Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-1

27 Systemnahe Programmierung in Pascal

271 DEIINIHION .ttt sttt ettt ettt e bt e b et 2
27.2 Operationen mit Bitmustern. Beispiel Zahlenkonvertierung dez <->bin 2
27.3 Speicheradressierung. Segment und OffSetcceecvveviiriiiiieniiieieceeee, 9
27.4 Zugriff auf Speicheradressen in Turbo-Pascal..........ccccoeciniiniiiininnicnene. 11
27.5 Inline-Code und Assembler-Code in Turbo-Pascalccccooevvieeiieeinennnnnen. 12
27.6 Die Turbo-Pascal-Unit DOScocoiiiiiiiiiieeeeeeee e 14
27.7 Die Interrupts im UBErblickcocovveveiiieieeeeieceeeeeee e, 16
27.8 Beispiel: Zeichenausgabe iiber Pascal, DOS, BIOS und Hardware 32
27.9 Diverse Demo-Programme A

27.9.1 Tastatur-Statusbytes, Umschalttasten (BIOS-Interrupt 16h)ccceeeenneeennneen. 36
27.9.2 BIOS-Interrupt 11h, Konfiguration feststellencccocevienenicnicnnncnnnene. 39
27.9.3 Maus-Interrupt 33Noeiiiieiie e e 41
27.9.4 BIOS-Interrupt 10h, Bildschirm, Cursorposition, Zeichen und Attribut........... 45
27.9.5 Absolute Speicheradressierung, Bildschirm in Datei speichern........................ 47
27.9.6 BIOS-Interrupt 13h, Diskette, Plattecccoooeeeiiiiniiiiiiiieieeeeeeee, 49
27.10 Diverse Demo-Programme B

27.10.1 BIOS-Interrupt 12h, Speicherkapazitdt abfragen...........ccceeeevvvencieeniieeneeenen. 52
27.10.2 BIOS-Interrupt 10h, CUISOTc.coouiriiriiiiieiieniieieeeesieeteee et 53
27.10.3 BIOS-Interrupt 17h, Druckerstatusccceeoveeeiiieeciieeeiieeeie e 54
27.10.4 ROM-Basic-Interrupt 18h, ROM-Basic (nicht bei allen PCs)...........ccocue...... 55
27.10.5 Speicherauszug (HeX-DUump)c.coeviieeiiiieiiieeiieee e 56

Durch die Entwicklung des Betriebssystems MS-Windows sind einige Abschnitte dieses
Kapitels nicht mehr so von Bedeutung wie frither. Fiir das Versténdnis eines Betriebssystems
sind sie dennoch hilfreich. In den Lehrveranstaltungen wird nur eine Auswahl aus diesem
Kapitel behandelt.

27-2 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27.1 Definition

Unter systemnaher Programmierung in einer hoheren Programmiersprache versteht man
das Programmieren von Anweisungen oder Funktionen, in denen unmittelbar auf
Speicherstellen (Adressen) des Rechners oder auf Register des Prozessors zugegriffen
wird, den Aufruf von Interrupts, z.B. fiir die Mausprogrammierung und auch die Defi-
nition bzw. Aufruf von (kleineren) Programmen in der Maschinensprache mit den
Mitteln der hoheren Programmiersprache.

Systemnahe Programmierung ist z.B. bei zeitkritischen Programmteilen angebracht. Die
Ubertragbarkeit von Pascal-Programmen mit systemnahen Programmteilen auf andere
Rechner kann problematisch werden.

Turbo-Pascal gestattet den direkten Zugriff auf Speicherstellen; auBerdem kdnnen Pro-
zessorbefehle mit inline direkt in den Quelltext eingegeben werden, ab Turbo-Pascal
6.0 mittels asm auch in den mnemotechnischen Bezeichnungen der Assemblersprache.

27.2 Operationen mit Bit-Mustern

Bei systemnaher Programmierung sind oft Operationen mit Bit-Mustern notwendig.
Unter Bit-Muster versteht man eine aus den Zeichen '0' und 'l' bestehende Zeichenfolge,
entsprechend dem bindren Zahlensystem. Fiir die Operationen werden die logischen
Operatoren and, or, not und xor, sowie die Schiebeoperatoren shl (shift left) und
shr (shift right) verwendet. Diese Operatoren stehen mit gleichen Bezeichnungen
sowohl in Pascal als auch im Assembler zur Verfiigung.

Die folgenden Beispiele beziehen sich auf ein Bit-Muster mit der Lénge 8, entsprechend
einem Byte. Die Zéhlung der Bits beginnt zweckméaBigerweise rechts mit 0.

Fiir die spiteren Demonstration der Bit-Muster-Operationen wird ein beliebiges Bit-
Muster namens VOR angenommen. Durch die Operationen wird das Bit-Muster
namens NACH erzeugt.

< i
76 543210 8 Bit, Nummer 0 .. 7

S
L 1LsSB, least significant bit (niedrigste Wertigkeit)
MSB, most significant bit (hochste Wertigkeit)

27.2.1 Zu den Shift-Operatoren shl und shr

Bei den meisten der spéteren Bit-Operationen wird zur Veranschaulichung die Potenz-
schreibweise 2' benutzt. Bekanntlich gibt es in Pascal die Potenzfunktion nicht als
Standardfunktion. Die Nachstellung mit Exponential- und Logarithmusfunktion wére

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-3

fiir die anstehenden Aufgaben zu aufwendig. Wesentlich eleganter und effizienter 1463t
sich das Problem mit dem Shift-Left-Operator shl oder dem Shift-Right-Operator
shr l6sen. Die folgende Tabelle zeigt Anwendungen des Shift-Left- und des Shift-
Right-Operators.

Es gilt

200 =1 shl1 0 = 1 27 =128 shr 0 = 128

2l =1shl 1 = 2 26 =128 shr 1 = 64

22 =1shl 2 = 4 25 =128 shr 2 = 32

23 =1shl 3 = 8 24 =128 shr 3 = 16

24 =1 shl 4 = 16 23 =128 shr 4 = 8

25 =1shl 5 = 32 22 =128 shr 5 = 4

26 =1 shl 6 = 64 21 =128 shr 6 = 2

27 =1 shl 7 = 128 200 =128 shr 7 = 1

28 =1 shl 8 = 256 (0) 271 = 128 shr 8 = 0

22 =1 shl 9 = 512 (0) 272 = 128 shr 9 = 0

usw usw
Bytetyp, i = 0..7: 2t =1 shl i = 128 shr (7 - 1)
Wordtyp, i = 0..15: 21 =1 shl i = 32768 shr (15 - 1)

Bei Benutzung von Variablen fiir die Ergebnisse bei Shift-Operationen ist auf den
Definitionsbereich des Datentyps zu achten, z.B. 0..255 bei Typ Byte. Bei Konstanten
steht in Turbo-Pascal der Bereich des Typs Longlnt zur Verfiigung. Beim "Hinausschie-
ben" nach rechts wird als Ergebnis 0 geliefert, da Schiebeoperatoren nur fiir Ganzzahlen
definiert sind.

Das folgende Demo-Programm zeigt die Wirkung der Schiebeoperatoren und mogliche
Fehler:

program Pas27021; { Die Schiebe-Operatoren shl und shr }
uses
CRT;
var
i: ShortInt;
BytelLinks,
ByteRechts: Byte;
WordLinks,
WordRechts: Word;
begin
ClrScr;
WriteLn (' Datentyp Byte. Shift richtig fir i = 0..7");
WriteLn (' 2 hoch i = [1 shl i] = [128 shr (7 - 1)1");
Writeln (' —————"—"—""""""—"—"—"—"—"—"—"—\—"\—~\—\—~—~—~—~\—~—~(—\—~\—~\—\—~\—~—\—~\—~—\——),
for i := -2 to 9 do { Richtig nur fir i = 0..7, Byte }
begin
ByteLinks = (1 shl i) 2
ByteRechts := (128 shr (7 - 1));
WriteLn (' 2 hoch ', i:2, ' = ', BytelLinks:6, ByteRechts:14);

end;

27-4 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

WriteLn; Write (' Weiter mit Return ... '); ReadLn; WritelLn;
WritelLn (' Datentyp Word. Shift richtig fir i = 0..15 '),
WriteLn (' 2 hoch i = [1 shl i] = [32768 shr (15 - i)]1"');
Writeln(' ———————"=—""—"""""—"“"—"———~—— e —————),
for i := -2 to 17 do { Richtig nur fir i = 0..15, Word }
begin
WordLinks = (1 shl i)
WordRechts := (32768 shr (15 - 1));
WriteLn (' 2 hoch ', i:2, ' = "', WordLinks:6, WordRechts:16);
end;
repeat
until ReadKey <> '';
end.

Die Ausgabe fiir den ersten Programmteil:
Datentyp Byte. Shift richtig fiir 1 = 0..7

2 hoch i = [1 shl i] = [128 shr (7 - 1i)]
2 hoch -2 = 0 0
2 hoch -2 = 0 0
2 hoch 0 = 1 1
2 hoch 1 = 2 2
2 hoch 2 = 4 4
2 hoch 3 = 8 8
2 hoch 4 = 16 16
2 hoch 5 = 32 32
2 hoch 6 = 04 04
2 hoch 7 = 128 128
2 hoch 8 = 0 0
2 hoch 9 = 0 0

27.2.2 Bit-Muster um i-Stellen nach links verschieben

NACH := VOR shl 1 i =0 ... 7. Von rechts
shl: shift left

Das Bit-Muster wird rechts mit Nullen aufgefiillt. Die Verschiebung um eine Stelle
nach links verdoppelt den Wert des Bit-Musters. Bits, die "hinausgeshiftet" werden,
gehen verloren. In Turbo-Pascal jedoch Abbruch mit Fehlermeldung, wenn die Ober-
grenze des vereinbarten Datentyps, z.B. bei Byte = 255 {iberschritten wird.

1. Beispiel: i =2, VOR = 0001 1111, dez 31, hex HIF
NACH = 0111 1100, dez 124, hex HC

31 shl 2 ==> 124

2. Beispiel: i=1, VOR = 1000 0000, dez 128, hex H8O0
NACH = 0000 0000, dez 0, hex HOO

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27-5

128 shl 1

=> 0

(Zu Pascal siehe oben)

27.2.3 Bit-Muster um i-Stellen nach rechts verschieben

NACH VOR shr 1

1 O ... 7. Von rechts.
shr: shift right

Das Bit-Muster wird links mit Nullen aufgefiillt. Die Verschiebung um eine Stelle nach
rechts halbiert den Wert des Bit-Musters. Beim "Hinausschieben" aller Bits wird das

Ergebnis 0 geliefert.
1. Beispiel: i=2, VOR = 1001 0000, dez 144, hex H90
NACH = 0010 0100, dez 36, hex H48
144 shr 2 ==> 3606
2. Beispiel: i =1, VOR = 0000 0001, dez 1, hex HO1
NACH = 0000 0000, dez 0, hex HOO
1l shr 1 ==> 0
27.2.4 Das i-te Bit setzen, die anderen Bits nicht verandern
NACH := VOR or 21 i=20 7. Von rechts.
1. Beispiel: i =5, VOR = 0101 1111, dez 95, hex H5F
25 = 0010 0000, dez 32, hex H20
NACH = VOR or 29 = 0111 1111, dez 127, hex HTF
95 or 32 ==> 127
2. Beispiel: i =5, VOR = 0111 1111, dez 127, hex HTF
25 = 0010 0000, dez 32, hex H20
NACH = VOR or 29 = 0111 1111, dez 127, hex H7F
127 or 32 ==> 127 (Achtung: 127 or 34 ==> 127)

27.2.5 Das i-te Bit loschen, die anderen Bits nicht verandern

NACH := VOR and (not 2i) i =0 ... 7. Von rechts
Klammern nicht notwendig
1. Beispiel: i = 3, 23 = 0000 1000, dez 8, hex HOS8
not 23 = 1111 0111, dez 247, hex HF7
VOR = 0101 1101, dez 93, hex H5D
not 23 = 1111 0111

27-6 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

NACH = VOR and (not 23) 0101 0101, dez 85, hex H55

93 and (not 8) ==> 85
2. Beispiel: i= 3, 23 = 0000 1000, dez 8, hex HOS8
not 23 = 1111 0111, dez 247, hex HF7
VOR = 0101 0101, dez 85, hex HS55
not 23 = 1111 0111

NACH = VOR and (not 23)
85 and (not 8) ==> 85

0101 0101, dez 85, hex H55

27.2.6 Das i-te Bit invertieren, die anderen Bits nicht verandern

NACH := VOR xor 21 i =20 ... 7. Von rechts
xor: Exklusives Oder
1. Beispiel: i =6, VOR = 0001 1111, dez 31, hex HIF
26 = 0100 0000, dez 64, hex HA40
NACH = VOR xor 26 = 0101 1111, dez 95, hex HSF
31 xor 64 ==> 95
2. Beispiel: i =6, VOR = 0101 1111, dez 95, hex HSF
26 = 0100 0000, dez 64, hex H40
NACH = VOR xor 20 = 0001 1111, dez 31, hex HIF
95 xor 64 ==> 31

27.2.7 Testen, ob das i-te Bit gesetzt ist. Ergebnistyp Boolean

‘ - i=20 ... 7. Von rechts
BitIgesetzt := ((VOR and 2") = 2%) Das innere Klammerpaar
ist notwendig!

1. Beispiel: i=6, VOR = 0101 1111, dez 95, hex HSF
26 = 0100 0000, dez 64, hex H40

(VOR and 26) = 0100 0000, dez 64, hex HA40

(VOR and 26) = 26 ==> Bitogesetzt = True

2. Beispiel: i=6, VOR = 0001 1111, dez 31, hex HIF

26 = 0100 0000, dez 64, hex H4Q

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27-7

(VOR and 26) = 0000 0000, dez 0, hex HOO
(VOR and 26) <> 26 ==> Bité6gesetzt = False

27.2.8 Bit-Muster loschen (alle Bits auf 0)

NACH := VOR =xor VOR xor: Exklusives Oder
Alternative zu: NACH := 0
Beispiel: VOR = 0001 1111, dez 31, hex HIF
VOR = 0001 1111, dez 31, hex HIF
NACH = VOR xor VOR = 0000 0000, dez 0, hex HOO
31 xor 31 ==> 0

27.2.9 Anwendung: Zahlenkonvertierung

a) Konvertierung dezimal in binéir

program Pas27022;

{ Zahlenkonvertierung "dezimal-binar" }

{ K. Haller }
uses
CRT;
type
Strlé = string[16];
Str2l = string[21];
var
Dezimalzahl: Word;
BinaerString: Strle;
BinaerString Formatiert: string([21];
function BinStr (Dezimalzahl: Word): Strl6; ({ }
var {]}
Temp: Strlé6; {|}
il g Byte; {|}
begin {]}
if Dezimalzahl > 255 {|}
then Temp := '0000000000000000" {1}
else Temp := ' 00000000"; {1}
for i := 0 to 15 do {|}
if Dezimalzahl and (1 shl i) = (1 shl i) {|}
then Temp|[Length (Temp) - i] := '1"'; {|}
BinStr := Temp; {]}
end; { }
function Formatierung (BinaerString: Strl6): Str2l; { ——}
var {|}
Temp: Str2l; {]}
begin {|}
Temp := BinaerString; {|}
Insert (' ', Temp, 5); {|}

27-8 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Insert (' ', Temp, 14)

Insert('|', Temp, 10)

Insert('|', Temp, 1),

Insert('|', Temp, 21)

Formatierung := Temp;
end; {
begin

ClzSerg

Writeln ('Zahlenkonvertierung dezimal-binar');

WriteLn ('Man achte auf Fehler, wenn Eingabe nicht im ',

'Word-Bereich liegt.');

N e e
e e e

Writeln;

WriteLn ('Eingabe dezimal, Ende mit O. Bindr unformatiert vy
' Bindr formatiert');

Writeln('- - - —-——————"—"—""""""—"—"\—"—"\—"—"\—~—~\—~—~\—(—~(—(—(—(————————————————————— ',
Y e e e e e e e e o —— — — —— —— '),

repeat

Write('Dezimal (0..65535): ");

{$R- Range-Priifung ausnahmsweise auf AUS }
ReadLn (Dezimalzahl) ;
{SR+}

BinaerString
BinaerString Formatiert
GotoXY (33, WhereY - 1);

BinStr (Dezimalzahl) ;
Formatierung (BinaerString) ;

WritelLn (BinaerString, ' ', BinaerString Formatiert);
until Dezimalzahl = 0;
repeat
until ReadKey <> '';

end.

Eine mogliche Bildschirmausgabe:

Zahlenkonvertierung "dezimal-bindr"
Man achte auf Fehler, wenn Eingabe nicht im Word-Bereich liegt.

Eingabe dezimal, Ende mit O. Bindr unformatiert Bindr formatiert

Dezimal (0..65535): 1 00000001 0000 0001
Dezimal (0..65535): 2 00000010 0000 0010
Dezimal (0..65535): 4 00000100 0000 0100
Dezimal (0..65535): 8 00001000 0000 1000
Dezimal (0..65535): 16 00010000 0001 0000
Dezimal (0..65535): 32 00100000 0010 0000
Dezimal (0..65535): 64 01000000 0100 0000
Dezimal (0..65535): 128 10000000 1000 0000
Dezimal (0..65535): 129 10000001 1000 0001
Dezimal (0..65535): 254 11111110 1111 1110
Dezimal (0..65535): 255 11111111 1111 1111
Dezimal (0..65535): 256 0000000100000000 0000 0001|0000 0000
Dezimal (0..65535): 65534 1111111111111110 1111 11111111 1110
Dezimal (0..65535): 65535 1111111111111111 1111 11111111 1111
Dezimal (0..65535): 65536 01100100 0110 0100
Dezimal (0..65535): 65537 00000001 0000 0001
Dezimal (0..65535): 65538 00000010 0000 0010

b) Konvertierung binér in dezimal

program Pas27023; { Zahlenkonvertierung "bindr-dezimal" }
{ K. Haller }
uses
CRT;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-9

var
Dezimalzahl: Word;
BinaerString: string;
i, Zeile: Byte;
Fehlerfrei: Boolean;
begin
ClrScr;
WritelLn ('Zahlenkonvertierung bindr-dezimal') ;
Writeln;
WritelLn ('Eingabe bindr, 1..16 Stellen. Ende mit 0. Dezimal');
Writeln('-——-————————"——"——"— - ———— '),
repeat
Zeile := WhereY;
repeat
Fehlerfrei := True;
GotoXY (1, Zeile);
Write ('Eingabe bindr: '); ClrEoL;

GotoXY (16, Zeile);

ReadLn (BinaerString) ;

if (Length(BinaerString) < 1) or
(Length (BinaerString) > 16)

then Fehlerfrei := False;
if Fehlerfrei
then for i := 1 to Length(BinaerString) do
if (BinaerString[i] <> '0') and
(BinaerString[i] <> '1")
then Fehlerfrei := False;

until Fehlerfrei;

while Length (BinaerString) < 16 do

BinaerString := '0' + BinaerString;
Dezimalzahl := 0;
for i := 0 to 15 do
if BinaerString[l6e - i] = '1"'
then Dezimalzahl := Dezimalzahl + 1 shl i;

GotoXY (44, WhereY - 1);
WriteLn (Dezimalzahl) ;
until Dezimalzahl = 0;
repeat
until ReadKey <> '';
end.

27.3 Speicheradressierung. Segment und Offset

Der Stammvater der Intel-Mikroprozessoren fiir PCs, der Intel 8086 (auch 8088) besitzt
20 AdreBleitungen. Damit lassen sich 220 = 1 048 576 Speicherstellen adressieren, das
sind 1024 KByte oder 1 MByte. Jiingere Prozessoren besitzen mehr AdreBleitungen und
somit einen groBeren AdreBbereich (180286 mit 24 AdreBleitungen, ab 180386 mit 32
AdreBleitungen). Aus Kompatibilitdtsgriinden laufen aber auf diesen Prozessoren die
iiblichen MS-Programme im sog. Real-Mode, der nur den Adrebereich bis 1 MByte
verwaltet. Nur mit besonderen Maflnahmen kann der zusétzliche Adreraum genutzt

27-10 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

werden (Einsatz des Betriebssystems OS/2, Windows, Nutzung als Plattencache oder
RAM-Disk, Emulation eines Expansionsspeichers usw. Siehe Kap. Betriebssystem).

Die folgenden Ausfiihrungen beziehen sich auf den 8086 bzw. den Real-Mode der neu-
eren Intel-Prozessoren mit dem gemeinsamen Merkmal, daf} die Speicheradressen nicht
fortlaufend (linear) durchgezédhlt werden, im Gegensatz zu Prozessoren anderer Her-
steller, wie z.B. Motorola. Vielmehr wird der Adre8bereich in Segmente unterteilt, die
an beliebigen Vielfachen von 16 Byte (= 1 Paragraph) beginnen kdnnen und maximal
64 KByte groB3 sein konnen. Die relative Adresse zum Segmentbeginn nennt man
Offset, der aber nicht iiber eine maximale Segmentgrofe hinausgehen kann. Fiir eine
Adresse auflerhalb dieser Grenze muBl eine Segmentumschaltung vorgenommen
werden.

Die segmentierte Speicheradresse wird in folgender Notation angegeben:

| segment:offset |

Es ist allgemein iiblich (aber nicht notwendig), diese Angaben in hexadezimaler Nota-
tion zu machen. Da der Segmentbeginn immer ein Vielfaches von 16 darstellt, ergibt
sich als letzte Stelle fiir den Segmentbeginn eine hexadezimale Null, die vereinbarungs-
gemdll weggelassen wird. Bei der Bildung der physischen Adresse wird die Segment-
adresse um vier Bit nach links geschoben, was einer Multiplikation mit dem Faktor 16
entspricht, anschliefend wird der Offset addiert.

Durch diese Technik bedingt, konnen sowohl Segment als auch Offset nur Werte
zwischen 0 und 65535 (in hex: h0000 und hFFFF) annehmen und somit in den 16-Bit-
Registern des Prozessors 8086 gespeichert werden.

Man beachte, daf in Pascal das Dollarzeichen $ als Hex-Vorsatzzeichen dient.

Beispiel 1: ~ Physikalische Adresse des ersten Tastatur-Statusbytes, in iiblicher Hex-
Notation 0040:0017, in Pascal $0040:$0017
16 * (0*4096 + 0*256 + 4*16 + 0*1) +
(04096 + 0*256 + 1*16 + 7*1) = 1047

Beispiel 2: Physikalische Adresses des Beginns des Farbbildschirmspeichers, in
iiblicher Hex-Notation B800:0000 (Mono: B000:0000)
16 * (11*4096 + 8*256) = 753664

Beispiel 3: Die hochste physikalische Adresse, die rein rechnerisch mit den hdchsten
Werten von Segment und Offset gebildet werden kann, in {iblicher Hex-
Notation FFFF:FFFF (in Pascal $FFFF:$SFFFF)
le * (15*4096 + 15*256 + 15*16 + 15) +

15%4096 + 15*256 + 15*16 + 15 1 114 095

Diese Adresse kann aber nicht mehr mit den 20 AdreBleitungen (A0 bis
A19, 220 = 1 048 576) des Intel 8086 dargestellt werden. Mit MS-DOS
ab Version 5.0 und ab Prozessor 80286 kann aber dieser iiber 1 MByte
hinausgehende und 64 KByte grofle Speicherbereich im Real-Mode

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-11

adressiert werden. Details siehe Kap. Betriebssystem (HMA, High
Memory Area, Behandlungsroutine fiir die AdreBleitung A20).

Wichtig: Die gleiche physikalische Adresse kann aus vielen Kombinationen von
Segment:O0ffset gebildet werden.

27.4 Zugriff auf Speicheradressen in Turbo-Pascal

Den Zugriff auf Speicheradressen (Speicherstellen) gestattet der in Turbo-Pascal vor-
definierte (Pseudo-) Array Mem[. .] (Mem steht fiir Memory) in den drei Varianten:

Mem[segment:offset] Datentyp Byte, 1 Byte
MemW [segment:offset] Datentyp Word, 2 Byte
MemL [segment:offset] Datentyp LonglInt, Doppelwort, 4 Byte
segment:offset Beide Ausdriicke mit Datentyp Word. Konstanten in der Regel in Hex-
Notation.

Der Zugriff kann mit diesem vordefiniertem Turbo-Pascal-Array sowohl lesend (RAM-
und ROM-Speicherstellen) als auch schreibend (nur RAM-Speicherstellen) sein. In
anderen Programmiersprachen gibt es getrennte Sprachelemente fiir Lesen und Schrei-
ben, in Basic und C z.B. Peek fiir Lesen und Poke fiir Schreiben.

Beispiel:
var
B: Byte;
W: Word;
begin
é';; Mem[$0040:$00177; { Lesen, 1 Byte }
W.:=.MemW[$OO40:$OOl7]; { Lesen, 2 Byte }
Méﬁié0040:$0017] := 156; { Schreiben, 1 Byte }
Méﬁﬁi$0040:$0017] := 64156; { Schreiben, 2 Byte }
end.

Beispiel: Beschreiben der Bildschirmspeicherstellen

program Pas27041; { Bildschirmspeicher }
{ Zum Bildschirmspeicher: B800:0000 (color) bzw. B000:0000 (mono)
Jeder Schreibstelle sind im Bildschirmspeicher 2 Bytes zuge-
ordnet. Im ersten Byte (geradzahlige Adresse) steht das Zeichen;

27-12

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

im zweiten Byte (ungeradzahlige Adressen) steht das Attribut des
Zeichens (Farbe Vordergrund/Hintergrund, blinkend oder nicht).
Das folgende Demo-Programm schreibt liber den vordefiniertem Array
»Mem [segment:offset]« direkt in den Bildschirmspeicher. Es werden
alle 256 ASCII-Zeichen geschrieben und zwar in der linken oberen
Ecke beginnend (Offset = 0 fiir das erste Zeichen). Das Attribut
wird von Zeichen zu Zeichen gewechselt, der Einfachheit halber
mit dem Wert der Laufvariablen.

e Mit »Mem[segment:offset]« konnen beliebige Speicherstellen
byteweise angesprochen werden.

e Mit »MemW|[segment:offset]« werden Speicherstellen mit 2 Bytes
(Typ Word) angesprochen.

e Mit »MemL[segment:offset] werden Speicherstellen mit 4 Bytes
(Typ LongInt) angesprochen.

In allen Fallen sind »segment« und »offset« Ausdriicke mit dem
Datentyp Word.

Man sei bei direkten Speicherzugriffen vorsichtig!

var
i: Integer;
begin
for i := 0 to 255 do
begin
Mem[$b800:2*1] = 1i; { Das erste Byte: Das Zeichen }
Mem[$b800:2*1 + 1] := 1; { Das zweite Byte: Das Attribut }
end; { Zur Demo: Jedes Zeichen mit }
{

anderem Attribut. }

repeat until ReadKey <> g

end.

27.5 Inline-Code und Assembler-Code in Turbo-Pascal

a) Inline-Codes

... sind Prozessor-Codes (Bytezahlen 0..255, $00..5ff), die in den Pascal-Quelltext ein-
gebaut werden, iiblicherweise in Hex-Notation, d.h. in Pascal mit vorausgestellten
Dollarzeichen. Die Codes kann man sich z.B. durch Disassemblieren eines (kleinen)
COM-Files mit dem Hilfsprogramm DEBUG verschaffen. Siehe Kap. 30. Inline-Codes
werden nach dem reservierten Word inline und einer 6ffnenden runden Klammer byte-
weise eingegeben. Als Trennzeichen dient der Schrigstrich /. Beendet werden Inline-
Codes mit der schlieBenden runden Klammer. Die Eingabe der Codes ist ansonsten
formatfrei.

Format fir Inline-Codes:

inline (code[/code]...)

b) Assembler-Codes (ab Turbo-Pascal 6.0)

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-13

. sind Codes in den mnemotechnischen Bezeichnungen der Assemblersprache. Mit
gewissen Einschrinkungen konnen diese Codes ab Turbo-Pascal 6.0 assembliert
werden. Details siche Handbuch.

Format fur Assembler-Codes:

asm
asm-Anweisung { Wenn mehrere Assembler-Anweisungen, dann }
{ Trennzeichen Semikolon oder Zeilenvorschub }
end;
1. Beispiel

program Pas27051; { Print Screen (Hardcopy) Uber Interrupt h05 }
{ Turbo-Pascal, "inline" und "asm" }

begin
WritelLn;
WriteLn (' Hardcopy mit Inline-Code »int hO05« ');
Write (' Wenn Drucker bereit, Taste Return: '); ReadLn;

inline ($CD/$05); { Im Assembler: int 05 ; Interrupt 05 }

{ = Ausldsen einer Hardcopy }
Writeln;
WriteLn (' Hardcopy mit Asm-Code (Pascal 6.0) '");
Write (' Wenn Drucker bereit, Taste Return: '); ReadLn;
asm { »asm« Assembler-Code, ab Turbo-Pascal 6.0 }
int $05 { Bei mehreren Assembler-Anweisungen als }
end; { Trennzeichen Semikolon oder neue Zeile }
end.
2. Beispiel:
program Pas27052; { ASCII-Zeichensatz mit inline-Code }
{ Turbo-Pascal 5.0/6.0 }
begin
WritelLn; WritelLn; WriteLn ('ASCII-Zeichensatz iber Inline-Code: ")
inline (
Sbl/Sff/ { 01: mov CL, ff ; CL mit hex FF = dez 255 }
$88/Sca/ { 02: mov DL, CL ; Wert von CL in DL }
Sbd/s$02/ { 03: mov AH, 02 ; Funktion 02 bei Interrupt 21 }
Scd/$21/ { 04: int 21 ; = Zeichen in DL anzeigen }
Sfe/S$c9/ { 05: dec CL ; CL dekrementieren }
$75/$f6/ { 06: jnz 0102 ; jump if not zero. Siehe unten}
$90/ { 07: nop ; no operation (Uberfliissig) }
Sb4/$08/ { 08: mov AH, 08 ; Funktion 08 bei Interrupt 21 }
Scd/$21/ { 09: int 21 ; = Zeicheneingabe ohne Echo }
Sbd/S4c/ { 10: mov AH, 4c ; Funktion 4C bei Interrupt 21 }
Scd/$21/ { 11: int 21 ; = Programm beenden }
$90/ { 12: nop ; no operation (iUberfliissiqg) }
$90), { 13: nop ; dto. }

(* ¢ Zur Sprungdistanz $f6 in Zeile 06: $f6 = 246. Das hochste
Bit ist gesetzt, da > 127. Somit negative Sprungdistanz

27-14 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

(255 - 246) = 9 Byte ruckwarts auf erstes Byte in Zeile 02
(Adresse h0102 bei COM-File).
Maximale Spriinge: -128 und +127. Bei groReren Distanzen

Uber Zwischenwert und von dort weiter.

e Das Programm gibt den Ascii-Code riickwarts aus. Einige
Steuerzeichen werden interpretiert. Welche? BEL, BS, HT, LF

end.

27.6 Die Turbo-Pascal-Unit DOS

In der Unit DOS sind in Turbo-Pascal zahlreiche Konstanten, Datentypen, Variablen,
Prozeduren und Funktionen definiert. Nachstehend nur eine Auswahl flir systemnahe
Programmierung:

a) Record-Typ Registers

Der Record-Typ Registers ist ein vordefinierter Record, der auschlieBlich aus
varianten Teilen besteht. Er ist in der Unit DOS wie folgt definiert:
type
Registers = record
case Integer of
0: (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags: Word);
1: (AL, AH, BL, BH, CL, CH, DL, DH: Byte) ;
end;

Wenn beispielsweise im Pascal-Programm eine Variable mit dem freien aber sinnvoll
gewdhlten Bezeichner "Reg" (Registervariable) mit dem vordefinierten Record-Daten-
typ Registers (aus Unit DOS) definiert ist, dann kann auf die einzelnen Register

iiber die Felder der Registervariable nach einem Interrupt-Aufruf wie folgt zugegriffen
werden:

var
Reg: Registers;

Reg.AX 16-Bit-Register AX
Reg.AL 8-Bit-Register AL
Reg.BH 8-Bit-Register BH
Reg.Flags 16-Bit-Register Flags
Beispiel: if Reg.AL <> 0 then

WriteLn (Reg.AX) ;

In dhnlicher Weise konnen die Registervariablen mit einem Wert fiir einen folgenden
Interrupt-Aufruf belegt werden.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-15

Beispiel: Reg.AL := 23;

b) Flag-Konstanten:

FCarry = $0000; Bit 0: Carry-Flag. Ubertrags-Flag
FParity = $0004; Bit 2: Paritéts-Flag

FAuxiliary = $0010; Bit 4: Auxiliary-Flag. Hilfsiibertrags-Flag
FZero = $0040; Bit 6: Zero-Flag. Null-Flag

FSign = $0080; Bit 7: Sign-Flag. Vorzeichen-Flag
FOverflow = $0800; Bit 11: Overflow-Flag. Uberlauf-Flag

Die vorstehenden sechs Flags sind Status-Flags. Sie signalisieren das Ergebnis einer
arithmetischen oder logischen Operation.

Die Bits 1, 3, 5, 12, 13, 14, 15 des Flag-Registers werden beim Intel 8086 nicht benutzt.
Die Bits 8 (Trap, Einzelschritt-Flag), 9 (Interrupt-Flag) und 10 (Direction, Richtungs-
Flag) sind Steuerflags um die Arbeitsweise des Prozessors zu beeinflussen.

Wenn beispielsweise im Pascal-Program mit Reg ein Record-Datentyp Registers
(aus Unit DOS) definiert ist, dann konnen die einzelnen Flags z.B. wie folgt abgefragt
werden:

if Reg.Flags and FCarry <> 0 then
(True, wenn Carry-Flag gesetzt, False wenn nicht gesetzt)

if Reg.Flags and FZero = 0 then
(True, wenn Zero-Flag nicht gesetzt. False wenn gesetzt)
¢) Prozedur Intr Format: Intr (interruptNr, registervariable)

Diese Prozedur fiihrt einen Interrupt aus. Siehe Beispiel in 27.8

d) Prozedur MsDOS Format: MsDOS (registervariable)

Diese Prozedur fiihrt einen DOS-Funktionsaufruf aus (= Interrupt 21h). Siehe Beispiel
in 27.8

e) Prozedur GetIntVec Format: GetIntVec (interruptNr, zeigervariable)

Diese Prozedur ermittelt die Adresse, auf die ein Interrupt-Vektor zeigt.

f) Prozedur SetIntVec Format: SetIntVec (interruptNr, zeiger)

Diese Prozedur setzt einen Interrupt-Vektor auf eine bestimmte Adresse.

g) Funktion DosVersion

Diese Funktion liefert die DOS-Version im Datentyp Word. Die beiden Bytes miissen
getrennt interpretiert werden. Im niederwertigen Byte (Low-Byte) steht Hauptnummer,

27-16 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

im hoherwertigen Byte (High-Byte) die Unternummer. Mit den Standardfunktion
Lo(..) und Hi (. .) konnen die beiden Bytes getrennt angesprochen werden.

Beispiel:

WriteLn ('DOS-Version: ', Lo (DosVersion), '.', Hi(DosVersion));

27.7 Die Interrupts im Uberblick

Dieses Kapitel enthiilt einen Uberblick iiber die Interrupts. Eine vollstindige Behandlung ist an dieser
Stelle nicht méglich. Es werden nur die Interrupts bzw. die Funktionen mit ihren Registerbelegungen
genauer erkldrt, die bei den Praktikumsaufgaben bzw. Demo-Programmen verwendet werden.

Literaturhinweise:

[11] Microsoft MS-DOS Programmer's Reference. Version 3.3, Microsoft Corporation, 1988. Nur DOS-
Interrupts.

[2] Microsoft Mouse, Programmmer's Reference Guide, Microsoft Corporation, 1986. Nur Maus-Inter-
rupt 33h.

[3] W. Hofs "MS-DOS", Sybex-Ratgeber, Sybex-Verlag, 1986. Nur DOS-Interrupts

[4] P. Norton "Neues Programmierhandbuch fiir IBM PC & PS/2", Microsoft Press Vieweg-Verlag,
1989. Kurzbeschreibung der meisten Interrupts

[5] M. Tischer "PC Intern 3.0", Data Becker Verlag, 1993. Ausfiihrliche Beschreibung aller Interrupts.

27.7.1 Die Interrupt-Vektoren

Das Betriebssystem (von Microsoft) und das BIOS (Basic Input Output System des Rechnerherstellers)
stellen ihre Dienste in einer Vielzahl von Interrupt-Routinen zur Verfiigung. Diese Routinen sind wie Pas-
cal-Prozeduren auzufassen. Am Ende steht der Befehl IRET (interrupt return, Maschinencode CFh = dez
207), von dort aus wird an das aktuelle Programm zuriickgekehrt und mit der nichsten Anweisung fortge-
setzt. An die Interrupt-Routinen konnen iiber Register Werte iibergeben werden, dhnlich den Parametern
in Pascal. In dhnlicher Weise konnen Interrupts auch Werte iiber Register zuriickliefern. Der Zugriff auf
die Interrupt-Routinen erfolgt nicht direkt durch die Angabe der Segment:Offset-Adresse, sondern iiber
eine Tabelle, in der die Segment:Offset-Adressen (Interrupt-Vektoren) in der Reihenfolge der Interrupt-
Nummern gespeichert sind. Die Tabelle befindet sich am Anfang des RAM-Speichers und wird beim
Booten angelegt. Da RAM-Speicherstellen iiberschrieben werden konnen, ist es auch moglich, die
Segment:Offset-Adressen so zu dndern ("Interrupt-Vektor verbiegen"), dal sie auf andere oder eigene
Routinen weisen. Die alten Werte sollte man aber spéter wieder reaktivieren.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-17

Das folgende Schema zeigt den Ablauf bei einem Interrupt-Aufruf:

Aktuelles Interrupt- Interrupt-
Programm 00 vektoren-Tabelle Routinen
01
02 N
. Seg:0ff —>—— start

>— nn — Seg:0ff
>—,
<— .. ——<—— IRET
ff ce

int nn

Da in der iiblichen Intel-Notation Segment und Offset durch je 2 Byte dargestellt werden, sind fiir einen
Vektor 4 Byte in der Tabelle notwendig. Die Interrupt-Nummer wird durch eine 1-Byte-Zahl ausgedriickt.
Somit sind 256 Interrupt-Nummern moglich (wenn auch nur der kleinere Teil vergeben ist). Die Tabelle
hat somit einen Umfang von 256 * 4 Byte = 1024 Byte = 1 KByte. Sie befindet sich ganz am Anfang des
RAM-Speichers, also Segment-Adresse 0 und Offset-Adressen von 0 bis 1023, in hex: 0000h bis 03fth).
Bei jedem Eintrag wird zuerst die Offset- und dann die Segment-Adresse aufgefiihrt. Es ist weiter zu
beachten, da3 bei einem (16-bit-) Wort das niederwertige Byte (Low-Byte) zuerst gespeichert wird (Intel-
Notation).

Interruptvektoren-Tabelle im Segment 0000h:

Offset
0000h
0001h —— Interrupt 00h
0002h
0003h
0004h
0005h —— Interrupt Olh
0006h
0007h
Offset—Low E—
Offset—High —— Interrupt nnh
Segment—Low
Segment—High
—— Interrupt ffh
ffh = dez 255
03ffh
(= dez 1023)

Demo-Programm: Auslesen der Interrupt-Vektoren

program Pas27071; { Kap: 27.7: Interrupt-Vektoren }
{ K. Haller }

{ Hinweis: Uber die hier gezeigten Methoden hinaus gibt es
in Turbo-Pascal noch die DOS-Prozedur "GetIntVec (int nr,

27-18 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

pointer variable)". Siehe auch DOS-Prozedur "SetIntVec (int nr,
pointer)"
}
uses
CRT, DOS;
type
String5 = string[5];
var
Ch: Char;
i: Integer;
Dez: LongInt; { Nur fur Einzug }
Segment,
Offset: Word;

Physik Adresse,

Segment LongInt: LonglInt;

Zelger: Pointer; { Pointer = vordefinierter Datentyp
fir untypisierten Zeiger }

function Dez HexStr (x: Word): Stringb;
var
TempStr: String5;

begin
TempStr := '';
while x <> 0 do
begin
TempStr := Copy('0123456789ABCDEF",
(x mod 16) + 1, 1) + TempStr;
X := x div 16;
end;
while Length (TempStr) < 4 do
TempStr := '0' + TempStr;
Dez HexStr := '$' + TempStr;
end;
begin
ClrScr;

New (Zeiger) ;
GetIntVec (5, Zeiger); { Interrupt 5: Hardcopy }

WriteLn (' Mit "Ctrl-F4" Evaluate die Pointer-Variable "Zeiger" ');
WriteLn (' fir Interrupt-Vektor fir BIOS-Interrupt 5 = Hardcopy ')’
Write (' = $F000:$FF54 anzeigen (j/n): ');
repeat
Ch := UpCase (ReadKey) ;
until (Ch = 'J') or (Ch = 'N');
WriteLn (Ch) ;
Writeln;
if Ch = '"J' then Halt; { >>>>>>>>>>>>>>>> 1}
repeat
Write ('Eingabe Interrupt-Vektor (dez oder S$Shex, Ende mit -1): ');
ReadLn (1) ;
if (i >= 0) and (i <= 255) then
begin
Offset := MemW[0:1*4 17
Segment := MemW[0:i*4 + 2];
Segment LongInt := Segment; { sonst Fehler bei "1l6 *" }
Physik Adresse := 16 * Segment LongInt + Offset;
WriteLn (' Interrupt dez ', 1:3, ' hex $',

Copy (Dez HexStr (i), 4, 2), ' 'y

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-19

Dez HexStr (Segment), ':',
Dez HexStr (Offset),
' Physikalisch: ', Physik Adresse);

Writeln;
WriteLn (' Jetzt iUber Mem([..] statt MemW([..]: ');
Offset = Mem[0:1i*4 + 0] + 256 * Mem[0:1*4 + 1];
Segment := Mem[0:1i*4 + 2] + 256 * Mem[O0:1*4 + 3];
Segment LongInt := Segment; { Sonst Fehler bei "16 *" }
Physik Adresse := 16 * Segment LongInt + Offset;
WriteLn (' Interrupt dez ', 1:3, ' hex $',

Copy (Dez HexStr (i), 4, 2), ' ',

Dez HexStr (Segment), ':',

Dez HexStr (Offset),

' Physikalisch: ', Physik Adresse);
Writeln;

end;
until i < 0;

end.

Demo-Programm: "Verbiegen' eines Interrupts

program Pas27072; { Interrupt-Vektor verbiegen }
{ Turbo-Pascal, K. Haller }
{ Hinweise:

e Mit "MemW|[segment:offset]" kann man Datentyp Word im richtigen
Format abspeichern und auch auslesen, d.h. es wird beriick-
sichtigt, daB das Low-Byte zuerst gespeichert wird. Auf diese
Moglichkeit wurde hier bewuBt verzichtet; die Vektorkomponenten
werden im Programm mit "Mem[segment:offset]" byteweise ange-
sprochen und erst dann zusammengesetzt mit:

Word = LowByte + 256 * HighByte

e Auf die elegantere, aber nicht so durchsichtige L&sung der
gestellten Aufgaben mittels der Turbo-Pascal-DOS-Prozeduren

"GetIntVec (int nr, pointervariable)" und "SetIntVec (int nr,
pointer)" wurde hier verzichtet.
}
uses
CRT, DOS;
const
i = 4; { Interrupt 04h = Overflow. Vektor wird zeit-
weise auf 05h verbogen }
Jj = 5; { Interrupt 05h = Hardcopy }
var
Segment, Segment Alt,
Offset, Offset Alt: Word;

ByteO, ByteO Alt,
Bytel, Bytel Alt,
Byte2, Byte2 Alt,

Byte3, Byte3 Alt: Byte;

Reg: Registers; { Recordtyp aus Unit DOS }
begin

ClrScr;

WriteLn; Writeln;

WriteLn (' Hardcopy-Interruptvektor ermitteln und "verbiegen" ');

WriteLn; WritelLn; WriteLn; WritelLn;

27-20

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

ByteO Alt := Mem[0:1*4 + 0]; { Offset-Low }

Bytel Alt := Mem[0:1*4 + 1]; { Offset-High }

Byte2 Alt := Mem[0:1*4 + 2]; { Segment-Low }

Byte3 Alt := Mem[0:1i*4 + 3]; { Segment-High }

Offset Alt := ByteO Alt + 256 * Bytel Alt;

Segment Alt := Byte2 Alt + 256 * Byte3 Alt;

WriteLn (' Interrupt 0', i, 'h = Overflow. Segment:0ffset = ',
Segment Alt:5, ':', Offset Alt:5, ' (in dez)');

Writeln;

WriteLn (' Jetzt wird Interrupt 04h auf 05h = Hardcopy "verbogen"');

Mem[0:1i*4 + 0] := Mem[O0:9*4 + 0]; { Offset-Low }

Mem[0:1*4 + 1] := Mem[O0:3*4 + 1]; { Offset-High }

Mem[0:1*4 + 2] := Mem[0:3*4 + 2]; { Segment-Low }

Mem[0:1i*4 + 3] := Mem[O0:3*4 + 3]; { Segment-High }

ByteO = Mem[0:j*4 + 0]; { Offset-Low }

Bytel = Mem[0:j*4 + 1]; { Offset-High }

Byte2 = Mem[0:j*4 + 2]; { Segment-Low }

Byte3 = Mem([0:J*4 + 3]; { Segment-High }

Offset = ByteO + 256 * Bytel;

Segment := Byte2 + 256 * Byte3;

WriteLn (' Interrupt 0', i, 'h = Hardcopy. Segment:0ffset = ',
Segment:5, ':', Offset:5, ' (in dez)');

Writeln;

WriteLn (' Jetzt wird iber Software-Aufruf des Interrupts 04h ');

Write (' Hardcopy ausgeldst. Wenn Drucker bereit, Taste Return ');

repeat

until ReadKey = #13;

Intr ($04, Req);

WritelLn; Writeln;

WriteLn(' Jetzt wird der alte Interruptvektor reaktiviert: '");

Mem([0:1i*4 + 0] := ByteO Alt; { Offset-Low }

Mem([0:1i*4 + 1] := Bytel Alt; { Offset-High }

Mem[0:1*4 + 2] := Byte2 Alt; { Segment-Low }

Mem([0:1i*4 + 3] := Byte3 Alt; { Segment-High }

ByteO = Mem[0:1*4 + 0]; { Offset-Low }

Bytel = Mem[0:1i*4 + 1]; { Offset-High }

Byte2 = Mem[0:1*4 + 2]; { Segment-Low }

Byte3 = Mem[0:1i*4 + 3]; { Segment-High }

Offset = ByteO + 256 * Bytel;

Segment := Byte2 + 256 * Byte3;

WriteLn (' Interrupt 0', i, 'h = Overflow. Segment:0ffset = ',
Segment:5, ':', Offset:5, ' (in dez)');

repeat

until ReadKey <> '';

end.

27.7.2 Die Interrupts

Inter-
rupt Typ Bemerkungen
00h CPU Division durch null
0lh CPU Einzelschritt
02h CPU NMI. Nicht maskierbarer Interrupt
03h CPU Breakpoint

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-21

04h CPU Uberlauf
05h BIOS Hardcopy

08h CPU Zeitgeber
0%h CPU Tastatur

10h BIOS | Bildschirm, 18 Funktionen
11h BIOS | Konfiguration]
12h BIOS | Feststellen der Speichergrofie

13h BIOS | Disketten/Platten (formatieren, schreiben, lesen, usw.)
Fiir Disketten 9 Funktionen, fiir Festplatten 15 Funktionen
14h BIOS | Serielle Schnittstelle, 4 Funktionen
15h BIOS | Diverses fiir AT (alter Kassetteninterrupt), 8 Funktionen
16h BIOS | Tastatur, 3 Funktionen))
17h BIOS | Parallele Drucker-Schnittstelle (Centronics), 3 Funktionen
18h BIOS | ROM-Basic (IBM)
19h BIOS | Booten des Rechners
1Ah BIOS | Datum und Zeit, 8 Funktionen
1Bh BIOS | Tastatur: Break-Taste betdtigt
1Ch BIOS | Periodischer Interrupt

1Dh BIOS | Video-Tabelle

1Eh BIOS | Laufwerkstabelle

1Fh BIOS | Zeichentabelle, nur Pointer)

20h DOS Programm beenden (besser iiber Int 21h, Funktion 4Ch)

21lh DOS Allgemeine DOS-Funktionen
Uber 100 Funktionen und Unterfunktionen

22h DOS Programm beenden. Siehe Int 20h.

23h DOS Break-Taste betatigt

24h DOS Kritischer Fehler)

25h DOS Absolutes Lesen (Platte, Diskette)

26h DOS Absolutes Schreiben (II;fatjte/Dlskette)

27h DOS Programm beenden, aber im Speicher belassen

33h Maus Maus oder Lichtgriffel, iiber 30 Funktionen

67h EMS Expanded Memory System nach LIM, 11 Funktionen

Nachfolgend werden die Interrupts kurz erldutert. Nur bei einigen ausgewihlten An-
wendungen werden genauere Informationen gegeben.

Zum Interrupt 00h: Division durch null

Der zugehorige Vektor wird von DOS auf eine Routine gelegt, die eine Fehlermeldung ausgibt. Nach dem
abschlieBenden Interrupt-Return-Befehl IRET wird das Programm mit dem Befehl fortgesetzt, der auf
den fehlerhaften Divisionsbefehl folgt.

Zum Interrupt 01h: Einzelschritt

Wird von der CPU dann aufgerufen, wenn das Trap-Bit des Flag-Registers gesetzt ist. Dann wird das
Programm schrittweise ausgefiihrt. Das BIOS setzt den Interrupt-Vektor aber auf den Befehl IRET, so
daf} beim Setzen des Trap-Bits auller einer Verlangsamung nichts passiert. Sinnvoll nur bei Testprogram-
men wie DEBUG um Programmablauf und Registerbelegung verfolgen zu kénnen. DEBUG "verbiegt"
den Interrupt-Vektor auf eine eigene Routine, in der das Trap-Bit auch wieder geloscht werden kann.

Zum Interrupt 02h: NMI, nicht maskierbarer Interrupt

27-22 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Dieser Interrupts kann im Gegensatz zu allen anderen nicht mit dem Befehl CLI (clear interrupts,
Loschen des Interrupt-Flags IF im Flag-Register) gesperrt werden. Beim Auftreten von RAM-Fehlern
wird auf diesen Interrupt verzweigt, der das System anhalt.

Zum Hardware-Interrupt 03h: Breakpoint

Innerhalb eines Testprogramms (z.B. DEBUG) Unterbrechungspunkte setzen um Registerinhalte anzu-
zeigen.

Zum Interrupt 04h: Uberlauffehler

Der Interrupt wird unter bestimmten Umstdnden aufgerufen, wenn das Ergebnis einer Operation nicht
mehr in die dafiir vorgesehene Registerbreite pafit, was z.B. bei einer Multiplikation der Fall sein kann.
DOS setzt aber den Interruptvektor standardméBig auf den Befehl IRET, so dafl der Interrupt nicht zur
Wirkung kommt.

Zum Interrupt 05h: Hardcopy

Nach Driicken der Taste PrtSc (deutsch Druck) wird eine Hardcopy des Text-Bildschirms auf den
Drucker ausgegeben. Bei Graphik-Bildschirmen mufl vorher das Programm GRAPHICS.COM geladen
werden. Die Grafik-Ausgabe ist aber nur bei IBM-Grafik-Druckern oder dazu kompatiblen Druckern
fehlerfrei.

Zum Interrupt 08h: Zeitgeber

Der Schwingquarz des Timer-Bausteins arbeitet mit einer Frequenz von 1.193.180 Hz. Nach 216 = 65536
Schwingungen erzeugt der Timer-Baustein einen Aufruf des Interrupts O8h, d.h. in einer Sekunde
18,20648193 mal (ca. 18,2mal). Diese Frequenz ist unabhdngig von der Taktfrequenz des Mikro-
prozessors (8 MHz, 16 MHz, 25 MHz, 33 MHz, 40 MHz usw.).

Zum Interrupt 09h: Tastatur

Ein eigener Tastatur-Prozessor iiberwacht die Tastatur. Der Interrupt wird ausgelost, wenn eine Taste
gedriickt oder losgelassen wird. Die weitere Verarbeitung erfolgt iiber nachgeschaltete BIOS-Tastatur-
Routinen.

Zum Interrupt 10h: Bildschirm

r Funktionsnummer

— Unterfunktion
Bemerkungen

00h Video-Modus setzen
O0lh Gestalt des Cursors definieren
02h Cursor positionieren
03h Cursorposition ermitteln
05h Bildschirmseite auswéhlen
0éh Textzeilen noch oben scrollen
07h Textzeilen nach unten scrollen
08h Zeichen/Attribut an Cursorstelle lesen
09h Zeichen/Attribut an Cursorstelle schreiben, ohne Cursorversatz
0Ah Zeichen an Cursorstelle schreiben, altes Attribut, ohne Cursorversatz
0Bh 00h | Auswahl Farbe fiir Rahmen und Hintergrund
0Bh 01lh | Auswahl Farbpalette fiir Graphik 320 *7200
0Ch Graphikpunkt schreiben

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-23

0Dh Graphikpunkt lesen .) i
0Eh Zeichen an Cursorstelle schreiben, altes Attribut, mit Cursorversatz
OFh Video-Modus auslesen

10h xxh Nur fir EGA/VGA: Unterfunktionen xx = 00, 01, 02, 03, 07, 10, 12

13,15, 17,18, 19, 1A, 1B

11lh xxh Nur fiir EGA/VGA: Unterfunktionen xx = 00, 01, 02, 03, 10, 11, 12, 14, 30
12h xxh Nur fiir EGA/VGA: Unterfunktionen xx = 10, 20, 30, 31, 32, 33, 34, 36
13h Ausgabe Zeichenkette an bestimmter Cursorposition

1Ah Nur VGA: Code fiir Emulation einer anderen Bildschirmkarte ermitteln

Zur Funktion 02h des Bildschirm-Interrupts 10h, Cursor positionieren

Eingabe: AH=02h
BH = Nummer der Bildschirmseite (0, 1, ..)
DH = Bildschirmzeile (0..24, Text)
DL = Bildschirmspalte (0..79, Text)
Ausgabe: keine

Zur Funktion 03h des Bildschirm-Interrupts 10h, Cursorposition ermitteln

Eingabe: AH =03h

BH = Nummer der Bildschirmseite (0, 1, ..)
Ausgabe: DH = Bildschirmzeile (0..24, Text)

DL = Bildschirmspalte (0..79, Text)

CH = Anfangszeile des Cursors

CL = Endzeile des Cursors

Zur Funktion 09h des Bildschirm-Interrupts 10h, Zeichen und Attribut schreiben

Eingabe: AH =0%h
AL = (ASCII-) Code des Zeichens
BL = Attribut des Zeichens
CX = Anzahl der Wiederholungen der Zeichenausgabe
BH = Nummer der Bildschirmseite (0, 1, ..)
Ausgabe: keine

Bei dieser Funktion werden Steuerzeichen nicht interpretiert. Der Cursor wird mit Ausnahme der Wieder-
holungen nicht versetzt; er muf3 deshalb mit der Funktion 02h versetzt werden.

Zum Interrupt 11h: Konfiguration

Der Interrupt 11h hat keinen weiteren Eingabeparameter. Das Ergebnis wird im Register AX zuriickgelie-
fert, wobei die Bits einzeln interpretiert werden miissen und zwar unterschiedlich bei PC/XT- und bei
AT-Rechnern. Es interessiert nur der AT-Rechner:

Fiir AT-Rechner gilt:
<—————— Bit—Nr Bit 0..7: AL, Bit 8..15: AH
11 11000000O0O0O0CO

5 4 109876543210

11
32 Bedeutung (fir AT und PS—2)

XX v e e e e e e e e e e e Anzahl der parallelen Drucker
X v e e e e e e e e e e Nicht verwendet
X v e e e e e e e e e Nicht verwendet
X X X v e e e e e e e Anzahl serielle Schnittstellen
X v e e e e e e Nicht verwendet
X X o v e e .. Anzahl Diskettenlaufwerke — 1
0 0: 1 Diskettenlaufwerk
0 1: 2 Diskettenlaufwerke

27-24

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

1 0: 3 Diskettenlaufwerke

1 1: 4 Diskettenlaufwerke
Bildschirmmodus beim Booten

0 0: Nicht verwendet

1 0: Color, 80 * 25

0 1: Color, 40 * 25

1 1: Monochrom, 80 * 25
X .. . Nicht verwendet

X . . Zeigegerat (Maus) installiert

X . Coprozessor installiert

Diskettenlaufwerk (e) vorhanden

=
[N
=W
=N
=
o
ow
o™
o
oo,
ow
o
ow
on
or
oco | x

Anmerkung: Der Bildschirmmodus kann nach dem Booten verdndert worden sein. Der aktuelle Modus
kann nicht mit dem Interrupt 11h abgefragt werden, sondern muf3 mit der Funktion OFh des Interupts 10h
ausgelesen werden. Das Ergebnis steht dann im Register AL.

Zum Interrupt 12h: Speicher unter 1 MByte ermitteln

Nach Aufruf dieses Interrupts steht im Register AX die Speichergrofie in KByte. Die SpeichergroBe éber
1 MByte kann mit der Funktion 88h des Interrupts 15h (Diverses fiir AT) abgefragt werden.

Zum Interrupt 13h: Diskette/Platte

Die Laufwerke werden intern mit folgenden Nummern angesprochen:

00h Diskettenlaufwerk A: 80h Plattenlaufwerk C:
01h Diskettenlaufwerk B: 81h Plattenlaufwerk D:
82h Plattenlaufwerk E: usw.

Funktionsnummer
r — Unterfunktion
Bemerkungen
00h Reset
0lh Status lesen
02h Lesen
03h Schreiben
04h Verifizieren
05h Formatieren
08h Nur Platte: Format ermitteln
09h Nur Platte: Anpassung fremder Laufwerke
0Ah Nur Platte: Erweitertes Lesen
O0Bh Nur Platte: Erweitertes Schreiben
0Dh Nur Platte: Reset
10h Nur Platte: Laufwerk bereit
11lh Nur Platte: Rekalibrierung des Laufwerks
14h Nur Platte: ControllerADiagnose
15h Feststellen des Laufwerktyps. Nur AT
16h Nur Diskette: Fesstellen des Diskettenwechsels. Nur AT
17h Nur Diskette: Diskettenformat festlegen. Nur AT

Zum Interrupt 14h: Serielle Schnittstelle

Funktionsnummer
r — Unterfunktion

Bemerkungen
00h Initialisierung
0lh Ein Zeichen senden
02h Ein Zeichen empfangen

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-25

I 03h I I Status ermitteln

Zum BIOS-Interrupt 15h: Diverses fiir AT
Dieser Interrupt diente frither als Kassetteninterrupt und wurde mit der Einfithrung der AT-Rechner
(Mikroprozessor Intel 80286) gedndert.

Funktionsnummer
r — Unterfunktion

Bemerkungen

83h Flag nach Zeitintervall setzen
84h 00h | Status-Abfrage der Joystick-Feuerknopfe
84h 0lh | Position der o(ystlcks abfragen

85h Taste SysReq (S-Abf) betitigt

86h Warten bis bestimmte Zeit verstrichen
87h Speicherbereich iiber 1 MByte verschieben
88h Speichergrofie iiber 1 MByte ermitteln
89h mschalfung in Protected Mode

Hinweis zur Funktion 88h: Die Speichergrofie unter 1 MByte kann mit dem Interrupt 12h abgefragt
werden.

Zur Funktion 88h des AT-Interrupts 15h:

Eingabe: AH = 88h
Ausgabe: AX = GroBe des Speichers (iiber 1 MByte) in KByte

Zum Interrupt 16h: Tastatur

Funktionsnummer
r — Unterfunktion

Bemerkungen
00h Ein Zeichen aus Tastaturpuffer lesen
0lh Abfrage, ob Zeichen im Tastaturpuffer
02h Status der Tastatur ermitteln

Zur Funktion 02h des Tastatur-Interrupts 16h:
Eingabe: AH = 02h
Ausgabe: AL = Statusbyte der Tastatur nach folgender Tabelle:

<—— Bit—Nr — Bit 0..7, Byte 0040:0017
76543210 Bedeutung

Insert an

Caps Lock an

Num TLock an

Scroll Lock an

Alt—Taste bet,tigt
Ctrl—Taste bet,tigt

linke Shift—Taste bet,tigt
rechte Shift—Taste bet,tigt

b
PR REe

Hinweise:

» Das von der Funktion 02h zuriickgelieferte Statusbyte wird aus dem ersten Tastatur-Statusbyte im
RAM gelesen, das sich an folgender Segment:Offset-Adresse befindet: 0400:0017 (hex). Da sich

27-26 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

diese Adresse im RAM befindet, kann der Inhalt auch geéndert werden; in Turbo-Pascal z.B. mit
"Mem[segmet:offset] := ...". Auf diese Weise ist es z.B. moglich, die Num-Lock-Taste per Software
zu aktivieren, in dem man das Bit 5 auf 1 setzt. Es kann nicht immer davon ausgegangen werden, daf3
das Tastaturstatusbyte von allen Anwenderprogrammen im urspriinglichen Sinn interpretiert wird.

* In der ndchsten RAM-Speicherstelle, also 0040:0018 ist ein weiteres Tastatur-Statusbyte abgelegt, das
wie folgt zu interpretieren ist:

<—— Bit—Nr — Bit 0..7: Byte 0040:0018
76543210 Bedeutung

Insert gedreckt

Caps Lock gedreckt

Num Tock gedreckt

Scroll Lock gedreckt

Pause oder Ctrl—Num Lock gedreckt
Sys Req oder S Abf gedreckt

linke Alt—Taste bet,tigt

linke Ctrl-Taste bet,tigt

b
R Y = Y =y

Siehe auch Tastatur-Demoprogramm.

Zum Interrupt 17h: Drucker (parallel, Centronics)

— Funktionsnummer
| I— Unterfunktion

|

Bemerkungen |

00h Ein Zeichen auf Drucker ausgeben |
0lh Drucker initialisieren |
02h Druckerstatus ermitteln |

Zur Funktion 00h des Drucker-Interrupts 17h, Zeichen auf Drucker ausgeben:

Eingabe: AH = 00h

AL = (ASCII-) Code des Zeichens

DX = Nummer des Druckers, wobei 0000h = LPT1:, 0001h =LPT2:
Ausgabe: AH = Statusbyte des Druckers nach folgender Tabelle:

<—— Bit—Nr —— Bit 0..7: Drucker—Status
76543210 Bedeutung

X . .. 0 = Drucker ist besch,ftigt
. X .o 1 = Empfang best,tigt
X L. 1 = Papier aus
X . 1 = Drucker auf On Line
X oL .. 1 = Sbertragungsfehler
DX .. nicht verwendet

X . nicht verwendet
X 1 = Time—Out—Fehler

Zur Funktion 01h des Drucker-Interrupts 17h, Drucker intialisieren:

Eingabe: AH=01h
DX = Nummer des Druckers, wobei 0000h = LPT1:, 0001h = LPT2:
Ausgabe: AH = Statusbyte des Druckers nach vorstehender Tabelle:

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-27

Zur Funktion 02h des Drucker-Interrupts 17h, Druckerstatus abfragen:

Eingabe: AH=02h
DX = Nummer des Druckers, wobei 0000h = LPT1:, 0001h = LPT2:
Ausgabe: AH = Statusbyte des Druckers nach vorstehender Tabelle:

Zum Interrupt 18h: ROM-Basic

Falls ROM-Basic vorhanden ist, z.B. bei IBM-PCs, wird es mit diesem Interrupt gestartet. Nach Beenden
des Interrupts ist aber keine Riickkehr zum aufrufenden Programm moglich. Warm- oder Kaltstart erfor-
derlich. Der Interrupt 18h hat keinen Parameter.

Zum Interrupt 19h: Booten des Rechners

Nach Aufruf dieses Interrupts wird der Rechner gebootet. Er wird auch von der Tastaturroutine bei der
Tastenkombination Ctrl+Alt+Del (Affengriff Strg+Alt+Entf) aufgerufen. Der Interrupt 19h hat keinen
Parameter.

Zum BIOS-Interrupt 1Ah: Datum und Zeit. Nur AT

Der Zeitzéhler wird in der Sekunde 18,2 mal inkrementiert, genauer: 18,2064819336 mal.

Funktionsnummer
r — Unterfunktion

Bemerkungen
00h Zeitzédhler auslesen
0lh Zeitzédhler setzen
02h Uhrzeit auslesen
03h Uhrzeit setzen
04h Datum auslesen
05h Datum setzen
06h Alarmzeit setzen
07h Alarmzeit 16schen

Zum Interrupt 1Bh: Break-Taste

Mit diesem Interrupt wird beim Betétigen der Tastenkombination Ctrl+Break wird zunichst nur ein Flag
gesetzt. Erst wenn iiber eine DOS-Funktion Zeichen ein- oder ausgegeben werden, wird das Programm
abgebrochen. Der Interrupt 1Bh hat keinen Parameter.

Zum Interrupt 1Ch: Periodischer Interrupt

Der Timer-Baustein ruft den (Hardware-) Interrupt O8h in der Sekunde 18,2mal auf. Am Ende des Inter-
rupts 08h wird der Interrupt 1Ch aufgerufen, dessen Vektor normalerweise auf einen Interrupt-Return-
Befehl IRET zeigt, so dal3 keine Aktion erfolgt. Durch "Verbiegen" des Vektors auf eine eigene Routine
konnte man aber z.B. auf dem Bildschirm immer die aktuelle Uhrzeit anzeigen. Der Interrupt 1Ch hat
keinen Parameter.

Zum BIOS-Interrupt 1Dh: Zeiger auf Videotabelle

Der Interruptvektor zeigt nicht auf eine ausfithrbare Routine, sondern auf eine Tabelle, die Informationen
iiber die eingesetzte Video-Karte enthilt.

27-28 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Zum BIOS-Interrupt 1Eh: Zeiger auf Laufwerkstabelle

Der Interruptvektor zeigt ebenfalls nicht auf eine ausfiihrbare Routine, sondern auf eine Tabelle, die
Informationen iiber den eingesetzten Disketten-Controller enthélt.

Zum BIOS-Interrupt 1Fh: Zeiger auf Zeichentabelle

Der Interruptvektor zeigt ebenfalls nicht auf eine ausfiihrbare Routine, sondern auf eine Tabelle, die
Informationen iiber die Bitmuster (Bitmap) der Zeichen mit den Code-Nummern > 127 enthélt. Die
Bitmaps werden vom Befehl GRAFTABL angelegt. Die Bitmaps der Zeichen <= 127 sind dagegen fest
im ROM abgelegt.

Zum DOS-Interrupt 20h: Programm beenden

Statt dieses Interrupts sollte man besser die Funktion 4Ch des DOS-Interrupts 21h benutzen, weil diese
die Riickgabe eines Exit-Codes an das aufrufende Programm gestattet.

Zum DOS-Interrupt 21h: Allgemeine DOS-Funktionen

DOS-Version 3.xx

Funktionsnummer DOS-Interrupt 21h
r — Unterfunktion

Bemerkungen (P/D = Platte/Diskette)
00h Programm beenden. Besser Funktion 4Ch
O0lh Zeicheneingabe mit Echo
02h Ausgabe eines Zeichens))
03h Emptang eines Zeichens von serieller Schnittstelle
04h Ausgabe eines Zeichens auf serielle Schnittstelle
05h Ausgabe eines Zeichens auf Drucker
06h Direkte Zeichenein-/-ausgabe. Ohne Priifung Ctrl-C
07h Direkte Zeicheneingabe ohne Echo. Ohne Priifung Ctrl-C
08h Zeicheneingabe ohne Echo
0%h Ausgabe einer Zeichenkette
0Ah Eingabe einer Zeichenkette
0Bh Eingabestatus lesen])
0Ch Eingabepuff. 16sch. u. Eingabefunktion aufrufen (01,06,07,08)
0Dh Inhalt Blockpuffer auf P/D schreiben
OEh Aktuelles Laufwerk definieren
OFh Datei 6ffnen
10h Datei schlieen))
11h Ersten Datei-Eintrag im FCB (glle Control Block) suchen
12h Nichsten Datei-Eintrag im FCB suchen
13h Datei 16schen
14h Sequentielles Lesen aus Datei
15h Sequentielles Schreiben in Datei
16h Neue Datei anlegen und 6ffnen
17h Datei umbenennen]
19h Nummer des aktuellen Laufwerks ermitteln (0 =A,1=B ...)
1Ah Verlegung der Disk Transfer Area (DTA)
1Bh KenngroBlen aktuelles Laufwerk ermitteln (u.a. Typ, Sektoren)
1Ch KenngroBen eines bestimmtes Laufwerk ermitteln
21h Wahlfreies Lesen P/D
22h Wahlfreies Schreiben P/D
23h Dateigrofle ermitteln)]
24h Positionszeige flir wahlfreien Zugriff setzen)
25h Interruptvektor auf anderen Wert setzen (Interrupt verbiegen)
26h Programm-Segment-Prifix (PSP) an andere Adresse kopieren
27h Wabhlfreies Lesen mehrerer Datensitze

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27-29

28h Wabhlfreies Schreiben mehrerer Datensitze

29h Dateinamen in File Control Block (FCB) schreiben
2Ah Datum ermitteln

2Bh Datum setzen

2Ch Uhrzeit ermitteln

2Dh Uhrzeit setzen

2Eh Verify-Flag bei Schreiben P/D setzen

2Fh Adresse der Data Transfer Arera (DTA) ermitteln
30h DOS-Versionsnummer ermitteln

31h Programm beenden, aber im Speicher belassen

33h 00h Lesen Break-Flag (ob auf Ctrl-C gepriift werden soll)
33h 0lh | Setzen Break-Flag

35h Interrupt-Adresse ermitteln

36h Freie Kapazitit P/D ermitteln)

38h 00h Landesspezifische Symbole und Formate ermitteln
38h 0lh Landesspezifische Symbole und Formate setzen

3%h Unterverzeichnis erstellen

3Ah Unterverzeichnis 16schen

3Bh Unterverzeichnis wéihlen

3Ch Neue Datei erstellen bzw. vorhandene leeren

3Dh Datei 6ffnen

3Eh Datei schlieffen

3Fh Bestimmte Anzahl von Zeichen von Datei lesen
40h Bestimmte Anzahl von Zeichen in Datei schreiben
41h Datei 16schen .)

42h Positionszeiger fiir wahlfreien Zugriff P/D setzen

43h | 00h | Attribut einer Datei ermitteln

43h 0lh | Attribut einer Datei setzen)

44h 00h | Attribut eines Zeichentreibers ermitteln

44h 0lh | Attribut eines Zeichentreibers setzen

44h 02h | Daten von Zeichentreiber empfangen

44h 03h | Daten an Zeichentreiber libergeben

44h 04h Daten von Blocktreiber empfangen

44h 05h | Daten an Blocktreiber iibergeben)

44h 06h Eingabestatus eines Gerétetreibers ermitteln

44h 07h | Ausgabestatus eines Gerétetreibers ermitteln)
44h 08h Test, ob Datentrdger gewechselt werden kann (D = j, P =n).
44h 09h | Netzwerk: Test, ob Laufwerk auf anderem Rechner
44h 0Ah | Netzwerk: Test, ob Datei auf anderem Rechner

44h 0Bh Netzwerk: Anzahl der Zugriffswiederholungen setzen
45h Kanal duplizieren

46h Kanal auf zweiten Kanal kopieren

47h Pfadnamen des aktuellen Verzeichnisses ermitteln
48h RAM-Speicher reservieren

49h RAM-Speicher freigeben

4Ah GroBe des reservierten RAM-Speichers dndern

4Bh 00h Anderes Programm laden und ausfiihren, dann zuriick
4Bh 03h Anderes Programm laden ohne Ausfiihrung (Overlay)
4Ch Programm mit Exit-Code (im Register AL) beenden
4Dh Exit-Code eines anderen Programms ermitteln

4Eh Ersten Eintrag einer Datei im Verzeichnis suchen
4Fh Naéchsten Eintrag einer Datei im Verzeichnis suchen
54h Verify-Flag lesen

56h Datei umbenennen

57h 00h Datum und Uhrzeit der letzten Datei-Modifikation ermitteln
57h 01H Datum und Uhrzeit der letzten Datei-Modifikation setzen
58h 00h Strategie fiir Speicherzuteilung ermitteln
58h 0lh Strategie flir %Il)eicherzuteilun g setzen

e

5%h Erweiterte Fehlercodes ermitteln
5Ah Temporire Datei anlegen]
62h Adresse des Programmsegment-Prefixs (PSP) ermitteln

Bei allen Aufrufen des Interrupts 21h ist die Funktionsnummer in das Register AH zu schreiben.

Zur Funktion 02h des DOS-Interrupts 21h, Ausgabe eines Zeichens:

Eingabe: AH = 02h
DL = (ASCII-) Code des Zeichens
Ausgabe: keine

27-30 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Die Bildschirmausgabe erfolgt an der aktuellen Cursorstelle mit dem alten Attribut. Der Cursor wird ver-
setzt. Steuerzeichen werden bei der Bildschirmausgabe interpretiert.

Zur Funktion 4Ch des DOS-Interrupts 21h, Programm mit EXIT-Code beenden:

Eingabe: AH=4Ch
AL = Exit-Code nach eigener Vergabe (00h..fth)
Ausgabe: keine

Diese Funktion sollte vorzugsweise fiir die Beendigung von Programmen eingesetzt werden. Auf den
optionale Exit-Code kann in Batch-Programmen mit ERRORLEVEL zugegriffen werden, sieche Kap. 30.
Ublicherweise setzt man den EXIT-Code bei fehlerfreier Programmbeendigung auf null, sonst auf einen
anderen Wert.

Zum Interrupt 22h: Routine zur Programm-Beendigung

Diese Routine darf nicht direkt aufgerufen werden. Sie wird von allen anderen Interrupts zur Beenden
eines Programms automatisch aufgerufen (Interrupt 20h, Funktionen 00h, 21h und 4Ch des Interrupts
21h).

Zum Interrupt 23h: Break-Taste betitigt

Die Routine wird aufgerufen, wenn die Break-Taste oder Ctrl+C betitigt wird. Sie darf aber nicht direkt
aufgerufen werden.

Zum Interrupt 24h: Kritischer Fehler

Die Routine wird aufgerufen, wenn bei einem Hardware-Zugriff ein kritischer Fehler entdeckt wird. Sie
darf nicht direkt aufgerufen werden.

Zum Interrupt 25h: Absolutes Lesen

Mit diesem Interrupt konnen logisch aufeinanderfolgende Sektoren von Disketten/Platten eingelesen
werden. Als Eingabeparameter braucht der Interrupt u.a. die Laufwerksnummer, die Nummer des ersten
zu lesenden Sektors und die Anzahl der Sektoren.

Zum DOS-Interrupt 26h: Absolutes Schreiben
Analog wie 26h, lediglich Schreiben statt Lesen.

Zum Interrupt 27h: Programmende ohne Speicherfreigabe

Bei diesem Interrupt verbleibt das Programm nach dem Ende resident im Speicher verfiigbar (z.B.
Geritetreiber). Nur bei COM-Programmen moglich. Besser Funktion 31h des DOS-Interrupts 21h
benutzen.

Zum Maus-Interrupt 33h: Maus

In einem spéteren Demo-Programm werden einige Funktionen des Maus-Interrupts behandelt. Fiir den
Maus-Interrupt muf3 in der Datei Config.SYS mit device der Maustreiber aufgefiihrt sein. Beispiel fiir
Eintrag in Datei Config.SYS:

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-31

device = C:\MAUS\Mouse.SYS

Funktions-Nr des Maus-Interrupts 33h und Kurzerklarung

00h | Initialisierung und Reset des Maustreibers

0lh Mauscursor anzeigen

02h | Mauscursor ausblenden)

03h | Mausposition und Status der Mausknopfe ermitteln
04h Mauscursor positionieren

05h | Wie oft wurde ein Mausknopf gedriickt?

06h Wie oft wurde ein Mausknopf [osgelassen?

07h | Horizontale Grofle des Maus-Fensters festlegen

08h | Vertikale Grofle des Maus-Fensters festlegen

09h | Gestalt des Maus-Cursors im Graphik-Mode festlegen
O0Ah | Gestalt des Maus-Cursors im Text-Mode festlegen
0Bh | Entfernung der aktuellen Maus-Position von der letzten
OCh | Zusitzliche Benutzer-Interruptroutine installieren

0Dh | Emulation des Lichgriffels anschalten

OEh Emulation des Lichtgriffels abschalten

OFh | Maus-Empfindlichkeit einstellen

10h | AusschluBSbereich fiir Maus festlegen

12h Gestalt des groflen Graphik-Mauscursors festlegen
13h Schwelle fiir Verdoppelung der Mausgeschwindigkeit festlegen
14h Austauschen der Benutzer-Interruptroutine

15h GroBe des Maus-Statuspuffers ermitteln

16h | Maus-Status sichern

17h Maus-Status restaurieren o]

18h | Alternative Benutzer-Interruptroutine installieren

19h Adresse der alternativen Benutzer-Interruptroutine ermitteln
1Ah Maus-Empfindlichkeit einstellen. Kombination von 0Fh und 13h
1Bh | Maus-Empfindlichkeit ermitteln

1Ch Hiufigkeit der Maus-Abfrage einstellen (0..200/sec)
1Dh | Bildschirmseite fiir Maus-Cursor setzen

1Eh | Bildschirmseite fiir Maus-Cursor ermitteln

1Fh | Maustreiber deakivieren

20h Maustreiber wieder aktivieren

21h | Reset des Maustreibers)

24h Maustyp ermitteln (Bus, seriell, Inport, PS/2, ...)

Zum EMS-Interrupt 67h: EMS-Speicher

EMS = Expanded Memory System. Ergénzungspeicher nach Spezifikation der Firmen Lotus,
Intel und Microsoft (LIM-Standard). Neben EMS gibt es noch den erweiterten EMS (EEMS)
der Firmen Ast, Quadram und Aston Tate. Die Software-Schnittstelle zu EMS hat die
Bezeichnung EMM (Expanded Memory Manager).

Expanded Memory (Ergénzungsspeicher) darf nicht mit Extended Memory (Erweiterungs-
speicher) verwechselt werden. Letzter liegt im Adre8bereich tiber 1 MByte und ist nur von den
Prozessoren Intel 80286, 80386 und hoheren im Protected Mode erreichbar, was aber im
normalen DOS-Betrieb nicht moglich ist. Der Erweiterungsspeicher kann aber unter gewissen
Voraussetzungen fiir RAM-Disk, Platten-Cache, Emulation von Ergédnzungsspeicher genutzt
werden. Details siche Kap. Betriebssystem MS-DOS.

Mit EMS bzw. EMM kénnen nacheinander Speichersegmente (d.h. jeweils 64 KByte grof3) aus
dem bis zu 8 MByte grolen Ergidnzungsspeicher in einen freien Adrefbereich zwischen 640
KByte und 1 MByte eingeblendet werden, der normaler fiir DOS reserviert ist. Da die
physischen Adressen somit unter 1 MByte liegen, kann EMS somit auf allen MS-DOS-Rech-
nern eingesetzt werden. Voraussetzung ist ist das Einbinden des EMM-Treibers in die Datei
Config.SYS mit "device =..." und natiirlich Software, die den Interrupt 67h auch verwendet.

27-32 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Das Einblenden geschieht nicht durch Kopieren des Segmentinhaltes des EMS-Speichers in den
Speicherbereich unter 1 MByte, sondern durch Umprogrammieren der AdreBleitungen mittels
Zusatz-Hardware, die sich entweder auf der EMS-Karte oder bereits auf der Hauptplatine
befindet. Der Vorgang wird auch mit Bank Switching oder Memory Mapping bezeichnet.

Gegendiiber fritheren Bank-Switching-Verfahren ist EMS noch verbessert: Es muf3 nicht immer
ein ganzes Segment (64 KByte) umgeschaltet werden, sondern Pages (Seiten) mit 16 KByte
konnen einzeln umgeschaltet werden. Die einzelnen Seiten kdnnen beliebig weit voneinander
entfernt liegen.

Das Problem besteht zuerst darin, im Speicherbereich zwischen 640 KByte und 1 MByte einen
nicht benutzten AdreBbereich von 64 KByte GrofBle fiir EMS zu finden. Der Bereich zwischen
640 KByte und 1 MByte ist zwar fiir normale DOS-Anwendungen reserviert, aber
gliicklicherweise nicht vollstindig vergeben. Ublicherweise ist das Segment mit der Adresse
DO000h, das urspriinglich fiir ROM-Cartridges vorgesehen war, nicht belegt und kann somit fiir
EMS benutzt werden.

Das folgende Schema zeigt den Speicheraufbau und das Einblenden von EMS:

Segment- Arbeitsspeicher EMS-Speicher
adresse- bis 1 MByte nach LIM
bis 8/32 MByte 1)
FFEFFh
Vom ROM-
BIOS
belegt
FO00h (e ettt ~
E000h _I
EMS-Fenster
4 Pages
. 16 KByte ——— | ~~~nnnnnn ~
DO00Oh |f————y 0 — | | o~~~ ~
Reserviert
fir ROM-
Erweiterung
C000h
Bildschirm-
RAM
BOOOh
Zusatzlicher | =~~~ ~
Bildschirm- | = ~~~~sss~ns ~
RAM (EGA/VGA)
A000h
9000h
640 KByte
~~~~~~~~~ ~ RAM-System- et it
~~~~~~~~~ ~ Speicher = ~anv~ N
konventioneller
1000h - . Speicher
0000h

1) Ab LIM 4.0: EMS-Speicher bis 32 MByte

Der EMS-Interrupt 67h besitzt eine groflere Anzahl von Funktionen. Auf die eingangs erwédhnte Spezial-
literatur wird verwiesen.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-33

27.8 Beispiel: Zeichenausgabe iiber Pascal, DOS, BIOS und
Hardware

Das folgende Demo-Programm gibt den ASCII-Zeichensatz aus mit vier verschiedenen
Methoden:

* Pascal

* Aufruf DOS-Interrupt h21, Funktion h02

 Aufruf BIOS-Interrupt h10, Funktionen h02 und h09
* Schreiben in Bildschirmspeicher

program Pas27081l; { Kap. 27.8: Ascii-Satz in Pascal, DOS, BIOS
und Hardware }
{ K. Haller }
uses
CRT, DOS;

var
Reg: Registers;
{ Registers ist ein in der Unit DOS definierter (varianter)
Recordtyp mit den Feldern
e AX, BX, CX, DX, BP, DI, DS, ES, Flags (1l6-Bit-Register)
e AL, AH, BL, BH, CL, CH, DL, DH (8-Bit-Register) }

procedure ReturnTaste;
begin
GotoXY (10, 25); ClrEoL;
GotoXY (10, 25);

Write ('Weiter mit Taste Return: ');
repeat
until ReadKey = #13;

end;

procedure DOS Version;
begin
ClrScr;
GotoXY (10, 2);
WriteLn ('DOS-Version mit Funktion "DosVersion" aus Unit DOS') ;
GotoXY (10, 5);

WriteLn ('Die DOS-Version: ', Lo (DosVersion), '.', Hi(DosVersion)) ;
ReturnTaste;
end;

procedure AsciiZeichen mit Pascal;
var
i: Byte;

begin

ClrScr;

GotoXY (10, 2);

Writeln ('Ascii-Zeichen mit Pascal');

for i := 0 to 255 do

begin

GotoXY (10 + 1 mod 64, 5 + 1 div 64);
Write (Char(i));

27-34 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

end;
ReturnTaste;
end;

procedure AsciiZeichen mit DOS Interrupt h2l1 Funktion h02;
var
i: Byte;
begin
ClrScr;
GotoXY (10, 2);
WriteLn ('Ascii-Zeichen mit DOS-Interrupt h21, Funktion h02');

for i := 0 to 255 do
begin
Reg.AH := $02;
Reg.DL := i;

GotoXY (10 + i mod 64, 5 + i div 64);
MsDOS (Reg); { Hat gleiche Wirkung wie "Intr ($21, Reg)" }
{ Steuerzeichen BEL, BS, CR und LF werden interpretiert }
end;
ReturnTaste;
end;

procedure AsciiZeichen mit BIOS Interrupt hl0 Funktion h09;

{ Der Interrupt-Aufruf hl0, Funktion h09: Zeichen ausgeben
Steuerzeichen werden nicht interpretiert. Cursor wird
nicht versetzt. Der Aufruf verdndert u.a. Register AX,
wogegen die Register BX und CX nicht verdndert werden }

const
Wiederholungen = 4;

var
i: Byte;

begin
ClrScr;
GotoXY (10, 2);
Writeln ('Ascii-Zeichen mit BIOS-Interrupt hl0, Funktion h09');

Reg.BH := 0; { Die Bildschirmseite, 0 = Standard }

Reg.CX := Wiederholungen; { Anzahl der Zeichenwiederholungen }

for i := 0 to 127 do

begin
Reg.AL := i; { Der Ascii-Code des auszugebenden Zeichens }
Reg.BL := 1i; { Das Zeichen-Attribut. Fur Demo jedes
Zeichen mit anderem Attribut darstellen }

Reg.AH := $09; { Die Funktion h09 }

GotoXY (10 + i*Wiederholungen mod 64,
5 + i*Wiederholungen div 64);
{ Cursor "von Hand" versetzen }

Intr ($10, Reqg); { Der Interrupt-Aufruf }
end;
ReturnTaste;
end;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-35

procedure AsciiZeichen mit BIOS Interrupt hl0 Funktionen h02 h09;
{ Der Interrupt-Aufruf hl0, Funktion h02: Cursor positionieren
und Kombination mit Funktion h09: Zeichen ausgeben
Steuerzeichen werden n i c¢c h t interpretiert.
Die Aufrufe veradandern u.a. Register AX,
wogegen die Register BX und CX nicht verdndert werden }

var
i: Byte;

begin
ClrScr;
GotoXY (10, 2);
Writeln ('Ascii-Zeichen mit BIOS-Interrupt hl0');
GotoXY (10, 3); WriteLn ('Funktion h02: Cursor positioniern und ');
GotoXY (10, 4); WriteLn ('Funktion h09: Zeichen ausgeben');

Reg.BH := 0; { Die Bildschirmseite, 0 = Standard }
Reg.CX := 1; { Anzahl der Zeichenwiederholungen }
for i := 0 to 255 do
begin
Reg.AH := $02; { Funktion h02: Cursor postionieren }
Reg.DL := 5 + i*Reg.CX mod 64; { Bildschirmspalte }
Reg.DH := 8 + i1i*Reg.CX diwv 64; { Bildschirmzeile }

Intr ($10, Reg); { Cursor positionieren }

{ ——— und jetzt Zeichen ausgeben: --------- }

Reg.AL := i; { Der Ascii-Code des auszugebenden Zeichens }

Reg.BL := i; { Das Zeichen-Attribut. Fir Demo jedes
Zeichen mit anderem Attribut darstellen }

Reg.AH := $09; { Die Funktion h09 }

Intr ($10, Reg); { Der Interrupt-Aufruf }
end;

ReturnTaste;
end;

procedure AsciiZeichen in Bildschirmspeicher;
const
BildschirmSegment = $b800; { Farbe: $b800, Mono: $b000 }
{ Segmentadresse des Bildschirmspeichers }
Startzeile = 5;
var
il g Byte;
Offset: Word;

begin
ClrScr;
GotoXY (10, 2);
Writeln ('Ascii-Zeichen mit Attribut in Bildschirmspeicher');
GotoXY (10, 3);
WriteLn('Mit vordefin. Array-Variablen "Mem[Segment:0ffset]" ');

for i := 0 to 255 do
begin

27-36 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Offset := Startzeile * 80 * 2 + 2*i;

Mem[BildschirmSegment:0ffset] := 1; { Zeichen }

Mem[BildschirmSegment:0ffset + 1] := i; { Attribut }
end;

ReturnTaste;
end;

procedure Hardcopy;
{ Der Interrupt-Aufruf fir Hardcopy: h05 (Hardware-Interrupt) }
var
Ch: Char;

begin
GotoXY (10, 25);
Write ('Hardcopy mit Hardware-Interrupt h05 (j/n): n');
GotoXY (WhereX - 1, WhereY);

repeat

Ch := UpCase (Readkey) ;

if Ch = #13 then Ch := 'N';
until (Ch = 'J') or (Ch = 'N');
Write (Ch) ;
if Ch = 'J'

then Intr ($05, Req);
{ »Reg« wird hier nur wegen der Syntax gebraucht }

ReturnTaste;
end;

begin
DOS_ Version;
AsciiZeichen mit Pascal;
AsciiZeichen mit DOS Interrupt h2l Funktion h02;
AsciiZeichen mit BIOS Interrupt hl0 Funktion h09;
AsciiZeichen mit BIOS Interrupt hl0 Funktionen h02 h09;
AsciiZeichen in Bildschirmspeicher;
Hardcopy;

end.

27.9 Weitere Demo-Programme A

program Pas27091; { **** Umschalttasten abfragen ******x*x&kxxrxxxxxxxx }
{ Turbo-Pascal, K. Haller }

{ In diesem Programm werden die Tastatur-Statusbytes
$0040:50017 und $0040:50018 durch Zugriff mit
Mem[segment:offset] gelesen und auch Uberschrieben.

Das Lesen des ersten Tastatur-Statusbyte ware auch
mit der Funktion $02 des BIOS-Interrupts $16 moglich.
Das Ergebnis wird im Register AL geliefert. }

uses
CRT;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-37

const
Bit0 = 1; Bitl = 2; Bit2 = 4; Bit3
Bit4d = 16; Bit5 = 32; Bito = 64; Bit7 = 128; { Bit-Wertigkeiten }
{ oder z.B. Bit6 1 shl 6 }

|
(00
~.

var
ByteH17,
ByteH18: Byte;
BinaerH17,
BinaerH18: string[9];
Taste: Char;
T17, T18: string;

SrnEEiem Dez BilnSte (Dezs Wore) 8 stkdagy { ——o—omosooooooooosomoos }
const
BasisBin = 2;
Blank ="' 1;
Bitmuster in Viererbloecken = True;
{ ggf. andern »Tue« <---> »False« }

var
BinaerString: string[19];
BinStringLaenge: Byte;
Dez Temp: Word;

begin
BinaerString := '';
Dez Temp := Dez;

while Dez Temp <> 0 do
begin
if (Dez Temp mod BasisBin) = 0
then BinaerString := '0' + BinaerString
else BinaerString := 'l' + BinaerString;
Dez Temp := Dez Temp div BasisBin;
end;

if Dez <= 255
then BinStringLaenge := 8
else BinStringLaenge := 16;

while Length (BinaerString) < BinStringLaenge do
BinaerString := '0O' + BinaerString;

if Bitmuster in Viererbloecken
then if Dez <= 255
then Insert (Blank, BinaerString, 5)
else begin
Insert (Blank, BinaerString, SHN
Insert (Blank, BinaerString, 10);
Insert (Blank, BinaerString, 15);
end;

Dez BinStr := BinaerString;
end; { —-----oo oo }

begin
ClrScr;

27-38

Dr. K. Haller Turbo-Pascal

Kap. 27: Systemnahe Programmierung in Pascal

GotoXY (10,

S) 7

’

Write ('"Man achte auf die Leuchtdioden.
{ Bei den Bit-Manipulationen ist darauf zu achten,

Weiter ") 8

daB nur das

Einzel-Bit verandert wird, die anderen Bits dirfen nicht veradndert

werden!
repeat
Mem[$0040:$
Mem[$0040:$
Mem[$0040:$

Delay (100) ;
until KeyPres

}

0017] := Mem[$0040:5001
{ Bit 4 invertie

0017] := Mem[$0040:5001
{ Bit 5 invertie

0017] := Mem[$0040:5001
{

Bit 6 invertie
{ 100 ms warten }
sed;

Mem[$0040:$0017] := Mem[$0040:$0017]
{ Bit 4 1lo6schen,
Mem[$0040:$0017] := Mem[$0040:50017]
{ Bit 5 setzen,
Mem[$0040:$0017] := Mem[$0040:$0017]
{ Bit 6 1loschen,
ClrScr;
GotoXY (10, 5);
Write ('Umschalttasten abfragen, Ende
TextColor (Green) ;
GotoXY (17, 8); Write('Bit-Nr 7654
GotoXY (17, 9); Write(' |]]
GotoXY (10, 10); Write('Byte H17: '");
GotoXY (17, 11); Write(']]
GotoXY (10, 12); Write('Byte H18: ');
repeat
ByteH17 = Mem[$0040:$0017];
ByteH18 = Mem[$0040:$0018];
BinaerHl17 := Dez BinStr (ByteH1l7);
BinaerH18 := Dez BinStr (ByteH18);

GotoXY (21,

GotoXY (21,

{ Jetzt wir

10); TextColor (Green);

TextColor (Yellow) ;
12); TextColor (Green);
TextColor (Yellow) ;
(

TextColor (Green) ;

d getestet, ob ein best

7] xor Bit4;
ren, Operator xor
7] xor Bit5;
ren, Operator xor
7] xor Bit6;
ren, Operator xor

and not Bit4;
Operatoren and not }
or Bith5;
Operator or
and not Bito6;
Operatoren and not }

}

mit »Ctrl-Break« (kha) ") ;

) ;

’

1

3210"'
[T

NRK

Write (ByteH17:3);
Write (BinaerH17:10); ClrEoL;
Write (ByteH18:3);

(

Write (BinaerH18:10); ClrEoL;

immtes Bit gesetzt ist }

T17 := ''; { --—- Meldung T17 fir Byte $17 ————--——————————————— }
if ByteH17 and Bit0 = BitO

then T17 := T17 + ' Shift-R '; { Shift-R }
if ByteHl17 and Bitl = Bitl

then T17 := T17 + ' Shift-L '; { Shift-L }
if ByteHl17 and Bit2 = Bit2

then T17 := T17 + ' Ctrl ';
if ByteH17 and Bit3 = Bit3

then T17 := T17 + ' Alt ';
if ByteHl17 and Bit4 = Bit4

then T17 := T17 + ' Scroll '; { On/Off }

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27-39

if ByteH17 and Bit5 = Bit5

then T17 := T17 + ' NumLock '; { On/Off }
if ByteHl17 and Bit6 = Bité6

then T17 := T17 + ' CapsLock '; { On/Off }
if ByteHl17 and Bit7 = Bit7

then T17 := T17 + ' Insert-Mode '; { On/Off }
T8 = "', { ==== Meldung TLiB Tir Byte S18 ——ommmmmemcmemecc====== }
if ByteH18 and Bit0O = BitO

then T18 := T18 + ' Ctrl-L '; { Ctrl-Links }
if ByteH18 and Bitl = Bitl

then T18 := T18 + ' Alt-L '; { Alt-Links }
if ByteH18 and Bit2 = Bit2

then T18 := T18 + ' SysReq '; { System-Abfrage }
if ByteH18 and Bit3 = Bit3

then T18 := T18 + ' Halt '; { Ctrl-NL/Paus }
if ByteH18 and Bit4d = Bit4

then T18 := T18 + ' Scroll '; { wahrend Tastendruck }
if ByteH18 and Bit5 = Bitb5

then T18 := T18 + ' NumLock '; { wahrend Tastendruck }
if ByteH18 and Bit6 = Bit6

then T18 := T18 + ' CapsLock '; { wahrend Tastendruck }
if ByteH18 and Bit7 = Bit7

then T18 := T18 + ' Insert '; { wahrend Tastendruck }
GotoXY (35, 10); Write(T1l7); ClrEol;
GotoXY (35, 12); Write(T18); ClrEol;

Delay (100) ;

until False;
end.

{ Endlosschleife.

Abbruch nur mit »Ctrl+Break« }

program Pas27092;

{

{ BIOS-Interrupt hll:
{ Turbo-Pascal,

Konfiguration abfragen }
K. Haller }

Nach dem Aufruf von Interrupt hll wird im Register AX die

Konfiguration abgelegt.
beim AT und PS/2

Bit—Nr

(bei einfachen PCs z.T.

Die Bedeutung der einzelnen Bits
anders) :

Bit 0..7: Bit 8..15: AH

= A

1111100
4 321098

00000
765 43

AL,
000
210 Bedeutung bei AT/PS—2

Anzahl der parallelen Drucker

Reserviert

Reserviert

Anzahl serielle Schnittstellen

Nicht verwendet

Anzahl Diskettenlaufwerke — 1
0 0: 1 Diskettenlaufwerk
0 1: 2 Diskettenlaufwerke

3 Diskettenlaufwerke

4 Diskettenlaufwerke

hirmmodus beim Booten

Nicht verwendet

Color, 80 * 25

Color, 40 * 25

Monochrom, 80 * 25

X . . . Nicht verwendet

Bilds

PO OQ.F
RPRooQ RO

27-40 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

X Zeigegerat (Maus) installiert
Coprozessor installiert

Diskettenlaufwerk (e) vorhanden

X

b
5432109876543210|
111111000000000O00
Anmerkung: Der Bildschirmmodus kann nach dem Booten veradndert
worden sein. Der aktuelle Modus kann nicht mit dem
Interrupt hll abgefragt werden, sondern muR mit der
Funktion hOF des Interupts hl0 ausgelesen werden.
Das Ergebnis steht dann im Register AL.
}
uses
CRT, DOS; { Unit DOS fir Interrupt-Aufruf }

type
Stringl6 = string[1l6];

var
Reg: Registers; { "Registers": Record-Typ aus Unit DOS }
AX: Word;
Serielle Schnittstellen: Byte; { RS-232, V.24 (COMl:, COM2: usw) }
Parallele Schnittstellen: Byte; { paralleler Drucker (Centronics) }

function Bit (Register: Word; i: Byte): Boolean;
begin { Testet ob Bit i gesetzt }

if Register and (1 shl i) = 1 shl i
then Bit := True
else Bit := False
end;

function BitMusterl6 (Register: Word): Stringl6;

var
i: 0..15;
s: Stringlé6;
begin
for i := 0 to 15 do
if Register and (1 shl 15 shr i) = (1 shl 15 shr i)
then s[i + 1] := '1'
else s[i + 1] := '0"';
BitMusterl6 := s;
end;
begin { Die folgende Interpretation gilt fir AT-Rechner }
{ und hohere, n i c¢c h t aber fiir normale PC und XT }
CleSeirg

{ }
{|[} Intr($ll, Reqg); {|] Interrupt hll: Konfiguration abfragen }
{ }

AX := Reg.AX;

WriteLn('---- Interrupt hll: Konfiguration ----- ")
WriteLn ('Register AX in dez: ', AX);

WritelLn;

WriteLn ('"Bit-Nr: 5432109876543210") ;

WriteLn ('Das Bitmuster: ', BitMusterlo6 (AX));
Writeln ('—————————-——-———————————————————————————) g

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-41

if Bit (AX, 0)
then WritelLn('Ein oder mehrere Diskettenlaufwerke')
else WritelLn ('Kein Diskettenlaufwerk vorhanden');

if Bit(AX, 1)
then Writeln ('Coprozessor vorhanden')
else Writeln('Kein Coprozessor vorhanden');

if Bit (AX, 2)
then Writeln ('Zeigegerdt (Maus) installiert')
else Writeln('Kein Zeigegerat (Maus) installiert');

if Bit (AX, 0) then

begin
Write ('a) Anzahl der Diskettenlaufwerke: V) g
if not Bit (AX, 7) and not Bit (AX, ©6) then WritelLn('1l'");
if not Bit (AX, 7) and Bit (AX, 6) then WritelLn('2'");
if Bit (AX, 7) and not Bit (AX, ©6) then WriteLn('3'");
if Bit (AX, 7) and Bit (AX, 6) then WriteLn('4');
{ commsom=e Eleganter mit Shift-Operatoren: —--—------—- }
Write ('b) Anzahl der Diskettenlaufwerke: U 8
Writeln (AX shl 8 shr 14 + 1);

end;

Serielle Schnittstellen := 0;

if Bit(AX, 9) then Inc(Serielle Schnittstellen, 1);

if Bit (AX, 10) then Inc(Serielle Schnittstellen, 2);

if Bit (AX, 11) then Inc(Serielle Schnittstellen, 4);

WritelLn ('Anzahl der seriellen Schnittstellen: v,
Serielle Schnittstellen);

Parallele Schnittstellen := 0;

if Bit (AX, 14) then Inc(Parallele Schnittstellen, 1);

if Bit (AX, 15) then Inc(Parallele Schnittstellen, 2);

WriteLn ('Anzahl der parallelen Schnittstellen: ',
Parallele Schnittstellen);

repeat
until ReadKey <> '';
end.

program Pas27093; { Maus-Interrupt 33h. Demo: Maus im Text-Mode }

{ Turbo-Pascal 5.0 7002119 K. Haller }
{ In der Datei "Config.SYS" muR mit "device" der (Microsoft-)
Maustreiber"Mouse.SYS" mit seinem Zugriffspfad aufgefiihrt sein.
Beispiel: device = C:\Maus\Mouse.SYS

Funktions-Nr des Maus-Interrupts 33h und Kurzerklarung

00h Initialisierung und Reset des Maustreibers

0lh Mauscursor anzeigen

02h Mauscursor ausblenden

03h Mausposition und Status der Mausknopfe ermitteln
04h Mauscursor positionieren

05h Wie oft wurde ein Mausknopf gedrickt?

27-42 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

06h Wie oft wurde ein Mausknopf losgelassen?

07h Horizontale GroBe des Maus-Fensters festlegen

08h Vertikale GroBe des Maus-Fensters festlegen

09h Gestalt des Maus-Cursors im Graphik-Mode festlegen

OAh Gestalt des Maus-Cursors im Text-Mode festlegen

0Bh Entfernung der aktuellen Maus-Position von der letzten

0OCh Zusatzliche Benutzer-Interruptroutine installieren

0Dh Emulation des Lichgriffels anschalten

OEh Emulation des Lichtgriffels abschalten

OFh Maus-Empfindlichkeit einstellen

10h AusschluBbereich flir Maus festlegen

12h Gestalt des groBen Graphik-Mauscursors festlegen

13h Schwelle fiir Verdoppelung der Mausgeschwindigkeit festlegen
14h Austauschen der Benutzter-Interruptroutine

15h GroRe des Maus-Statuspuffers ermitteln

l6h Maus-Status sichern

17h Maus-Status restaurieren

18h Alternative Benutzer-Interruptroutine installieren

19h Adresse der alternativen Benutzer-Interruptroutine ermitteln
1Ah Maus-Empfindlichkeit einstellen. Kombination von OFh und 13h
1Bh Maus-Empfindlichkeit ermitteln

1Ch H&ufigkeit der Maus-Abfrage einstellen (0..200/sec)

1Dh Bildschirmseite fiir Maus-Cursor setzen

1Eh Bildschirmseite fiir Maus-Cursor ermitteln

1Fh Maustreiber deakivieren

20h Maustreiber wieder aktivieren

21lh Reset des Maustreibers

24h Maustyp ermitteln (Bus, seriell, Inport, PS/2, ...)

}

uses
CRT, DOS;

var
Reg: Registers; { Recordtyp aus Unit DOS }
Spalte, Zeile: Byte;

procedure WriteXY (Spalte, Zeile: Byte; Meldung: string);
begin

GotoXY (Spalte, Zeile);

Write (Meldung) ;
end;

procedure Taste;

begin
WriteXY (9, 25, 'Weiter mit Tastendruck ... ');
Write (ReadKey) ;

end;

procedure Maustreiber initialisieren und Reset;

begin
ClrScr;
WriteXY (9, 3, 'Maustreiber initialisieren. Funktion 00h ') ;
Reg.AX := $0000; Intr($33, Reqg);

if Reg.AX = Sffff

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-43

then begin
WriteXY (9, 4, 'Maustreiber ist installiert. ' +
'Die Maus hat ') ;
Write (Reg.BX, ' Knopfe ');
end

else WriteXY (9, 4, 'Kein Maustreiber installiert');
Taste;
end;

procedure Mauscursor anzeigen;

begin
ClrScr;
WriteXY (9, 3, 'Mauscursor anzeigen. Funktion 0lh. ' +
'Maus bewegen ... ');
Reg.AX := $0001; Intr($33, Req);
Taste;
end;

procedure Mauscursor ausblenden;
begin
ClrScr;
WriteXY (9, 3, 'Mauscursor ausblenden. Funktion 02h');
Reg.AX := $0002; Intr($33, Req);
Taste;
end;

procedure Mausposition und Mausknoepfe;

const
KlickSpalte = 49;
KlickZeile = 5;
begin
ClrScr;
WriteXY (9, 3, 'Mausposition und Mausstatus. Funktion 03h ');
WriteXY (9, 4, 'Mausknoépfe links, rechts, beide. Auch ziehen ... '");
WriteXY (9, 5, 'Ende: Mausknopf links auf diesem Punkt: ');
WriteXY (KlickSpalte, KlickZeile, '°<');
repeat
repeat

GotoXY (3, 7); ClrEoL;
GotoXY (3, 8); ClrEoL;
GotoXY (3, 9); ClrEoL;

Reg.AX := $0003; Intr($33, Req);
Spalte := 1 + Reg.CX div 8; { Divisor 8 fir Text- }
Zeile := 1 + Reg.DX div 8; { bildschirm 25 * 80 }
if (Reg.BX and 1) = 1 then
begin
WriteXY (9, 7, 'Bit 0: Mausknopf links ');
Write (' Spalte: ', Spalte:2, ' Zeile: ', Zeile) ;
end;
if (Reg.BX and 2) = 2 then

begin

27-44 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

WriteXY (9, 8, 'Bit 1: Mausknopf rechts');
Write (' Spalte: ', Spalte:2, ' Zeile: ', Zeile);
end;

if (Reg.BX and 4) = 4 then

begin

WriteXY (9, 9, 'Bit 2: Mausknopf mitte ');

Write (' Spalte: ', Spalte:2, ' Zeile: ', Zeile);
end;

until (Reg.BX and 1 1) or (Reg.BX and 2 = 2) or
(Reg.BX and 4 = 4);

Delay (100); { Sonst Textanzeige auf Bildschirm zu langsam }
until (Spalte KlickSpalte) and
(Zeile KlickZeile) and ((Reg.BX and 1) = 1);
Taste;
end;

procedure Mauscursor positionieren;

const
Spalte = 40;
Zeile = 5;
Mausspalte = (Spalte - 1) * 8; { Multiplikator 8 fir }
Mauszeile = (Zeile - 1) * 8; { Textbildschirm 25 * 80 }
begin
ClrScr;
WriteXY (9, 3, 'Mauscursor positionieren. Funktion 04h ');
WriteXY (9, 4, 'Der Mauscursor milBte auf dem Punkt stehen. ' +
'Bewegen ... '");
WriteXY (Spalte, Zeile, '<');
Reg.CX := Mausspalte;
Reg.DX := Mauszeile;
Reg.AX := $0004; Intr($33, Reqg);
Taste;
end;

procedure Mausfenster und malen;

const
Dauer = 5; { Diese Zeit in Sekunden warten. Nur fir Demo }
SpMin = 9; SpMax = 60;
zeMin = 9; ZeMax = 20;

MausspalteMin = (SpMin - 1) * 8; { Multiplikator 8 fir }
MausspalteMax = (SpMax - 1) * 8; { Textbildschirm 25 * 80 }
MauszeileMin = (ZeMin - 1) * 8;
MauszeileMax = (ZeMax - 1) * 8;
var
i, j: Byte;
begin
ClrScr;
for i := ZeMin to ZeMax do
for j := SpMin to SpMax do
WriteXY (3, i, "-'");

WriteXY (9, 3, 'Mausfenster definieren. Funktionen 07h und 08h ');

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-45

WriteXY (9, 4, 'Ende nach ');

Write (Dauer, ' sec. Beide Maustasten. Maus bewegen ... ');
Reg.CX := MausspalteMin;

Reg.DX := MausspalteMax;

Reg.AX := $0007; Intr($33, Req);

Reg.CX := MauszeileMin;

Reg.DX := MauszeileMax;

Reg.AX := $0008; Intr($33, Req);

Delay (Dauer * 1000); { Umrechnung in ms }

WriteXY (9, 4, #7 + 'Jetzt Fensterfunktion 07h kombiniert ' +
'mit Funktion O03h ') ;

WriteXY (9, 5, 'Links = Punkt setzen, rechts = Punkt 1l6schen, ' +
'beide = Ende ');

repeat
Reg.AX := $0003; Intr($33, Req); { Mausstatus und -position }
if (Reg.BX and 1) = 1 then { linke Maustaste }
begin
Spalte := 1 + Reg.CX div 8§;
Zeile := 1 + Reg.DX div 8;
WriteXY (Spalte, Zeile, '<');
end;
if (Reg.BX and 2) = 2 then { rechte Maustaste }
begin
Spalte := 1 + Reg.CX div 8;
Zeile := 1 + Reg.DX diwv 8;
WriteXY (Spalte, Zeile, ':');
end;
until ((Reg.BX and 1) = 1) and ((Reg.BX and 2) = 2);
end;
EEER | ooccccooosssoososssossssssssss }

Maustreiber initialisieren und Reset;
Mauscursor anzeigen;
Mauscursor ausblenden;
Mauscursor anzeigen;
Mausposition und Mausknoepfe;
Mauscursor positionieren;
Mausfenster und malen;

end. { —-—------—-——————————————————— }

program Pas27094; { BIOS-Interrupt $10: Bildschirm }
{ Turbo-Pascal, K. Haller }
{ ———- Interrupt $10 hat folgende Funktionen:
S00 Videomodus setzen.
$01 Cursorform definieren.
$02 Cursor positionieren.
$03 Cursorposition auslesen.
S04 Position des Lichtgriffels auslesen (falls vorhanden) .
$05 Auswahl der aktuellen Bildschirmseite.
506 Textzeilen nach oben scrollen.
$07 Textzeilen nach unten scrollen.

27-46

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

$08
$09

SOA

S0B

$ocC
$0D
SOE

SOF
$13

Auslesen des Zeichens und des Attributs.

Schreiben eines Zeichens und des Attributs.

Cursor wird nicht versetzt. Steuerzeichen werden
nicht interpretiert.

Schreiben eines Zeichens. Attribut wird beibehalten
Cursor wird nicht versetzt. Steuerzeichen werden
nicht interpretiert.

Auswahl von Vordergrund- und Hintergrundfarbe und der
Farbpalette. Unterfunktionen 0 und 1.

Grafikpunkt setzen (Koordinaten, Farbe).

Farbe des Grafikpunktes lesen.

Schreiben eines Zeichens. Attribut wird beibehalten.
Cursor wird versetzt. Steuerzeichen werden interpretiert.
Auslesen des aktuellen Videomodus.

Zeichenkette mit Attribut ausgeben. Steuerzeichen
werden interpretiert.

Es werden hier demonstriert:
e Funktion $02 (Cursor positionieren) und
e Funktion $09 (Zeichen mit Attribut ausgeben)

Zum Attribut-Byte bei Farbbildschirmen:

Bit 0, 1, 2: Farbe des Zeichens. 3 Bit = 8 Farben, 0..7

Bit 3: Hellere Farbe des Zeichens (Farben 0..15).

Bit 4, 5, 6: Farbe des Hintergrundes. 8 Farben.

Bit 7: Blinkende Darstellung wenn Bit gesetzt.

Zum Attribut-Byte bei monochromen Bildschirmen:

Bit 0, 1, 2: Helligkeit/Unterstreichung des Zeichens.
Nur die drei Kombinationen "000" (schwarz),
"001l" (unterstrichen weiB) und "111" (weiB)

werden ausgefihrt.

Bit 3: Bei gesetztem Bit 3 grdlere Zeichen-Helligkeit.
Bit 4, 5, 6: Helligkeit des Hintergrundes. Nur die zwei
Kombinationen "000" (schwarz) und "111" (weiB)
werden ausgefihrt.
Bit 7: Blinkende Darstellung wenn Bit gesetzt.
}
uses
CRT, DOS; { Unit DOS fir Interrupt-Aufrufe }
const
Wiederholungen = 5; { Jedes Zeichen so oft ausgeben }
var
Reg: Registers; { Record-Typ aus Unit DOS }
i: Byte;
Zeile, Spalte: Byte;
begin
ClrScr;
Zeile = 5;
Spalte := 1;
for i := 0 to 255 do
begin
Reg.AH := $02; { Funktion $02: Positionierung des Cursors }

Reg.BH := 0;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-47

Reg.DL := Spalte - 1; { Interne Zahlung ab 0 }

Reg.DH := Zeile - 1; { Interne Za&hlung ab 0 }

Intr ($10, Regq);

Reg.AH := $09; { Funktion $09: Zeichen mit Attribut ausgeben }
Reg.BH := 0; { Bildschirmseite }

Reg.CX := Wiederholungen;

Reg.AL := i; { Ascii-Code des Zeichens }

Reg.BL := i; { Jedes Zeichen mit eigenem Attribut }

Intr ($10, Reqg);

Inc (Spalte, Wiederholungen) ;
if Spalte > 80 then

begin
Spalte := 1;
Inc (Zeile);
end;
end;
repeat
until KeyPressed;
ClrScr;

end.

program Pas27095;

—_

Bildschirmspeicher, Turbo-Pascal, K. Haller }
{ Farbbildschirm }
uses
CRT;

const
ZeilenMax = 15;
SpaltenMax = 80;
iMax ZeilenMax * SpaltenMax;
Waagrechtstrich I=0g { #196 }
Senkrechtstrich = '|'; { #179 }

type
Bildschirm Typ = array[l..ZeilenMax, 1..SpaltenMax, 0..1] of Char;
{ Zeilen, Spalten, Zeichen [0] und Attribut [1] }
var
Bildschirm 1,
Bildschirm 2: Bildschirm Typ absolute $B800:50000;
Bildschirm 3: Bildschirm Typ; { Farbe: $B800:50000 }
{ Mono: $B000:$0000 }

Datei 1,
Datei 2: file of Bildschirm Typ;
Nr: Char;

procedure Bildschirm aufbauen (Nr: Byte; Zeichen: Char;
Farbe: Byte; iMax: Word) ;
var
i: Word;

begin { Im Datenteil des BIOS steht in }
ClrScr; { der Adresse 0040:0049 die Kennung }

27-48 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

TextColor (Farbe) ; { des Bildschirms; Zugriff iber }
{ Pseudo-Array »Mem|[segment:offset]« }
for i := 1 to iMax do
Write (Zeichen) ;

GotoXY (20, 3);

Write (' Bildschirm Nr ', Nr, ' '),
GotoXY (20, 5);
Write (' Die Bildschirm-Kennung: ',

Mem[$0040:50049]) ; { »3« bei IBM 8513 }
GotoXY (20, 7);
Write (' Die ASCII-Nr des ersten Zeichens: ',
Ord (Bildschirm 1[1, 1, 0]):4);
GotoXY (20, 8);
Write (' Das Attribut des ersten Zeichens: ',
Ord (Bildschirm 1[1, 1, 1]):4);
GotoXY (20, 14);
Write (' Ende mit beliebigem Tastendruck ... '");
end;

procedure Bildschirm 3 aufbauen;
const

Meldung 3: string = ' Bildschirm Nr 3 ';
var

i, j: Word;

begin
ClrScr;
for i := 1 to ZeilenMax do
for j := 1 to SpaltenMax do
begin
Bildschirm 3[i, j, 0] := Chr(((i - 1)*80 + j) mod 256);
{ ... das Zeichen }
Bildschirm 3[i, j, 1] := Chr(((i - 1)*80 + j) mod 256);
{ das Attribut }
end;
for i := 1 to Length(Meldung 3) do
Bildschirm 3[3, 19 + i, 0] := Meldung 3[i];
end;
begin

Assign (Datei 1, 'Screen-1.DAT');
Assign (Datei 2, 'Screen-2.DAT');

I e N 1 commmmeccccooooommmmmmeeeeooossososoososooo=s }
Bildschirm aufbauen(l, Waagrechtstrich, LightCyan, iMax);

Rewrite (Datei 1);
Write(Datei 1, Bildschirm 1);
Close(Datei 1);

{ ———————————— Nk 2 ——————————————————————— — - - — }
Bildschirm aufbauen (2, Senkrechtstrich, Yellow, iMax);

Rewrite (Datei 2);
Write(Datei 2, Bildschirm 1);
Close(Datei 2);

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

—————————————— NE § soocooosoooosoooossoooosoooossoooossooas s s

repeat
GotoXY (15, 24); Write('Bildschirm 1, 2, 3 (Ende mit 0): '),
repeat
Nr := ReadKey;
until Nr in ['0'..'3'];

case Nr of
'1': begin
Reset (Datei 1);
Read(Datei 1, Bildschirm 1);
Close (Datei 1);
repeat
until KeyPressed;
end;
'2': begin
Reset (Datei 2);
Read(Datei 2, Bildschirm 2);
Close (Datei 2);
repeat
until KeyPressed;
end;
'3': begin
Bildschirm 1 := Bildschirm 3;
repeat
until ReadKey <> '';
end;
end;

until Nr = '0';

end.

program Pas27096; { BIOS-Interrupt 13H: Diskette/Festplatte

{

{ Turbo-Pascal, K. Haller }
—-—--- Der Interrupt 13H hat folgende Funktionen: ------------
(Die Fortsetzungspunkte ... deuten an, daB weitere
Informationen bendotigt werden)

00H Reset. Eingabe: Funktionsnummer OOH in AH und Laufwerks-
nummer in DL.

Die Laufwerksnummern sind wie folgt festgelegt:

e Dbei Disketten: O0H, O1H, usw.

* bei Festplatten: 80H, 81H, usw.

Gilt auch flur andere Funktionen des Interupts 13H.

Wirkung: Zuriickversetzen des Controllers und des Laufwerks
in in Einschaltzustand; die Schreib-/Lesekdpfe werden auf
eine definierte Spur gesetzt. Beim Festplatten-Reset wird
aber auch ein Disketten-Reset durchgefiihrt. Falls nicht
erwiinscht, dann den mit der Funktion ODH alternativen
Festplatten-Reset aufrufen.

27-49

27-50

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

01H

02H
03H
04H
05H

06H
07H

08H

Ausgabe: Flag in CF (carry flag), wobei 0 = Erfolg,

1

Fehler. In AH Statusbyte wie bei Funktion O01H.

Status lesen. Eingabe (auBer 01H in AH) Laufwerks-
nummer in DL (Diskette 00H, 01H. Festplatte 80H, 81H).

AH =

AH
AH
AH
AH
AH
AH
AH
AH
AH
AH
AH
AH
AH
AH

AH
AH

AH
AH
AH
AH

AH
AH
AH
AH
AH

Ausgabe Statusbyte in AH: ---—-—————-

00H: Kein Fehler.

0lH: Nicht erlaubte Funktionsnummer.

02H: AdreBmarkierung nicht gefunden.

03H: Schreibversuch auf schreibgeschiitzter Diskette.

04H: Sektor nicht gefunden.

05H: Reset bei Festplatte nicht mdéglich.

06H: Diskette entfernt.

07H: Fehlerhafte Festplatten-Parametertabelle.

08H: DMA-Uberlauf. DMA = direct memory access.

O9H: DMA Uiber 64 KByte.

OAH: Fehlerhafte Sektor-Flag der Festplatte.

0BH: Fehlerhafter Zylinder der Festplatte.

OCH: Falscher Diskettentyp.

ODH: Fehlerhafte Sektorenzahl im Format Festplatte.

OEH: Kontrolldaten-AdreBmarkierung bei Festplatte
gefunden.

OFH: DMA-Level auBerhalb gliltigem Bereich. Festplatte.

10H: Mit CRC oder ECC Lesefehler festgestellt. Prif-

summenverfahren CRC = cyclical redundancy check.
Fehlerkorrekturverfahren ECC = error correction
code.

11H: Fehler in ECC-korrigierten Daten. Festplatte.

20H: Controller-Defekt.

40H: Positionierfehler.

80H: Time-out-Fehler. Laufwerk reagiert nicht in
Zeitspanne.

AAH: Bei Festplatte: Laufwerk nicht bereit.

BBH: Unbekannter Festplattenfehler.

CCH: Schreibfehler Festplatte.

EOH: Statusfehler Festplatte.

FFH: Prifoperation nicht moglich.

Sektoren lesen
Sektoren schreiben
Sektoren prifen
Spur
Laufwerken nicht diese, sondern Funktion 1AH verwenden.
Siehe dort. Durch exotische Formatierangaben 1laRkt sich
"Kopierschutz" erreichen

Nur bei PC/XT: Festplattenspur formatieren

Nur bei PC/XT: Festplatte ab bestimmten Zylinder
formatieren

Parameter des Laufwerkes lesen.

Eingaben (auBer 08H in AH) Laufwerksnummer in DL,
wobei: 80H = erste Festplatte, 81lH = zweite Festplatte,

(Zylinder) formatieren. Fir IBM PS/2 mit ESDI-

O0OH = erste Disk, 0lH = zweite Disk usw.
Ausgaben:
AH: Statusbyte wie bei Funktion O1H.

CFE:

0 = Erfolg, 1 = Fehler.

Dr. K. Haller

Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-51

09H

0AH

0BH
0CH
0DH

10H
11H
14H
15H
16H
17H

18H
19H

DL: Anzahl der Laufwerke (an einem Controller)

DH: Anzahl der Schreib-/Lesekopfe, 0 = erster Kopf usw.

CH: Bit 0 bis 7 der maximale Zylindernummer (Bit 0 bis 9).

CL: Bit 6 und 7: Bit 8 und 9 der maximalen Zylindernummer
Bit 0 bis 5: maximale Sektornummer

Da ein Sektor standardmédBig 512 Byte umfalt, kann man die

Gesamtkapazitat der Festplatte nach folgender Formel

berechnen:

" Kapazitat = Kopfe * Zylinder * Sektoren * 512 Byte "

Mit den max. 10 Bits der Zylindernummern (Bit 0 bis 9)

ergeben sich max. 2710 = 1024 Zylinder (Original-DOS) .

Die max. 6 Bits der Sekorennummern (Bit 0 bis 5) ergeben

max. 276 = 64 Sektoren a 512 Byte. Mit einem Kopf somit

max. (1024 * 64 * 512 Byte) = 33 554 432 Byte = 32 MByte.

Parameter einer (fremden) Festplatte anpassen.

Interrupt 41H zeigt auf Tabelle fiur Laufwerk 80H,

Interrupt 46H zeigt auf Tabelle fir Laufwerk 81H.

Siehe dort. Nicht fiir ESDI-Laufwerke bei IBM PS/2-

Rechnern verwenden

"Lange" Sektoren lesen. Ein langer Sektor besteht aus

einem Sektor mit Daten und einem 4 oder 6 Bytes langen

Fehlerkorrekturcode (ECC)

"Lange" Sektoren schreiben

Auf Zylinder der Festplatte positionieren

Alternativer Festplatten-Reset.

Siehe auch Funktion 00H

Festplattenlaufwerk bereit?

Festplattenlaufwerk neu kalibrieren

Diagnose Controller

Feststellen des Laufwerk-Typs

Diskettenwechsel erkennen

Diskettentyp fiir Formatieren festlegen

5,25-Zoll: 360 KByte, 1,20 MByte,

3,50-Zoll: 720 KByte, 1,44 MByte

Disketten-/Plattenparameter fir Formatieren festlegen

Festplattenkdpfe auf Parkspur. Nur fur IBM PS/2.

Eingabe: 19H in AL, Laufwerksnummer (80H, 81H) in DL.

Ausgabe: Fehlerflag in CF, mit 0 = Erfolg, 1 = Fehler.

Statusbyte in AH.
ESDI-Laufwerk formatieren. Nur fir IBM PS/2 mit "Enhanced
Small Device Interface"-Adapter

Es wird hier demonstriert:

e Funktion 08H: Parameter des Laufwerks abfragen

}

uses

CRT, DOS; { Unit DOS fir Interrupt-Aufrufe }
var

Reg: Registers; { Record-Typ aus Unit DOS }

Laufwerke: Byte;

Ch:

Char;

27-52 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Laufwerk: Byte;

Zylinder,

Sektoren,

Koepfe,

Speicher: LongInt;

function Bit (Acht Bit Register: Byte; i: Byte): Boolean;
begin

end;

begin

if Acht Bit Register and (1 shl i) = 1 shl i

then Bit := True

else Bit := False
ClrScr;
WriteLn('--- Interrupt 13H, Funktion O08H ---");
Write ('Eingabe Laufwerk (A, B, C, D): V) g
repeat

Ch := UpCase (ReadKey) ;
until Ch in ['A'..'D'];

WriteLn (Ch) ;

case UpCase (Ch) of
'A': Laufwerk := $00;

'B': Laufwerk := $01;

'C': Laufwerk := $80; { Bei Festplatten ist das }

'D': Laufwerk := $81; { hochste Bit auf 1 gesetzt }

end;

Reg.DL := Laufwerk;

Reg.AH := $08; { Funktion 08H: Parameter der Festplatte lesen }

Intr ($13, Reg);

{ Nachfolgend wird die Konstante "FCarry" aus der Unit DOS
benutzt. Sie ist dort wie folgt definiert: FCarry = $0001
»Flags« ist ein Feldbezeichner fiir den ebenfalls in DOS
definierten Record-Typ »Registers« }

Writeln ('Das Statusbyte (0 = in Ordnung): ', Reg.AH:2);

if Reg.Flags and FCarry = 1 { Carry-Flag abfragen }
then Writeln ('Carry-Flag auf 1. Fehler.')
else begin
WriteLn ('Carry-Flag auf 0. Kein Fehler');

Laufwerke := Reg.DL;
Koepfe := Reg.DH + 1; { da Zahlung ab 0 }
Zylinder := Reg.CH;

if Bit(Reg.CL, 6) then Zylinder := Zylinder + 256;
if Bit(Reg.CL, 7) then Zylinder := Zylinder + 512;
Zylinder := Zylinder + 1; { da Za&hlung ab 0 }

Sektoren := (Reg.CL shl 2) shr 2; { Zahlung ab 1 }
WritelLn ('Anzahl der Laufwerke: ', Laufwerke:13);

WriteLn ('"Anzahl der Kopfe: ', Koepfe:13);

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-53

Writeln ('Anzahl der Zylinder: ', Zylinder:13);
WritelLn ('Anzahl der Sektoren: ', Sektoren:13);
Speicher := Koepfe * Zylinder * Sektoren * 512;
WriteLn ('Speicher in KByte: ', Speicher div 1024:16);
end;

Welteln (! ssosmmeoesooosssomossososssosos=m=s ')

repeat

until ReadKey <> '';

end.

27.10 Weitere Demo-Programme B

program Pas27101; { Interrupt $12: Speicherkapazitat abfragen }
{ Turbo-Pascal K. Haller }
{ Mit diesem Interrupt kann nur die GroRe des konventionellen
Speichers (Basisspeicher, 0..639 KByte) ermittelt werden.
Ausgabe in KByte.
}

uses
CRT, DOS;

var
Reg: Registers; { Record-Typ aus Unit DOS }

begin
ClrScr;

Intr($12, Req);
WriteLn ('Der konventionelle Speicher in KByte: ', Reg.AX);

repeat
until ReadKey <> '';
end.

program Pas27102; { Cursor ON/OFF mit Interrupt $10 }
{ Turbo-Pascal kha }

{ Im Interrupt $10 (dez 016) wird die Farbpalette des Bildschirms
festgelegt. Der Interrupt hat 16 Funktionen. Die Funktion $03
ermittelt die aktuelle Cursorposition und die GroBe des Cursors,
wogen mit der Funktion $01 die Cursorgrdfe bestimmt werden kann.

}

uses
CRT, DOS; { Unit DOS fir Interrupt-Aufruf }

var
Cursor LinieBeginn,
Cursor LinieEnde,

Zeile, Spalte: Byte;
Register: Registers; { Datentyp aus Unit DOS }
procedure Cursor Ermitteln; { ¢ Funktion $03: Position und GréBe }

begin { des Curors auslesen }

27-54 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Register.AH := $03; { » Die Cursorlinien werden in der }

Intr ($10, Register); { Zeichenmatrix von oben gezadhlt. }

Cursor LinieBeginn := Register.CH;

Cursor LinieEnde := Register.CL;

Zeile := Register.DH + 1; { plus 1, da Z&hlung ab 0 }

Spalte := Register.DL + 1; { plus 1, da Z&hlung ab 0 }
end;

procedure Cursor EIN;

begin
Register.AH := $01;
Register.CH := Cursor LinieBeginn;
Register.CL := Cursor LinieEnde;
Intr($10, Register);

end;

e Funktion $01: GroRBe Blink-Cursor setzen
begin e Normale Werte: mono: 0..13, $00..$0C
Register.AH := $01; color: 0..7, $00..507

procedure Cursor AUS; {
{
{
Register.CH := $0D; { ¢ Durch "unmoégliche" Werte verschwindet
{
{

Register.CL $00; Cursor. Auch moglich: Mit Funktion $02 des
Intr $10 auBerhalb Bildschirm setzen.

e e e e e

Intr ($10, Register);
end;

procedure Cursor Spezial;

begin
Register.AH := $01;
Register.CH := 2;
Register.CL := 7;
Intr($10, Register);
end;
begin
ClrScr;

Cursor Ermitteln;

Cursor AUS;
Write ('Cursor unsichtbar. Dricke Return ... '); ReadLn;

Cursor EIN;
Write ('Cursor sichtbar. Dricke Return ... '); ReadLn;

Cursor Spezial;
Write ('Cursor spezial. Dricke Return ... '); ReadLn;

Cursor EIN;

Write ('Cursor normal. Driicke Return ... '); ReadlLn;
end.
program Pas27103; { Drucker-Interrupt $17 }

{ Turbo-Pascal, K. Haller }

{ Der Druckerstatus wird im Register AH zuriickgeliefert.
Die Bits 1 und 2 werden nicht benutzt. Die Bedeutung
der anderen Bits wird im Programm erklart. }

uses

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27-55

CRT, DOS;

type

Str8 = string([8];

var
BinaerString:
Reg:

Str8;
Registers;

function BinStr (Dezimalzahl:
var
Temp: Str8;
iz Byte;
begin
Temp := '00000000';
for i := 0 to 7 do
if Dezimalzahl and
then Temp[8 - i] :=
BinStr := Temp;

{

Byte) :

(1 shl i) =
UNILEE

»Registers«: ein Record-Typ
aus der Unit »DOS« }

Str8; {

1 shl i

P e e e T T e N NN
e e e e e e e e e e o

end; {

begin
ClrScr;

$0000; { $0000

$0001

Reg.DX

Reg.AH

$02;
{ =

Intr ($17, Req);

WriteLn ('Der Druckerstatus:

BinStr (Reg.AH)) ;
Writeln;

if Reg.AH and (1 shl 0) =
then WritelLn ('Statusbit
else WritelLn ('Statusbit

WritelLn ('Statusbit
WriteLn ('Statusbit
if Reg.AH and (1 shl 3) =

then WritelLn ('Statusbit
else WritelLn ('Statusbit

Reg.AH and (1 shl 4) =
then WriteLn ('Statusbit
else WritelLn ('Statusbit

Reg.AH and (1 shl 5) =
then WritelLn ('Statusbit
else WritelLn ('Statusbit

Reg.AH and (1 shl 6) =
then WritelLn ('Statusbit
else WritelLn ('Statusbit

(1 shl 7) =

if

if

if

if Reg.AH and

= o o o o Do w w N = O O

Drucker 1,

(paraller Drucker)

Drucker 2 usw. }

L}

, Reg.AH, ' in binar: ',

shl 0 { Test Bit 0 }
Time-Out-Fehler')
Kein Time-Out-Fehler');

Nicht benutzt');
Nicht benutzt');

shl 3 { Test Bit 3 }
Ubertragungsfehler"')
Kein Ubertragungsfehler');

shl 4 { Test Bit 4 }
Drucker On-Line')
Drucker nicht On-Line');

shl 5 { Test Bit 5 }
Drucker hat kein Papier')
Drucker hat Papier');

shl 6 { Test Bit 6 }

Empfang bestatigt')
Empfang nicht bestatigt');

shl 7 { Test Bit 7 }

{ Funktion $02 des Drucker-Interrupt $17 }
Druckerstatus abfragen

}

27-56 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

then WritelLn ('Statusbit 7: Drucker ist nicht beschaftigt')
else WriteLn('Statusbit 7: Drucker ist beschaftigt');

repeat
until ReadKey <> '';
end.

program Pas27104; { ROM-Basic mit Interrupt 18h starten }
{ ROM-Basic ist eine Minimalversion von Basic. Wie der Name

besagt, befindet sich dieses Basic fest in ROM, aber nur bei
IBM PCs und einigen Clones. Wenn ROM-Basic nicht existiert,
fihrt der Aufruf von Interrupt 18h zu einem Systemabsturz.
Im Gegensatz zum ladbaren Basic kann ROM-Basic nicht mit dem
sonst dafiir vorgesehenen Basic-Befehl "SYSTEM" verlassen
werden; es ist ein Kaltstart erforderlich.

Das Beispiel »ROM-Basic« wurde nur der Kuriositat wegen in die
Sammlung aufgenommen.
Turbo-Pascal, K. Haller }

uses
CRT, DOS;

var
Reg: Registers; { »Registers« vordefinierter Recordtyp
aus der Unit DOS }

begin
ClrScr;
GotoXY (5, 5);
WriteLn (#7, 'Achtung: Nach folgenden Interrupt-Aufruf 18h fir');
GotoXY (5, ©);
WriteLn('Start ROM-Basic k e i n e Riuckkehr am Basic-Ende.');
GotoXY (5, 7);
Write ('Kaltstart notwendig! Driicke Taste Return ... ');
repeat
until ReadKey = #13;

Intr($18, Req);

end.

program Pas27105; { friher "Mem Dump" Speicherauszug }
{ Dr. K. Haller }

uses
CRT;

const
SegmentMax = 1 shl 16; { = 65.536
AdressePhysischMax20Addr =1 shl 20 - 1; { = 1.048.576 - 1

{ Max. Adresse bei 20 Adressleitungen, "AQO" bis "A19"

{ (interne Z&hlung ab 0), z.B. beim 1i8086. Bei mehr als

{ 20 Adressleitungen (alle Prozessoren ab i180286) kann

{ mit der segmentierten Adressierung (Format "ssss:oooo")

e e e e

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27-57

werden. Beil der Adresse

im Segment "F000" und endet mit "FOOO:FFFE",

e e e T TN

{ "co00", "DOOO"™ und "EOOQO".

und der 21. Adressleitung "A20" noch ein weiteres 64-
KByte-Segment (HMA = High Memory Area) adressiert

"FFFF:FFFF" = 16* (SFFFF) + SFFFF = 1.114.095
ist aber mit der DOS-Adressierung (max. Jje vier Hex-
Ziffern = 16 bit fir Segment und Offset) Schluss.

Das ROM-BIOS (Basic Input Output System) liegt immer
also der
hochsten Speicherstelle. In den letzten Bytes steht im
Format "mm/tt/jj" das Freigabedatum, dann folgen noch
drei Bytes. Der Beginn des ROM-BIOS ist hersteller-
spezifisch. BIOS-Erweiterungen liegen in den Segmenten

e e e e e e e

AdressePhysischMaxMitHMA = 16*SFFFF + SFFFF; { = 1.114.095

BildschirmSegment = $B800; { Text-Farbbildschirm
var

Spalte, Zeile: Byte;

BildschirmOffset: Word;

AdressePhysisch: LongInt;

Segment: LongInt; { Nur fir Fehlerprufung, sonst "Word"

OffsetStart,

OffsetParagraph,

i, IOFehler: Word;

B: Byte; { Inhalt der Speicherzelle }

Ch: Char;

procedure WriteXY (Spalte, Zeile: Byte; Meldung: string);

begin
GotoXY (Spalte, Zeile);
Write (Meldung) ;

end;

function Dez HexStr (x: Word; L: Byte): string;
var
TempStr: string;

begin
TempStr := '';
while x <> 0 do
begin
TempStr := Copy('0123456789ABCDEF', (x mod 16)
TempStr;
b4 := x div 16;
end;
while Length (TempStr) < L do
TempStr := '0' + TempStr;
Dez HexStr := TempStr;
end;

procedure SpeicherInfos (AdressePhysisch: LongInt);

procedure Info(sl, s2: string);
begin
TextColor (Yellow) ;
sl := 'Hintergrund der Hex-Codes ' + sl;

+ 1,

1)

}

27-58 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

WriteXY (3, 3, sl); ClrEol;
GotoXY(3, 4); ClrEoL;
WriteXY(3 + Pos(':', sl) + 1, 4, s2); ClrEoL;
end;
begin
if (AdressePhysisch >= 0) and { Interrupt-Vektoren }
(AdressePhysisch < 1024) then { in anderer Farbe }
begin

Info('cyan: Arbeitsspeicher bis 1 KByte',
'Interruptvektoren');
TextBackground (Cyan) ;

end;
if (AdressePhysisch >= 1024) and
(AdressePhysisch < 640*1024) then
begin
Info('grin: Arbeitsspeicher von 1 KByte bis 640 KByte', '');
TextBackground (Green) ;
end;

if (AdressePhysisch >= 640*1024) and
(AdressePhysisch < 16*BildschirmSegment) then
begin
Info ('braun: Hoher Speicherbereich UMA von 640 KByte',
'bis Bildschirmspeicher');
TextBackground (Brown) ;
end;
if (AdressePhysisch >= 16*BildschirmSegment) and
(AdressePhysisch <= 16*BildschirmSegment + 4000) then
begin
Info('hellgrau: Bildschirmspeicher',
'Ab Segment $B800, 4000 Byte');
TextBackground (LightGray) ;

end;
if (AdressePhysisch >= 16*BildschirmSegment + 4000) and
(AdressePhysisch <= 16*$C000) then
begin
Info('braun: Weiterer Video-RAM-Bereich', '');
TextBackground (Brown) ;
end;
if (AdressePhysisch >= 16*$C000) and
(AdressePhysisch <= AdressePhysischMax20Addr) then
begin

Info('magenta: Hoher Speicherbereich UMA nach Bildschirm-',
'speicher. ROM-BIOS und BIOS-Erweiterungen') ;

TextBackground (Magenta) ;

end;

if (AdressePhysisch > AdressePhysischMax20Addr) then

begin

Info('rot: High Memory Area HMA, 64 KByte ab 1024 KByte',
'Nur mit 21. Adressleitung "A20"');

TextBackGround (Red) ;

end;

end;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-59

procedure Vorspann;
begin
TextColor (White); TextBackground (Blue); ClrScr;
WriteXY (10, 5, 'Programm zum Betrachten des DOS-Speichers');
WriteXY (10, 7, 'Bei Hex-Eingaben Pascal-Vorsatzzeichen $');
TextColor (Yellow) ;
WriteXY (50, 7, 'S');
TextColor (White) ;
repeat
WriteXY (10, 9, 'Eingabe Start-Segment (Beispiel ');
TextColor (Yellow); Write('SF000');

TextColor (White); Write('): '"); ClrEoL;
{$I-}
Readln (Segment) ;
IOFehler := IOResult;
{SI+}
if IOFehler = 0 then if Segment < 0
then IOFehler := 4711;
if IOFehler = 0 then if Segment >= SegmentMax
then IOFehler := 4711;
until IOFehler = 0;
end;
begin { ~——---—---—- Hauptprogramm -—--—-—---—————-—-————————— }
Vorspann;
ClrScr;
TextColor (Yellow); WriteXY(l, 5, ' Segm:0ffs ') ;

TextColor (LightGray) ;

WriteXY (13, 5, ' 00 01 02 03 04 05 06 07 08 09' +
' 0A OB OC OD OE OF (0123456789ABCDEF"') ;
TextColor (LightGray) ;
WriteXY (3, 25, 'Ende mit Esc, weiter mit ' +
'beliebiger Taste ... '");
TextColor (Yellow); WriteXY (12, 25, 'Esc');

TextColor (White); TextBackground (Blue) ;
WriteXY (1, 1, 'FH Minchen, Stg Druckereitechnik, Dr. K. Haller');
WriteXY (77, 25, 'XXX');

repeat
GotoXY (3, 6);
for OffsetParagraph := 0 to 4095 do { 0 bis 65535 Byte }
begin
OffsetStart := OffsetParagraph * 16;

TextColor (LightGray) ;
WriteXY (3, WhereY, Dez HexStr (Segment, 4) + ':');
Write (Dez HexStr (OffsetStart, 4));

for i := 0 to 15 do { 16 Bytes in einer Zeile darstellen }
begin
Spalte := WhereX;
Zeile = WhereY;
B = Mem[Segment:0ffsetStart + i];

27-60 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

AdressePhysisch := 16 * Segment + OffsetStart + 1i;

SpeicherInfos (AdressePhysisch) ;
GotoXY (Spalte, Zeile);

WriteXY (14 + 3*i, WhereY, Dez HexStr (B, 2));
if 1 < 15 then Write(' '");

{ Alle Zeichen in Bildschirmspeicher }

BildschirmOffset := (WhereY - 1)*160 + (62 + 1i)*2;
Mem[BildschirmSegment:BildschirmOffset 1 := B;

{ Code des Zeichens }
Mem[BildschirmSegment:BildschirmOffset + 1] := Yellow;

{ Attribut des Zeichens }
TextBackground (Blue) ;
end;
if WhereY < 22 then Writeln;

if WhereY = 22 then
begin

TextColor (Yellow) ;
WriteXY (59, 22, '|| ") 8
WriteXY (59, 23, '+- Physische Adresse ');
GotoXY (62, 24); Write('dez ', AdressePhysisch);
GotoXY (49, 25);
Ch := ReadKey;
if Ch = #27

then Halt (0)

else GotoXY (1, 6);

end;
end;
Segment := Segment + (1 shl 12);
{ (1L shl 12) = 4096 = 65536 div 16 }
if Segment > 65535 { Notwendige Minus-1-Korrektur fir }
then Segment := 65535; { Segment, das in HMA hineinreicht }

until AdressePhysisch = AdressePhysischMaxMitHMA;

GotoXY (3, 25); ClrEoL;
WriteXY (3, 25, #7 + 'Beenden mit beliebigem ' +

'Tastendruck ... '),
GotoXY (WhereX - 7, WhereY);
repeat
until ReadKey <> '';
end.

70180609 Dr. K. Haller

