Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-1

28 Vergleich mit anderen Programmiersprachen

GWBASIC, Turbo-Basic, Quick-Basic, Turbo-C

Gliederung

28.1 Allgemeines zum Vergleich der Programmiersprachen 2
28.2 Allgemeines zu den Demo-Programmenccocceeveeeeniieenieennnnnne. 3
28.3 Zu den Sprachunterschieden in den Demo-Programmen 4
28.4 Programmversion 1: Turbo-Pascalcccccovviiiniiiniiiiiieiec, 5
28.5 Programmversion 2: GWBASIC/BASICA (Nostalgie) 6
28.6 Programmversion 3: Turbo-Basic/Quick-Basicccccccceeviirnnnnnne. 8
28.7 Programmversion 4: Turbo-Ccccccviieiiiiiieiiieeciee e, 9
28.8 Weitere Tropfen auf den heilen C-Stein.........cccvveeevveeeciieennnnnnee, 10

28.9 Druckerausgabe in C, Dateien in Ccccccvvvevciiieecieeeciee e, 14

28-2 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

28.1 Allgemeines zum Vergleich der Programmiersprachen

Ein Vergleich einer Programmiersprache mit einer anderen ist immer problematisch.
Letztlich mufl die Aufgabenstellung entscheiden. Fiir Systemprogrammierung
(Betriebssysteme, Compiler u.d.), aber auch fiir anspruchsvolle Anwenderprogramme
wird heute héufig die Sprache C der Assemblersprache vorgezogen, da C zum grofiten
Teil prozessorunabhéngig ist und in der Leistung dem Assembler ziemlich nahekommt.
Fiir Gelegenheitsanwendungen ist die Sprache C weniger geeignet, wenn auch moderne
Konzepte, wie sie in Turbo-C (Borland) und Quick-C (Microsoft) vorliegen, das C-Pro-
grammieren wesentlich erleichtern.

Auf der anderen Seite wurden die Basic-Dialekte weiterentwickelt; mit Turbo-Basic
bzw. seinem Nachfolger Power-Basic und QuickBasic liegen auch hier moderne
Konzepte vor. Sie enthalten viele Eigenschaften von Pascal, wie z.B. echte Unter-
programme (Prozeduren und Funktionen) mit lokalen Variablen und Rekursionen.
Hinzu kommen komfortable Entwicklungsumgebungen, &dhnlich wie in Turbo-Pascal.
Mit Visual Basic und Visual Basic for Application stehen leistungsfdhige Basic-Versio-
nen fiir Windows zur Verfiigung. Mit der Urform von Basic haben diese Dialekte nicht
mehr viel gemeinsam.

Die folgenden Programmbeispiele zeigen die Losung einer sehr einfachen Program-
mieraufgabe aus dem Bereich der Technischen Mechanik. Diese Beispiele sind auf
keinen Fall repréasentativ. Es wird lediglich der Versuch unternommen, eine leicht iiber-
schaubare Aufgabe von der Programmiersprache Turbo-Pascal ausgehend in anderen
Sprachen umzusetzen. Die Losungen in den anderen Sprachen wurden so gewdhlt, da3
sich mdglichst viele Ubereinstimmungen mit der Losung in Turbo-Pascal ergeben.

Es werden folgende Versionen gezeigt:

* Turbo-Pascal

* GWBASIC/BASICA (nur aus nostalgischen Griinden)
* Turbo-Basic/Quick-Basic

e Turbo-C

Die Losung in Turbo-Basic ist auch unter QuickBasic 4.0 lauffdhig, wenn man »iner z«
durch »z = z + 1« ersetzt. QuickBASIC setzt aber die reservierten Basic-Worter in
GroBbuchstaben um.

GWBASIC ist ein mittlerweile veralterter Basic-Interpreter von Microsoft, zu dem es
aber auch einen passenden Compiler gibt. Der Interpreter wurde mit dem Betriebs-
system bis einschlielich Version 4.0 ausgeliefert, bei IBM-PCs unter der Bezeichnung
BASICA. Aus diesem Grunde wurde GWBASIC mit in den Vergleich aufgenommen.
GWBASIC benutzt Zeilennummern, die auch als Labels dienen werden kénnen und
setzt alle Bezeichner in GroBbuchstaben um. In GWBASIC sind keine lokalen
Bezeichner und auch keine Rekursionen moglich. Die Editiermdglichkeiten sind sehr
beschrinkt. GWBASIC-Programme werden standardméfig nicht im ASCII-Format

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-3

gespeichert. Mit der Option »a« kann dies aber erzwungen werden. Beispiel: »SAVE
"BALK-GW", a«. Der Interpreter wird mit »SYSTEM« verlassen.

Turbo-Basic und Quick-Basic sind Basic-Compiler in einer komfortablen Entwick-
lungsumgebung, dhnlich die der Turbo-Pascal. Zeilennummern sind nur noch optional.
Es konnen echte Unterprogramme (Prozeduren und Funktionen mit lokalen
Bezeichnern) erstellt werden. Rekursionen sind ebenfalls mdglich. Das Schleifen-
konzept wurde um »do/loop until ...« erweitert, was dem Pascal-»repeat/until ...«
entspricht. Nach »if then/else« konnen im Gegensatz zu GWBASIC beliebig viele An-
weisungen geschrieben werden.

Bei der Sprache C ist zu beachten, daB im Gegensatz zu den anderen Sprachen die
Schreibweise der Bezeichner verbindlich ist. Die reservierten Worter und die Standard-
funktionen sind mit Kleinbuchstaben zu schreiben.

Hinweise:

* Borland hat Turbo-Basic 1990 eingestellt und die Rechte verkauft. Die Weiterent-
wicklung von Turbo-Basic wird unter dem Namen PowerBASIC von Spectra
Publishing, USA, vermarktet.

* Mit dem Betriebssystem ab Version 5.0 (1991) liefert Microsoft an Stelle des
GWBASIC-Interpreters eine Interpreterversion von Quick-Basic aus, die mit QBasic
aufgerufen wird. Microsoft vertreibt separat die Compilerversion von Quick-Basic.
Ab Windows 95 wird QBasic nicht mehr ausgeliefert.

* Bei Microsoft-Anwenderprogrammen wie Word fiir Windows, Excel u.a. dient ein
spezieller Basic-Dialekt als Makro-Programmiersprache. Seit "Office 97" sind alle
Microsoft-Office-Programme (Word, Excel, Access usw.) mit der Makrosprache
Visual Basic for Application ausgestattet.

28.2 Allgemeines zu den Demo-Programmen

Es werden die Auflagerkrifte bei einem auf zwei Stiitzen gelenkig gelagerten Balken
berechnet. Siehe spitere Skizze im Programmteil. Die Anzahl n der Einzelkrifte ist
praktisch beliebig. Die Kréfte konnen innerhalb und auflerhalb der Auflager 4 und B
angreifen.

Gegeben sind die dulleren Einzelkrifte Fj (1 = 1, 2, 3, ..., n), die Angriffslingen der
Einzelkrifte /; (1 =1, 2, 3, ..., n), gemessen vom linken Auflager aus und der Lagerab-
stand der Auflager LA. Gesucht sind die Auflagerkrifte 'y und Fy,.

Anmerkung: Mit »LA« ist nach spiterer Skizze der Lagerabstand gemeint. In der
Mechanik wiirde man dafiir wahrscheinlich den GroB3buchstaben »L« verwenden. Pascal
unterscheidet bei den Bezeichnern nicht zwischen GroB- und Kleinbuchstaben. Der
Bezeichner »/« wird aber im Programm fiir eine indizierte Variable benutzt (Kraft-
angriffsléngen). In Pascal darf der gleiche Bezeichner nicht fiir indizierte und nicht-

28-4 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

indizierte Variablen benutzt werden, im Gegensatz zu GWBASIC und Turbo-Basic. In
der Sprache C wird im Gegensatz zu GWBASIC, Turbo-Basic und Pascal zwischen
GroB3- und Kleinbuchstaben unterschieden. Mit Ausnahme von Pascal konnte also in
den anderen Sprachen statt »LA« das »L« benutzt werden. Es wird aber einheitlich » LA«
benutzt.

Einzelkréfte, die von unten kommen, sind mit negativem Vorzeichen zu versehen. Bei
Kriften, die links vom Auflager A angreifen, ist die zugehdrige Kraftangriffslange »/«
mit negativem Vorzeichen zu versehen.

Aus den beiden Forderungen nach Kriftegleichgewicht und Momentengleichgewicht
(z.B. um Punkt A) ergibt sich:

(1) XF =0
(2) XM=0

|
o

>
e

(la) X Fi -
(2a))y

(Fa + Fb)
(Fi * 1i) - Fb * LA =

|
o

Fiihrt man zur Abkiirzung und im Hinblick auf die Programmierung ein:

[

(3) | SummeF = X Fi | Summe der &uBeren Krifte

(4) SummeM = X (Fi * 11i) ' Summe der Momente der &uBeren Krifte
(i =1, 2, 3, ..., n)

so ergeben sich aus (la) und (2a) folgende Gleichungen fiir die gesuchten Auflager-
krafte:

(5) Fa = SummeF — SummeM/LA
(6) Fb = SummeF — Fa

Auflagerkraft bei A
Auflagerkraft bei B

28.3 Zu den Sprachunterschieden in den Demo-Programmen

Turbo—Pascal GWBASIC Turbo—Basic Turbo—C
(BASICA) Quick—Basic

Kommentarbeginn: { oder (* ' oder REM ' oder REM /*
Kommentarende: } oder *) (Zeilenende) (Zeilenende) */
Schreibweise g/k
verbindlich: nein nein nein ja
Anweisung ab— : :
schlieBen mit: ; oder RETURN oder RETURN ;
Blockbeginn: begin (fehlt) (Unter— {
Blockende: end (fehlt) streichung) }
Variablen
deklarieren: ja nein nein (ja) ja
Indexklammern: [] () () []

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-5

od. (. .)

Stringkonstanten e ! T " T " T "

Zuweisungsoperator: = = = =

Gleichheit: = = = ==

Inkrementieren,

z.B. z =2z +1 Inc(z) Z =27 + 1 incr z *) | z++ od. ++z

Dekrementieren: Dec (z) Z =72 -1 decr z *) z-— od. --z

Bildschirm 16schen ClrScr CLS cls clrscr()

Cursorzeile 1l6sch.: Delline (fehlt) (fehlt) delline ()

Zeile ab Cursor

loschen: ClrEoL (fehlt) (fehlt) clreol ()

Cursor position.

Spalte s, Zeile z: GotoXY (s, z)| LOCATE Z, S locate z, s gotoxy (s, z)

Schreiben: Write(....) PRINT print cprintf (...)
od. WriteLn (printf(...)

Daten einziehen: Read(.....) INPUT input scanf(....)

Ein Zeichen von

Tastatur einziehen:| ReadKey INKEYS inkey$ getchar ()

Bildschirm— NormVideo normvideo ()

helligkeit: HighVideo COLOR v, h color v, h highvideo ()
LowVideo lowvideo ()

In Quick-Basic statt »inc
In Quick-Basic statt »dec

z + 1
1

ZLK: Z

ZLK: Z Z

28.4 Programmversion 1: Turbo-Pascal

program Balk TP;
uses

CRT;
const
s = 15g {
nMax = 100; {
var

SummeF, LA,
SummeM, Fa,
i, g

i, n:
Antwort:

Fb:

{ Balken-Auflagerkrafte,

Bildschirm-Spaltenpositi
Maximal 100 &duBere Kraft
der Speicherkapazitat be

Real;
array[l..nMax]
Integer;

Char;

of Real;

Version Turbo-Pascal

on }
e. Kann aber im Rahmen
liebig erhdoht werden

28-6

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

begin
repeat { Beginn der Schleife: repeat ... until }
ClrScr; { Bildschirm l6schen }
HighVideo;
GotoXY (s, 1); Write('Auflagerkrafte: Balken auf 2 Stitzen ');
LowVideo;
GotoXY (s, 2); Write('--- Version: Turbo-Pascal --————————- 7)) g
GotoXY (s, 4); Write(' | | [+F | "
GotoXY (s 5); Write(' v v v v ')
GotoXY (s 6); Write (' ")
GotoXY (s 7); Write (' _H_Fa A _H_Fb 79 &
GotoXY(s, 8); Write(' A == [==18B ");
GotoXY (s 9); Write(' ' +1 > "y ;
GotoXY (s, 10); Write (' |< LA > 79 s
GotoXY (s, 12); Write('Eingabe Abstand LA der Auflager: U) g
ReadLn (LA) ;
GotoXY (s, 14); Write('Eingabe Anzahl n der &uBeren Krafte: '");
ReadLn (n) ;
GotoXY (s, 16); Write('- Krafte von unten negativ eingeben '");
GotoXY (s, 17); Write('- Links vom Auflager A liegende Kraft');
GotoXY (s, 18); Write(' angriffslangen 1 negativ eingeben '");
SummeF := 0.0; { Summe der aduBeren Krafte. Init. }
SummeM := 0.0; { Summe der Momente der &duBeren Krafte. Init. }
for i := 1 to n do
begin
GotoXY (1, 20); DellLine; { delete line: Zeile 1l6schen }
GotoXY (s 20); Write(i, '. Kraft: '); ReadLn (F[i]);
GotoXY (34, 20); Write('Kraftangriffsléange: '); ReadLn (1[i]);
SummeF := SummeF + F[i];
SummeM := SummeM + F[i] * 1[i];
end;
Fa := SummeF - SummeM/LA;
Fb := SummeF - Fa;
GotoXY (s, WhereY + 1); Write('Die Auflagerkraft Fa = ', Fa);
GotoXY (s, WhereY + 1); Write('Die Auflagerkraft Fb = ', Fb);
GotoXY (s, 24); Write('Wiederholung (j/n): '");
Antwort := ReadKey;
until (Antwort = 'n'); { Ende der Schleife: repeat until }

end.

28.5 Programmversion 2: GWBASIC/BASICA (Nostalgie)

100
110
120
130
140
150

PROGRAMMS =

L}

NMAX = 100

DIM F (NMAX),

L}

"Balk-GW.BAS" '**** Version GWBASIC, BASICA ***x*xkxkxxk
'Alle Bezeichner in GroRbuchstaben

'Maximal 100 &dubere Krdfte. Kann aber im Rahmen

'der Speicherkapazitat beliebig erhoht werden.

L (NMAX) 'Dimensionierung der beiden Arrays

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-7

160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
450
460
470
480
490
500
510
520
530
540
550
560
570
580
590
600
610
620
630
640
650
660
670
680
690

FALSE = 0: TRUE = NOT FALSE
WIEDERHOLUNG = TRUE

'In GWBASIC bzw. BASICA nur FOR/NEXT- und WHILE/WEND-Schleifen
WHILE WIEDERHOLUNG 'Hier Ersatz fiir Pascal "repeat/until"
S =15 'Bildschirm-Zeile, -Spalte
CLS 'Bildschirm 1l&schen
COLOR 15, 9 'Statt »HighVideo«.
LOCATE 1, S: PRINT "Auflagerkrafte: Balken auf 2 Stitzen "
COLOR 7, 9 'Statt »LowVideo«.
LOCATE 2, S: PRINT "--- Version: GWBASIC, BASICA —------- "
LOCATE 4, S: PRINT " | | [+F [
LOCATE 5, S: PRINT " v v v v "
LOCATE 6, S: PRINT " "
LOCATE 7, S: PRINT " Fa . [#p "
LOCATE 8, S: PRINT " A == | [=<8 "
LOCATE 9, S: PRINT " +1 > | "
LOCATE 10, S: PRINT " < LA > "
A}
LOCATE 12, S: PRINT "Eingabe Abstand LA der Auflager: Wg
INPUT "", LA
LOCATE 14, S: PRINT "Eingabe Anzahl n der aduBeren Kréafte: ";
INPUT "", N
LOCATE 16, S: PRINT "- Krafte von unten negativ eingeben "
LOCATE 17, S: PRINT "- Links vom Auflager A liegende Kraft"
LOCATE 18, S: PRINT " angriffslangen 1 negativ eingeben "
A}
SUMMEF = 0 'Summe der aulBeren Krafte. Initialis.
SUMMEM = 0 'Summe der Momente der &duBeren Krafte. Initialis.
A}
FOR I = 1 TO N
LOCATE 20, 1: PRINT STRINGS (80, " ™)
'Zeile mit Blanks 1ld&schen
LOCATE 20, S: PRINT I; ". Kraft: ";
INPUT "", F(I)
LOCATE 20, 34: PRINT "Kraftangriffslédnge: ";
INPUT "", L (I)
SUMMEF = SUMMEF + F (I)
SUMMEM = SUMMEM + F(I) * L(I)
NEXT T
A}
FA = SUMMEF - SUMMEM / LA
FB = SUMMEF - FA
A\l
PRINT;
LOCATE , S: PRINT "Die Auflagerkraft Fa = "; FA
LOCATE , S: PRINT "Die Auflagerkraft Fb = "; FB
A\l
LOCATE 24, S, 1: PRINT "Wiederholung (j/n): ";
ANTWORTS = ""
WHILE NOT (ANTWORTS = "j" OR ANTWORTS = "n")
ANTWORTS$ = INKEYS
WEND: IF ANTWORTS = "n" THEN WIEDERHOLUNG = FALSE
WEND
END 'in Basic ist "END" nur optional

28-8 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

28.6 Programmversion 3: Turbo-Basic/Quick-Basic

Programm$ = "Balk-TB.BAS" '*** Version Turbo-Basic, Power-Basic
'oder Quick-Basic. Quick-Basic stellt
'Basic-Begriffe in GroBschreibung dar.

nMax = 100 'Maximal 100 &dubBere Krafte. Kann aber im Rahmen

'der Speicherkapazitat beliebig erhoéht werden.

dim F (nMax), 1 (nMax) 'Dimensionierung der beiden Arrays
do 'Beginn der Schleife: do loop until

s = 15 'Bildschirm-Spalte
cls 'Bildschirm 16schen
color 15, 9 'Statt »HighVideo«.
locate 1, s: print "Auflagerkrafte: Balken auf 2 Stitzen "
color 7 , 9: 'Statt »LowVideo«.
locate 2, s: print "--- Version: Turbo-Basic/Quick-Basic "
locate 4, s: print " I |+F ®
locate 5, s: print " v A A v "
locate 6, s: print " "
locate 7, s: print " _H_Fa a _H_Fb "
locate 8, s: print " A == I = B "
locate 9, s: print " ' +1 > "
locate 10, s: print " |< LA > "
locate 12, s: print "Eingabe Abstand LA der Auflager: Wg
input "", 1A
locate 14, s: print "Eingabe Anzahl n der &uBeren Krafte: ";
input "", n
locate 16, s: print "- Krdfte von unten negativ eingeben "
locate 17, s: print "- Links vom Auflager A liegende Kraft"
locate 18, s: print " angriffslangen 1 negativ eingeben "
SummeF = 0 'Summe der duBeren Krafte. Initialis.
SummeM = 0 'Summe der Momente der duleren Krafte. Initialis.
for i =1 ton

locate 20, 1: print string$ (80, " ")

'Zeile mit Blanks loschen

locate 20, s: print i; ". Kraft: ";

input "", F(i)

locate 20, 34: print "Kraftangriffsladnge: ";

input "", 1(i)

SummeF = SummeF + F (i)

SummeM = SummeM + F (i) * 1 (i)
next i
Fa = SummeF - SummeM / LA
Fb = SummeF - Fa
print
locate , s: print "Die Auflagerkraft Fa = "; Fa
locate , s: print "Die Auflagerkraft Fb = "; FDb
locate 24, s, 1: print "Wiederholung (j/n): ";
do

Antwort$ = inkey$

loop until Antwort$ = "j" or Antwort$ = "n"

loop until Antworts$ "n"
end 'in Basic ist "end" nur optional

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-9

28.7 Programmversion 4: Turbo-C

#include <conio.h> /* **** Beginn »Balk-TC.C« (Turbo-C 2.0) **** */
/* Zu »conio.h«: Header-Datei "Console Input/Output" =
main ()
{ /* Hier beginnt der main-Block. x/
float SummeF, LA, /* float = Real 2y
SummeM, Fa, Fb,
F[100], /* Maximal 100 Krafte. Kann im Rahmen der %/
1[100]; /* Speicherkapazitdt beliebig erhdoht werden. */
int i, mg /* int = Integer */
char Antwort; /* char = Char w/
#define S 15 /* Konstanten Utblicherweise in GroBschreibung */
do
{ /* -——— Hier beginnt der do-Block --- */
clrscr(); /* Bildschirm ldschen */
highvideo () ; /* Nur fir »cprintf("...")« */

gotoxy (S, 1); cprintf ("Auflagerkrafte: Balken auf 2 Stitzen ");
lowvideo () ;

gotoxy (S, 2); cprintf ("—— Version: Turbo—C 2.0 ")
gotoxy (S, 4); cprintf (" ” ” ”+F ” ")
gotoxy (S, 5); cprintf (" v v v v "),
gotoxy (S, 6); cprintf (" WH e
gotoxy (S, 7); cprintf (" Fa 2 _H_Fb "
gotoxy (S, 8); cprintf (" A == | == B " .
gotoxy (S, 9); cprintf (" +1 > ®) e
gotoxy (S, 10); cprintf (" < LA > "
gotoxy (S, 12); cprintf ("Eingabe Abstand LA der Auflager: ")
scanf ("$f", &LA);

gotoxy (S, 14); cprintf ("Eingabe Anzahl n der Aduberen Krafte: ");
scanf ("%d", é&n);

gotoxy (S, 16); cprintf ("- Krafte von unten negativ eingeben ");
gotoxy (S, 17); cprintf ("- Links vom Auflager A liegende Kraft");
gotoxy (S, 18); cprintf (" angriffslédngen 1 negativ eingeben ");
SummeF = 0; /* Summe der &duBeren Krafte. Init. */

SummeM = 0; /* Summe der Momente der &duReren Krafte. Init. */

for (1 = 1; 1 <= n; i++)
{
gotoxy (1, 20); delline(); /* Zeile ldschen */
gotoxy (S, 20); printf ("%$1d. Kraft: ", 1i);
scanf ("$f", &F[i]);
gotoxy (34, 20); printf ("Kraftangriffslange: ");
scanf ("S$f", &1[i]);
SummeF = SummeF + F[i];
SummeM = SummeM + F[i] * 1[i];

}

Fa = SummeF - SummeM/LA;
Fb = SummeF - Fa;

gotoxy (S, wherey() + 1);
cprintf ("Die Auflagerkraft Fa = $f", Fa);
gotoxy (S, wherey() + 1);
cprintf ("Die Auflagerkraft Fb

$f", Fb);

28-10 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

gotoxy (S, 24); cprintf ("Wiederholung (j/n): ");
Antwort = getch();
/* »getch« = get character: Ein Zeichen einlesen /)
} /* -———— Hier endet der do-Block ---- */
while (Antwort == 'j');

} /**/

28.8 Weitere Tropfen auf den heifien C-Stein

Die Unterschiede in der Variablendeklaration zeigt die folgende Gegeniiberstellung:

Pascal: C:

var
i, j, k: Integer; int i, 3, k;
X, y, z: Real; float x, vy, z;

In Pascal wird streng zwischen Funktionen (liefern Wert zuriick) und Prozeduren
(liefern keinen Wert zuriick) unterschieden. Die Sprache C kennt diese Unterscheidung
nicht; dort gibt es nur Funktionen. C-Funktionen die keinen Wert zuriickliefern (in
Pascal Prozeduren) werden in der Funktionsdeklaration mit einem vorgesetzten wvoid
gekennzeichnet. Funktionen mit Riickgabewert werden in der Deklaration mit dem
Ergebnisdatentyp vor dem Funktionsbezeichner gekennzeichnet.

Alle Funktionen miissen in C Parameterklammern besitzen, auch wenn keine Parameter
iibergeben werden. Beispiel: clrscr ()

In C konnen Funktionen nicht geschachtelt werden. Die Deklaration von lokalen
Funktionen ist im Gegensatz zu Pascal leider nicht moglich.

Weitere Gegentiberstellungen zwischen Pascal und C:

Pascal: C: Bemerkungen zu C
Zuweisungsoperator
Blockbildung
begin {
end }
Rechenoperatoren
Multiplikation * *
Division / /
Integer-Division div (fehlt)
Integer-Modulo mod %

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-11

Addition + +
Subtraktion - -
Logische Operatoren
and &&
or ||
not !
Bit-Operatoren
shl <<
shr >>
and &
or |
Xor ~ (Hochpfeil)
not ~ (Tilde)
Vergleichsoperatoren
grofBer als > >
grofler oder gleich >= >=
gleich = ==
ungleich <> =
kleiner oder gleich <= <=
kleiner als < <
Verzweigung
if b if (b) Bei mehr als einer An-
then al al; weisung Blockbildung
else a2; |else a2; |mitt }notwendig

Man beachte, dal im Gegensatz zu Pascal in C das "then" nicht angeschrieben wird und daf
auch nach der then-Anweisung, also vor dem "else" ein Semikolon stehen muf3, ausgenommen
bei Blockbildung mit { und }. Die Bedingungen sind in C immer zu klammern.

Fiir das Inkrementieren und Dekrementieren von Variablen stehen in C die Opera-
toren ++ und -- zur Verfligung. Sie kénnen vor oder nach dem Variablen-
bezeichner stehen, auch im Rahmen einer anderen Anweisung. In diesem Fall wird bei
vorgesetztem Operator das Inkrementieren bzw. Dekrementieren vor dem Ausfiihren der
Anweisung durchgefiihrt, bei nachgesetzem Operator nach dem Ausfiihren der Anwei-
sung.

Beispiele: n = 0; n = 0;
printf ("%$2d", n++); printf ("%$2d", ++n);
printf ("%$2d", n); printf ("$2d", n);

28-12 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

/* Ausgabe: 0 1 */ /* Ausgabe: 1 1 */

Zulassig sind auch Kombinationen von Operatoren und dem Zuweisungsoperator.
Damit erreicht man eine verkiirzte Darstellung. Einige Beispiele:

Normale Darstellung: Verkiirzte Darstellung:
summe = summe + a; summe += a;

summe = summe - a; summe -= a;

a =a * b; a *= Db;

a=a/ b; a /= b;

a =a % b; a %= b;

a =a & b; a &= b;

Zur formatierten Ausgabe:

Fir allgemeine Ausgaben (Bildschirm, Drucker und Dateien) dient die Funktion
printf, fiir Bildschirmausgaben speziell die Funktion cprintf (console print) die
einen kompakteren Code erzeugt als printf. Darliber hinaus stehen mit
putchar (Ausgabe Character) und puts (Ausgabe String) noch zwei weitere
spezielle Ausgabefunktionen zur Verfligung. Bei puts wird nach der Ausgabe stan-
dardméBig ein Zeilenvorschub erzeugt, bei allen anderen Funktionen dagegen erst beim
Ausdruck eines speziellen Steuerzeichens.

Das Format fiir printf bzw. cprintf:
printf (formatstring, ausdruckl, ausdruck2, ...);

Der Formatstring (Stringkonstante oder Stringvariable) enthélt die Formatierangaben.
Es konnen folgende Formatierelemente verwendet werden:

c

unsigned, 16-Bit-Integer ohne Vorzeichen
hex, 16-Bit-Integer in Hexadezimal-Schreibweise
wie %x
decimal, 16-Bit-Integer mit Vorzeichen
d long decimal, 32-Bit-Integer mit Vorzeichen
float, FlieBkommazahl
exponential, FlieBkommazahl in normierter Exponential-Schreibweise
character, ein einzelnes Zeichen
string, Zeichenkette
pointer, Zeigerwert (Speicheradresse)

X

n Q O®O +H = Q

O o 0 A A O O o° o° o°

el

Mit Ausnahmen von %$x und $X ist, wie in C allgemein giiltig, die Schreibweise
verbindlich. Wenn das Prozentzeichen als Textzeichen ausgegeben werden soll, dann ist
es zweimal anzuschreiben.

Mit zusitzlichen Integerangaben zwischen dem einleitenden Prozentzeichen und dem
Formatierelement 148t sich optional die (rechtsbiindige) Ausgabebreite festlegen.

Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen 28-13

Beispiele:
printf ("%d", 47);
printf ("$54d", 11); /* Schreibbreite 5 Zeichen */

printf ("$5.2f", 47.11); /* 5 Schreibstellen, 2 Nachkommast. */

Der Formatstring muf3 soviele Formatierangaben enthalten, wie Ausgabeparameter auf-
gefiihrt sind. Der Formatstring kann zusétzlich Ausgabetexte enthalten.

Beispiel:

i = 3;

printf ("Die Wurzel aus %d ist: $5.2f", i, sqgrt(i)):
/* Die Wurzel aus 3 ist: 1.73 2

Der Formatstring kann zudem an beliebigen Stellen Steuerzeichen enthalten, die mit
einem Riickwértsstrich (Backslash, in C das Symbol fiir Escape) eingeleitet werden.
Wenn der Backslash als Textzeichen ausgegeben werden soll, dann ist er zweimal anzu-
schreiben.

Die wichtigsten Steuerzeichen:

\n LF, line feed, new line, Zeilenvorschub

\t HT, tab, Tabulator

\f FF, form feed, Bildschirm 16schen, bei Drucker Seitenvorschub
\b BS, backspace, Cursor (Schreibkopf) eine Zeichen zuriick

\r CR, carriage return, Wagenriicklauf

\ta BEL, Piepton

\v VT, vertical tab, vertikaler Tabulator

\xhh hex, Darstellung des Zeichens, dessen Code in hex (1 bis 2 Hex-Zeichen /h)
angegeben ist

\ooo oktal, Darstellung des Zeichens, dessen Code in oktal (1 bis 3 Oktal-Zeichen
000) angegeben ist

Beispiel:
printf ("\n%10s\n%10s\n%10.2f\n", "Anton", "Huber", 47.11);

erzeugt die Ausgabe:

Anton
Huber
47.11

Die momentane Druckzeile wird abgeschlossen oder eine Leerzeile erzeugt, dann wird
in der neuen Zeile anton rechtsbiindig mit 10 Schreibstellen gedruckt. Anschliefend
erfolgt wieder ein Zeilenvorschub und das Wort Huber wird ebenfalls mit 10 Schreib-
stellen rechtsbiindig in die neue Zeile gedruckt. AbschlieBend erfolgt nochmals ein
Zeilenvorschub und die Zahl 47.11 wird rechtsbiindig in ein Feld mir 10 Schreibstellen
gedruckt, davon 2 Nachkommastellen.

28-14 Dr. K. Haller Turbo-Pascal Kap. 28: Vergleich mit anderen Programmiersprachen

Zur Eingabe:

Zur Eingabe dient die Funktion scanf, die dhnlich universell ausgelegt ist wie die
Funktion printf. Das Format:

scanf (formatstring, adresse varl, adresse var2, ...);

Der Formatstring ist genauso aufzubauen wie bei printf. Die weiteren Parameter von
scanf sind die Variablen, auf die einzulesen ist. Allerdings nicht die Variablen selbst,
sondern deren Adressen, was in C durch den vorgestellten AdreB-Operator "&"
bewerkstelligt wird, wenn der Bezeichner nicht bereits ein Zeiger ist.

Beispiel:

int a, b;

scanf ("Eingabe zwei Integer %d %d", &a, &b);

28.9 Druckerausgabe in C, Dateien bearbeiten in C

Die folgende Programm "Drucker.C" demonstriert die Druckerausgabe und den Um-
gang mit Dateien in C:

#include <stdio.h> /* stdio.h auch Dateioperationen */

main () /* Programm »Drucker.C«, Demo Drucker */

{
FILE *Dr; /* Siehe Nr 1 */
Dr = fopen ("PRN", "w"); /% Siehe Nr 2 */
fprintf (Dr, "Drucker mit »fprintf« = 'file printf' ansprechen\n\n");
fprintf (Dr, "1. »FILE *Dr;« Datei-Variable deklarieren \n ");
fprintf (Dr, " »Dr« frei gewdhlter Datei-Bezeichner\n\n");
fprintf (Dr, "2. »Dr = fopen(''PRN'', "'w'');« \a™) g
fprintf (Dr, " »fopen« File open, Datei &ffnen \n") ;
fprintf (Dr, " »PRN« Gerate-Dateibezeichner fir Printer \a™) g
fprintf (Dr, " P»WK Write-Modus = Schreiben \n\n") ;
fprintf (Dr, " Weitere Gerate: »CON« = Console = Bildschirm \n") ;
fprintf (Dr, " Fur Disk-Datei: Dateibezeichner nach MS-DOS \n") ;
fprintf (Dr, " Beispiel: C:\\TC\\Haller\\Umsatz.DAT \n\n") ;
fprintf (Dr, " Weitere Modi: \n") ;
fprintf (Dr, " »r« = Read. Lesen nicht fir Drucker/Bildschirm\n");
fprintf (Dr, " »a« = Append. Anhangen an evtl. bereits vor- \n");
fprintf (Dr, " handene Datei zum Schreiben. \n") ;
fprintf (Dr, " Ggf. neue Datei. \n") ;
fprintf (Dr, " »r+« = Schreiben/Lesen. Datei muB existieren. \n");
fprintf (Dr, " »wWw+« = Neue Datei fiir Schreiben/Lesen anlegen. \n");
fprintf (Dr, " Evtl. existierende Datei wird geldscht! \n");
fprintf (Dr, " »a+« = Datei zum Lesen &6ffnen und Anhdngen von \n");
fprintf (Dr, " Daten durch Schreiben. Ggf. neue Dateil\n\n");
fprintf(Dr, "3. »fclose(Dr);« : File close, Datei schlieBen.\n\n");
e d e (e, e \Ef") ;
fclose (Dr) ; A Siehe Nr 3 */

}

30180606 Dr. K. Haller

