele Übereinstimmungen mit der Lösung in Turbo-Pascal ergeben.

Es werden folgende Versionen gezeigt:

• Turbo-Pascal

• GWBASIC/BASICA (nur aus nostalgischen Gründen)

• Turbo-Basic/Quick-Basic

• Turbo-C

Die Lösung in Turbo-Basic ist auch unter QuickBasic 4.0 lauffähig, wenn man »incr z«

durch »z = z + 1« ersetzt. QuickBASIC setzt aber die reservierten Basic-Wörter in

Großbuchstaben um.

GWBASIC ist ein mittlerweile veralterter Basic-Interpreter von Microsoft, zu dem es

aber auch einen passenden Compiler gibt. Der Interpreter wurde mit dem Betriebs-

system bis einschließlich Version 4.0 ausgeliefert, bei IBM-PCs unter der Bezeichnung

BASICA. Aus diesem Grunde wurde GWBASIC mit in den Vergleich aufgenommen.

GWBASIC benutzt Zeilennummern, die auch als Labels dienen werden können und

setzt alle Bezeichner in Großbuchstaben um. In GWBASIC sind keine lokalen

Bezeichner und auch keine Rekursionen möglich. Die Editiermöglichkeiten sind sehr

beschränkt. GWBASIC-Programme werden standardmäßig nicht im ASCII-Format

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-3

gespeichert. Mit der Option »a« kann dies aber erzwungen werden. Beispiel: »SAVE

"BALK-GW", a«. Der Interpreter wird mit »SYSTEM« verlassen.

Turbo-Basic und Quick-Basic sind Basic-Compiler in einer komfortablen Entwick-

lungsumgebung, ähnlich die der Turbo-Pascal. Zeilennummern sind nur noch optional.

Es können echte Unterprogramme (Prozeduren und Funktionen mit lokalen

Bezeichnern) erstellt werden. Rekursionen sind ebenfalls möglich. Das Schleifen-

konzept wurde um »do/loop until ...« erweitert, was dem Pascal-»repeat/until ...«

entspricht. Nach »if then/else« können im Gegensatz zu GWBASIC beliebig viele An-

weisungen geschrieben werden.

Bei der Sprache C ist zu beachten, daß im Gegensatz zu den anderen Sprachen die

Schreibweise der Bezeichner verbindlich ist. Die reservierten Wörter und die Standard-

funktionen sind mit Kleinbuchstaben zu schreiben.

Hinweise:

• Borland hat Turbo-Basic 1990 eingestellt und die Rechte verkauft. Die Weiterent-

wicklung von Turbo-Basic wird unter dem Namen PowerBASIC von Spectra

Publishing, USA, vermarktet.

• Mit dem Betriebssystem ab Version 5.0 (1991) liefert Microsoft an Stelle des

GWBASIC-Interpreters eine Interpreterversion von Quick-Basic aus, die mit QBasic

aufgerufen wird. Microsoft vertreibt separat die Compilerversion von Quick-Basic.

Ab Windows 95 wird QBasic nicht mehr ausgeliefert.

• Bei Microsoft-Anwenderprogrammen wie Word für Windows, Excel u.a. dient ein

spezieller Basic-Dialekt als Makro-Programmiersprache. Seit "Office 97" sind alle

Microsoft-Office-Programme (Word, Excel, Access usw.) mit der Makrosprache

Visual Basic for Application ausgestattet.

28.2 Allgemeines zu den Demo-Programmen

Es werden die Auflagerkräfte bei einem auf zwei Stützen gelenkig gelagerten Balken

berechnet. Siehe spätere Skizze im Programmteil. Die Anzahl n der Einzelkräfte ist

praktisch beliebig. Die Kräfte können innerhalb und außerhalb der Auflager A und B

angreifen.

Gegeben sind die äußeren Einzelkräfte Fi (i = 1, 2, 3, ..., n), die Angriffslängen der

Einzelkräfte li (i = 1, 2, 3, ..., n), gemessen vom linken Auflager aus und der Lagerab-

stand der Auflager LA. Gesucht sind die Auflagerkräfte Fa und Fb.

Anmerkung: Mit »LA« ist nach späterer Skizze der Lagerabstand gemeint. In der

Mechanik würde man dafür wahrscheinlich den Großbuchstaben »L« verwenden. Pascal

unterscheidet bei den Bezeichnern nicht zwischen Groß- und Kleinbuchstaben. Der

Bezeichner »l« wird aber im Programm für eine indizierte Variable benutzt (Kraft-

angriffslängen). In Pascal darf der gleiche Bezeichner nicht für indizierte und nicht-

28-4 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

indizierte Variablen benutzt werden, im Gegensatz zu GWBASIC und Turbo-Basic. In

der Sprache C wird im Gegensatz zu GWBASIC, Turbo-Basic und Pascal zwischen

Groß- und Kleinbuchstaben unterschieden. Mit Ausnahme von Pascal könnte also in

den anderen Sprachen statt »LA« das »L« benutzt werden. Es wird aber einheitlich »LA«

benutzt.

Einzelkräfte, die von unten kommen, sind mit negativem Vorzeichen zu versehen. Bei

Kräften, die links vom Auflager A angreifen, ist die zugehörige Kraftangriffslänge »l«

mit negativem Vorzeichen zu versehen.

Aus den beiden Forderungen nach Kräftegleichgewicht und Momentengleichgewicht

(z.B. um Punkt A) ergibt sich:

(1)  F = 0 ───> (1a)  Fi - (Fa + Fb) = 0

(2)  M = 0 ───> (2a)  (Fi * li) - Fb * LA = 0

Führt man zur Abkürzung und im Hinblick auf die Programmierung ein:

 ┌───────────────────────────┐

(3) │ SummeF =  Fi │ Summe der äußeren Kräfte

(4) │ SummeM =  (Fi * li) │ Summe der Momente der äußeren Kräfte
 └───────────────────────────┘

 (i = 1, 2, 3, ..., n)

so ergeben sich aus (1a) und (2a) folgende Gleichungen für die gesuchten Auflager-

kräfte:

 ┌───────────────────────────┐

(5) │ Fa = SummeF ─ SummeM/LA │ Auflagerkraft bei A

(6) │ Fb = SummeF ─ Fa │ Auflagerkraft bei B

 └───────────────────────────┘

28.3 Zu den Sprachunterschieden in den Demo-Programmen

╔════════════════════╤═════════════╤═════════════╤═════════════╤═════════════╗

║ │ Turbo─Pascal│ GWBASIC │ Turbo─Basic │ Turbo─C ║

║ │ │ (BASICA) │ Quick─Basic │ ║

╠════════════════════╪═════════════╪═════════════╪═════════════╪═════════════╣

║ Kommentarbeginn: │ { oder (* │ ' oder REM │ ' oder REM │ /* ║

║ Kommentarende: │ } oder *) │ (Zeilenende)│ (Zeilenende)│ */ ║

║ │ │ │ │ ║

║ Schreibweise g/k │ │ │ │ ║

║ verbindlich: │ nein │ nein │ nein │ ja ║

║ │ │ │ │ ║

║ Anweisung ab─ │ │ : │ : │ ║

║ schließen mit: │ ; │ oder RETURN │ oder RETURN │ ; ║

║ │ │ │ │ ║

║ Blockbeginn: │ begin │ (fehlt) │ (Unter─ │ { ║

║ Blockende: │ end │ (fehlt) │ streichung) │ } ║

║ │ │ │ │ ║

║ Variablen │ │ │ │ ║

║ deklarieren: │ ja │ nein │ nein (ja) │ ja ║

║ │ │ │ │ ║

║ Indexklammern: │ [] │ () │ () │ [] ║

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-5

║ │od. (. .) │ │ │ ║

║ │ │ │ │ ║

║ Stringkonstanten │ '.......' │ "......." │ "......." │ "......." ║

║ │ │ │ │ ║

║ │ │ │ │ ║

║ Zuweisungsoperator:│ := │ = │ = │ = ║

║ │ │ │ │ ║

║ Gleichheit: │ = │ = │ = │ == ║

║ │ │ │ │ ║

║ Inkrementieren, │ │ │ │ ║

║ z.B. z := z + 1 │ Inc(z) │ Z = Z + 1 │ incr z *)│ z++ od. ++z ║

║ │ │ │ │ ║

║ Dekrementieren: │ Dec(z) │ Z = Z ─ 1 │ decr z *)│ z-- od. --z ║

║ │ │ │ │ ║

║ Bildschirm löschen │ ClrScr │ CLS │ cls │ clrscr() ║

║ │ │ │ │ ║

║ Cursorzeile lösch.:│ DelLine │ (fehlt) │ (fehlt) │ delline() ║

║ │ │ │ │ ║

║ Zeile ab Cursor │ │ │ │ ║

║ löschen: │ ClrEoL │ (fehlt) │ (fehlt) │ clreol() ║

║ │ │ │ │ ║

║ Cursor position. │ │ │ │ ║

║ Spalte s, Zeile z: │ GotoXY(s, z)│ LOCATE Z, S │ locate z, s │ gotoxy(s, z)║

║ │ │ │ │ ║

║ Schreiben: │ Write(....) │ PRINT │ print │ cprintf(...)║

║ │od. WriteLn(│ │ │ printf(...)║

║ │ │ │ │ ║

║ Daten einziehen: │ Read(.....) │ INPUT │ input │ scanf(....) ║

║ │ │ │ │ ║

║ Ein Zeichen von │ │ │ │ ║

║ Tastatur einziehen:│ ReadKey │ INKEY$ │ inkey$ │ getchar() ║

║ │ │ │ │ ║

║ Bildschirm─ │ NormVideo │ │ │ normvideo() ║

║ helligkeit: │ HighVideo │ COLOR v, h │ color v, h │ highvideo() ║

║ │ LowVideo │ │ │ lowvideo() ║

╚════════════════════╧═════════════╧═════════════╧═════════════╧═════════════╝

In Quick-Basic statt »inc z«: z = z + 1

In Quick-Basic statt »dec z«: z = z - 1

28.4 Programmversion 1: Turbo-Pascal

program Balk_TP; { Balken-Auflagerkräfte, Version Turbo-Pascal }

uses

 CRT;

const

 s = 15; { Bildschirm-Spaltenposition }

 nMax = 100; { Maximal 100 äußere Kräfte. Kann aber im Rahmen

 der Speicherkapazität beliebig erhöht werden }

var

 SummeF, LA,

 SummeM, Fa, Fb: Real;

 F, l: array[1..nMax] of Real;

 i, n: Integer;

 Antwort: Char;

28-6 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

begin

 repeat { Beginn der Schleife: repeat ... until }

 ClrScr; { Bildschirm löschen }

 HighVideo;

 GotoXY(s, 1); Write('Auflagerkräfte: Balken auf 2 Stützen ');

 LowVideo;

 GotoXY(s, 2); Write('--- Version: Turbo-Pascal -----------');

 GotoXY(s, 4); Write(' ║ ║ ║+F ║ ');

 GotoXY(s, 5); Write(' v v v v ');

 GotoXY(s, 6); Write('═════════════════════════════════════');

 GotoXY(s, 7); Write(' ║ Fa │ ^ ║ Fb ');

 GotoXY(s, 8); Write(' A ═╩═ │ ║ ═╩═ B ');

 GotoXY(s, 9); Write(' ├──── +l ─────>│ │ ');

 GotoXY(s, 10); Write(' │<─────── LA ──────────>│ ');

 GotoXY(s, 12); Write('Eingabe Abstand LA der Auflager: ');

 ReadLn(LA);

 GotoXY(s, 14); Write('Eingabe Anzahl n der äußeren Kräfte: ');

 ReadLn(n);

 GotoXY(s, 16); Write('- Kräfte von unten negativ eingeben ');

 GotoXY(s, 17); Write('- Links vom Auflager A liegende Kraft');

 GotoXY(s, 18); Write(' angriffslängen l negativ eingeben ');

 SummeF := 0.0; { Summe der äußeren Kräfte. Init. }

 SummeM := 0.0; { Summe der Momente der äußeren Kräfte. Init. }

 for i := 1 to n do

 begin

 GotoXY(1, 20); DelLine; { delete line: Zeile löschen }

 GotoXY(s, 20); Write(i, '. Kraft: '); ReadLn(F[i]);

 GotoXY(34, 20); Write('Kraftangriffslänge: '); ReadLn(l[i]);

 SummeF := SummeF + F[i];

 SummeM := SummeM + F[i] * l[i];

 end;

 Fa := SummeF - SummeM/LA;

 Fb := SummeF - Fa;

 GotoXY(s, WhereY + 1); Write('Die Auflagerkraft Fa = ', Fa);

 GotoXY(s, WhereY + 1); Write('Die Auflagerkraft Fb = ', Fb);

 GotoXY(s, 24); Write('Wiederholung (j/n): ');

 Antwort := ReadKey;

 until (Antwort = 'n'); { Ende der Schleife: repeat until }

end.

28.5 Programmversion 2: GWBASIC/BASICA (Nostalgie)

100 PROGRAMM$ = "Balk-GW.BAS" '**** Version GWBASIC, BASICA **********

110 ' 'Alle Bezeichner in Großbuchstaben

120 NMAX = 100 'Maximal 100 äußere Kräfte. Kann aber im Rahmen

130 'der Speicherkapazität beliebig erhöht werden.

140 DIM F(NMAX), L(NMAX) 'Dimensionierung der beiden Arrays

150 '

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-7

160 FALSE = 0: TRUE = NOT FALSE

170 WIEDERHOLUNG = TRUE

180 'In GWBASIC bzw. BASICA nur FOR/NEXT- und WHILE/WEND-Schleifen

190 WHILE WIEDERHOLUNG 'Hier Ersatz für Pascal "repeat/until"

200 S = 15 'Bildschirm-Zeile, -Spalte

210 CLS 'Bildschirm löschen

220 COLOR 15, 9 'Statt »HighVideo«.

230 LOCATE 1, S: PRINT "Auflagerkräfte: Balken auf 2 Stützen "

240 COLOR 7, 9 'Statt »LowVideo«.

250 LOCATE 2, S: PRINT "--- Version: GWBASIC, BASICA --------"

260 LOCATE 4, S: PRINT " ║ ║ ║+F ║ "

270 LOCATE 5, S: PRINT " v v v v "

280 LOCATE 6, S: PRINT "═════════════════════════════════════"

290 LOCATE 7, S: PRINT " ║ Fa │ ^ ║ Fb "

300 LOCATE 8, S: PRINT " A ═╩═ │ ║ ═╩═ B "

310 LOCATE 9, S: PRINT " ├──── +l ─────>│ │ "

320 LOCATE 10, S: PRINT " │<─────── LA ──────────>│ "

330 '

340 LOCATE 12, S: PRINT "Eingabe Abstand LA der Auflager: ";

350 INPUT "", LA

360 LOCATE 14, S: PRINT "Eingabe Anzahl n der äußeren Kräfte: ";

370 INPUT "", N

380 LOCATE 16, S: PRINT "- Kräfte von unten negativ eingeben "

390 LOCATE 17, S: PRINT "- Links vom Auflager A liegende Kraft"

400 LOCATE 18, S: PRINT " angriffslängen l negativ eingeben "

410 '

420 SUMMEF = 0 'Summe der äußeren Kräfte. Initialis.

430 SUMMEM = 0 'Summe der Momente der äußeren Kräfte. Initialis.

440 '

450 FOR I = 1 TO N

460 LOCATE 20, 1: PRINT STRING$(80, " ")

470 'Zeile mit Blanks löschen

480 LOCATE 20, S: PRINT I; ". Kraft: ";

490 INPUT "", F(I)

500 LOCATE 20, 34: PRINT "Kraftangriffslänge: ";

510 INPUT "", L(I)

520 SUMMEF = SUMMEF + F(I)

530 SUMMEM = SUMMEM + F(I) * L(I)

540 NEXT I

550 '

560 FA = SUMMEF - SUMMEM / LA

570 FB = SUMMEF - FA

580 '

590 PRINT;

600 LOCATE , S: PRINT "Die Auflagerkraft Fa = "; FA

610 LOCATE , S: PRINT "Die Auflagerkraft Fb = "; FB

620 '

630 LOCATE 24, S, 1: PRINT "Wiederholung (j/n): ";

640 ANTWORT$ = ""

650 WHILE NOT (ANTWORT$ = "j" OR ANTWORT$ = "n")

660 ANTWORT$ = INKEY$

670 WEND: IF ANTWORT$ = "n" THEN WIEDERHOLUNG = FALSE

680 WEND

690 END 'in Basic ist "END" nur optional

28-8 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

28.6 Programmversion 3: Turbo-Basic/Quick-Basic

Programm$ = "Balk-TB.BAS" '*** Version Turbo-Basic, Power-Basic

 'oder Quick-Basic. Quick-Basic stellt
 'Basic-Begriffe in Großschreibung dar.

nMax = 100 'Maximal 100 äußere Kräfte. Kann aber im Rahmen
 'der Speicherkapazität beliebig erhöht werden.

dim F(nMax), l(nMax) 'Dimensionierung der beiden Arrays

do 'Beginn der Schleife: do ... loop until
 s = 15 'Bildschirm-Spalte

 cls 'Bildschirm löschen
 color 15, 9 'Statt »HighVideo«.
 locate 1, s: print "Auflagerkräfte: Balken auf 2 Stützen "
 color 7 , 9: 'Statt »LowVideo«.
 locate 2, s: print "--- Version: Turbo-Basic/Quick-Basic "
 locate 4, s: print " ║ ║ ║+F ║ "
 locate 5, s: print " v v v v "
 locate 6, s: print "═════════════════════════════════════"
 locate 7, s: print " ║ Fa │ ^ ║ Fb "
 locate 8, s: print " A ═╩═ │ ║ ═╩═ B "
 locate 9, s: print " ├──── +l ─────>│ │ "
 locate 10, s: print " │<─────── LA ──────────>│ "
 locate 12, s: print "Eingabe Abstand LA der Auflager: ";
 input "", LA
 locate 14, s: print "Eingabe Anzahl n der äußeren Kräfte: ";
 input "", n
 locate 16, s: print "- Kräfte von unten negativ eingeben "
 locate 17, s: print "- Links vom Auflager A liegende Kraft"
 locate 18, s: print " angriffslängen l negativ eingeben "

 SummeF = 0 'Summe der äußeren Kräfte. Initialis.

 SummeM = 0 'Summe der Momente der äußeren Kräfte. Initialis.

 for i = 1 to n
 locate 20, 1: print string$(80, " ")
 'Zeile mit Blanks löschen
 locate 20, s: print i; ". Kraft: ";
 input "", F(i)
 locate 20, 34: print "Kraftangriffslänge: ";
 input "", l(i)
 SummeF = SummeF + F(i)
 SummeM = SummeM + F(i) * l(i)
 next i

 Fa = SummeF - SummeM / LA
 Fb = SummeF - Fa

 print
 locate , s: print "Die Auflagerkraft Fa = "; Fa
 locate , s: print "Die Auflagerkraft Fb = "; Fb

 locate 24, s, 1: print "Wiederholung (j/n): ";
 do
 Antwort$ = inkey$
 loop until Antwort$ = "j" or Antwort$ = "n"

loop until Antwort$ = "n"
end 'in Basic ist "end" nur optional

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-9

28.7 Programmversion 4: Turbo-C

#include <conio.h> /* **** Beginn »Balk-TC.C« (Turbo-C 2.0) **** */

 /* Zu »conio.h«: Header-Datei "Console Input/Output" */

main()

{ /* Hier beginnt der main-Block. */

 float SummeF, LA, /* float = Real */

 SummeM, Fa, Fb,

 F[100], /* Maximal 100 Kräfte. Kann im Rahmen der */

 l[100]; /* Speicherkapazität beliebig erhöht werden. */

 int i, n; /* int = Integer */

 char Antwort; /* char = Char */

 #define S 15 /* Konstanten üblicherweise in Großschreibung */

 do

 { /* --- Hier beginnt der do-Block --- */

 clrscr(); /* Bildschirm löschen */

 highvideo(); /* Nur für »cprintf("...")« */

 gotoxy(S, 1); cprintf("Auflagerkräfte: Balken auf 2 Stützen ");

 lowvideo();

 gotoxy(S, 2); cprintf("─── Version: Turbo─C 2.0 ────────────");

 gotoxy(S, 4); cprintf(" ║ ║ ║+F ║ ");

 gotoxy(S, 5); cprintf(" v v v v ");

 gotoxy(S, 6); cprintf("═════════════════════════════════════");

 gotoxy(S, 7); cprintf(" ║ Fa │ ^ ║ Fb ");

 gotoxy(S, 8); cprintf(" A ═╩═ │ ║ ═╩═ B ");

 gotoxy(S, 9); cprintf(" ├──── +l ─────>│ │ ");

 gotoxy(S, 10); cprintf(" │<─────── LA ──────────>│ ");

 gotoxy(S, 12); cprintf("Eingabe Abstand LA der Auflager: ");

 scanf("%f", &LA);

 gotoxy(S, 14); cprintf("Eingabe Anzahl n der äußeren Kräfte: ");

 scanf("%d", &n);

 gotoxy(S, 16); cprintf("- Kräfte von unten negativ eingeben ");

 gotoxy(S, 17); cprintf("- Links vom Auflager A liegende Kraft");

 gotoxy(S, 18); cprintf(" angriffslängen l negativ eingeben ");

 SummeF = 0; /* Summe der äußeren Kräfte. Init. */

 SummeM = 0; /* Summe der Momente der äußeren Kräfte. Init. */

 for (i = 1; i <= n; i++)

 {

 gotoxy(1, 20); delline(); /* Zeile löschen */

 gotoxy(S, 20); printf("%1d. Kraft: ", i);

 scanf("%f", &F[i]);

 gotoxy(34, 20); printf("Kraftangriffslänge: ");

 scanf("%f", &l[i]);

 SummeF = SummeF + F[i];

 SummeM = SummeM + F[i] * l[i];

 }

 Fa = SummeF - SummeM/LA;

 Fb = SummeF - Fa;

 gotoxy(S, wherey() + 1);

 cprintf("Die Auflagerkraft Fa = %f", Fa);

 gotoxy(S, wherey() + 1);

 cprintf("Die Auflagerkraft Fb = %f", Fb);

28-10 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

 gotoxy(S, 24); cprintf("Wiederholung (j/n): ");

 Antwort = getch();

 /* »getch« = get character: Ein Zeichen einlesen */

 } /* ---- Hier endet der do-Block ---- */

 while (Antwort == 'j');

} /**/

28.8 Weitere Tropfen auf den heißen C-Stein

Die Unterschiede in der Variablendeklaration zeigt die folgende Gegenüberstellung:

Pascal: C:

var

 i, j, k: Integer; int i, j, k;

 x, y, z: Real; float x, y, z;

In Pascal wird streng zwischen Funktionen (liefern Wert zurück) und Prozeduren

(liefern keinen Wert zurück) unterschieden. Die Sprache C kennt diese Unterscheidung

nicht; dort gibt es nur Funktionen. C-Funktionen die keinen Wert zurückliefern (in

Pascal Prozeduren) werden in der Funktionsdeklaration mit einem vorgesetzten void

gekennzeichnet. Funktionen mit Rückgabewert werden in der Deklaration mit dem

Ergebnisdatentyp vor dem Funktionsbezeichner gekennzeichnet.

Alle Funktionen müssen in C Parameterklammern besitzen, auch wenn keine Parameter

übergeben werden. Beispiel: clrscr()

In C können Funktionen nicht geschachtelt werden. Die Deklaration von lokalen

Funktionen ist im Gegensatz zu Pascal leider nicht möglich.

Weitere Gegenüberstellungen zwischen Pascal und C:

 Pascal: C: Bemerkungen zu C

Zuweisungsoperator

 := =

Blockbildung

 begin {

 end }

Rechenoperatoren

Multiplikation * *

Division / /

Integer-Division div (fehlt)

Integer-Modulo mod %

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-11

Addition + +

Subtraktion - -

Logische Operatoren

 and &&

 or ||

 not !

Bit-Operatoren

 shl <<

 shr >>

 and &

 or |

 xor ^ (Hochpfeil)

 not ~ (Tilde)

Vergleichsoperatoren

größer als > >

größer oder gleich >= >=

gleich = ==

ungleich <> !=

kleiner oder gleich <= <=

kleiner als < <

Verzweigung

 if b if (b) Bei mehr als einer An-

weisung Blockbildung

mit { } notwendig
 then a1 a1;

 else a2; else a2;

Man beachte, daß im Gegensatz zu Pascal in C das "then" nicht angeschrieben wird und daß

auch nach der then-Anweisung, also vor dem "else" ein Semikolon stehen muß, ausgenommen

bei Blockbildung mit { und }. Die Bedingungen sind in C immer zu klammern.

Für das Inkrementieren und Dekrementieren von Variablen stehen in C die Opera-

toren ++ und -- zur Verfügung. Sie können vor oder nach dem Variablen-

bezeichner stehen, auch im Rahmen einer anderen Anweisung. In diesem Fall wird bei

vorgesetztem Operator das Inkrementieren bzw. Dekrementieren vor dem Ausführen der

Anweisung durchgeführt, bei nachgesetzem Operator nach dem Ausführen der Anwei-

sung.

Beispiele: n = 0; n = 0;

 printf("%2d", n++); printf("%2d", ++n);
 printf("%2d", n); printf("%2d", n);

28-12 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

 /* Ausgabe: 0 1 */ /* Ausgabe: 1 1 */

Zulässig sind auch Kombinationen von Operatoren und dem Zuweisungsoperator.

Damit erreicht man eine verkürzte Darstellung. Einige Beispiele:

Normale Darstellung: Verkürzte Darstellung:
summe = summe + a; summe += a;

summe = summe - a; summe -= a;

a = a * b; a *= b;

a = a / b; a /= b;

a = a % b; a %= b;

a = a & b; a &= b;

Zur formatierten Ausgabe:

Für allgemeine Ausgaben (Bildschirm, Drucker und Dateien) dient die Funktion

printf, für Bildschirmausgaben speziell die Funktion cprintf (console print) die

einen kompakteren Code erzeugt als printf. Darüber hinaus stehen mit

putchar (Ausgabe Character) und puts (Ausgabe String) noch zwei weitere

spezielle Ausgabefunktionen zur Verfügung. Bei puts wird nach der Ausgabe stan-

dardmäßig ein Zeilenvorschub erzeugt, bei allen anderen Funktionen dagegen erst beim

Ausdruck eines speziellen Steuerzeichens.

Das Format für printf bzw. cprintf:

 printf(formatstring, ausdruck1, ausdruck2, ...);

Der Formatstring (Stringkonstante oder Stringvariable) enthält die Formatierangaben.

Es können folgende Formatierelemente verwendet werden:

%u unsigned, 16-Bit-Integer ohne Vorzeichen

%x hex, 16-Bit-Integer in Hexadezimal-Schreibweise

%X wie %x

%d decimal, 16-Bit-Integer mit Vorzeichen

%ld long decimal, 32-Bit-Integer mit Vorzeichen

%f float, Fließkommazahl

%e exponential, Fließkommazahl in normierter Exponential-Schreibweise

%c character, ein einzelnes Zeichen

%s string, Zeichenkette

%p pointer, Zeigerwert (Speicheradresse)

Mit Ausnahmen von %x und %X ist, wie in C allgemein gültig, die Schreibweise

verbindlich. Wenn das Prozentzeichen als Textzeichen ausgegeben werden soll, dann ist

es zweimal anzuschreiben.

Mit zusätzlichen Integerangaben zwischen dem einleitenden Prozentzeichen und dem

Formatierelement läßt sich optional die (rechtsbündige) Ausgabebreite festlegen.

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-13

Beispiele:

printf("%d", 47);

printf("%5d", 11); /* Schreibbreite 5 Zeichen */

printf("%5.2f", 47.11); /* 5 Schreibstellen, 2 Nachkommast. */

Der Formatstring muß soviele Formatierangaben enthalten, wie Ausgabeparameter auf-

geführt sind. Der Formatstring kann zusätzlich Ausgabetexte enthalten.

Beispiel:

i = 3;

printf("Die Wurzel aus %d ist: %5.2f", i, sqrt(i));

/* Die Wurzel aus 3 ist: 1.73 */

Der Formatstring kann zudem an beliebigen Stellen Steuerzeichen enthalten, die mit

einem Rückwärtsstrich (Backslash, in C das Symbol für Escape) eingeleitet werden.

Wenn der Backslash als Textzeichen ausgegeben werden soll, dann ist er zweimal anzu-

schreiben.

Die wichtigsten Steuerzeichen:

\n LF, line feed, new line, Zeilenvorschub

\t HT, tab, Tabulator

\f FF, form feed, Bildschirm löschen, bei Drucker Seitenvorschub

\b BS, backspace, Cursor (Schreibkopf) eine Zeichen zurück

\r CR, carriage return, Wagenrücklauf

\ta BEL, Piepton

\v VT, vertical tab, vertikaler Tabulator

\xhh hex, Darstellung des Zeichens, dessen Code in hex (1 bis 2 Hex-Zeichen hh)

angegeben ist

\ooo oktal, Darstellung des Zeichens, dessen Code in oktal (1 bis 3 Oktal-Zeichen

ooo) angegeben ist

Beispiel:

printf("\n%10s\n%10s\n%10.2f\n", "Anton", "Huber", 47.11);

erzeugt die Ausgabe:

 Anton

 Huber

 47.11

Die momentane Druckzeile wird abgeschlossen oder eine Leerzeile erzeugt, dann wird

in der neuen Zeile Anton rechtsbündig mit 10 Schreibstellen gedruckt. Anschließend

erfolgt wieder ein Zeilenvorschub und das Wort Huber wird ebenfalls mit 10 Schreib-

stellen rechtsbündig in die neue Zeile gedruckt. Abschließend erfolgt nochmals ein

Zeilenvorschub und die Zahl 47.11 wird rechtsbündig in ein Feld mir 10 Schreibstellen

gedruckt, davon 2 Nachkommastellen.

28-14 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

Zur Eingabe:

Zur Eingabe dient die Funktion scanf, die ähnlich universell ausgelegt ist wie die

Funktion printf. Das Format:

 scanf(formatstring, adresse_var1, adresse_var2, ...);

Der Formatstring ist genauso aufzubauen wie bei printf. Die weiteren Parameter von

scanf sind die Variablen, auf die einzulesen ist. Allerdings nicht die Variablen selbst,

sondern deren Adressen, was in C durch den vorgestellten Adreß-Operator "&"

bewerkstelligt wird, wenn der Bezeichner nicht bereits ein Zeiger ist.

Beispiel:

int a, b;

...

scanf("Eingabe zwei Integer %d %d", &a, &b);

28.9 Druckerausgabe in C, Dateien bearbeiten in C

Die folgende Programm "Drucker.C" demonstriert die Druckerausgabe und den Um-

gang mit Dateien in C:

#include <stdio.h> /* stdio.h auch Dateioperationen */

main() /* Programm »Drucker.C«, Demo Drucker */
{
 FILE *Dr; /* Siehe Nr 1 */

 Dr = fopen("PRN", "w"); /* Siehe Nr 2 */

 fprintf(Dr, "Drucker mit »fprintf« = 'file printf' ansprechen\n\n");
 fprintf(Dr, "1. »FILE *Dr;« Datei-Variable deklarieren \n ");
 fprintf(Dr, " »Dr« frei gewählter Datei-Bezeichner\n\n");

 fprintf(Dr, "2. »Dr = fopen(''PRN'', ''w'');« \n");
 fprintf(Dr, " »fopen« File open, Datei öffnen \n");
 fprintf(Dr, " »PRN« Geräte-Dateibezeichner für Printer \n");

 fprintf(Dr, " »w« Write-Modus = Schreiben \n\n");

 fprintf(Dr, " Weitere Geräte: »CON« = Console = Bildschirm \n");
 fprintf(Dr, " Für Disk-Datei: Dateibezeichner nach MS-DOS \n");

 fprintf(Dr, " Beispiel: C:\\TC\\Haller\\Umsatz.DAT \n\n");
 fprintf(Dr, " Weitere Modi: \n");
 fprintf(Dr, " »r« = Read. Lesen nicht für Drucker/Bildschirm\n");

 fprintf(Dr, " »a« = Append. Anhängen an evtl. bereits vor- \n");
 fprintf(Dr, " handene Datei zum Schreiben. \n");
 fprintf(Dr, " Ggf. neue Datei. \n");

 fprintf(Dr, " »r+« = Schreiben/Lesen. Datei muß existieren. \n");
 fprintf(Dr, " »w+« = Neue Datei für Schreiben/Lesen anlegen. \n");
 fprintf(Dr, " Evtl. existierende Datei wird gelöscht! \n");

 fprintf(Dr, " »a+« = Datei zum Lesen öffnen und Anhängen von \n");
 fprintf(Dr, " Daten durch Schreiben. Ggf. neue Datei\n\n");
 fprintf(Dr, "3. »fclose(Dr);« : File close, Datei schließen.\n\n");

 fprintf(Dr_, "-- \f");
 fclose(Dr); /* Siehe Nr 3 */

}

30180606 Dr. K. Haller

