
Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-1

 27 Systemnahe Programmierung in Pascal

27.1 Definition .. 2

27.2 Operationen mit Bitmustern. Beispiel Zahlenkonvertierung dez <-> bin 2

27.3 Speicheradressierung. Segment und Offset .. 9

27.4 Zugriff auf Speicheradressen in Turbo-Pascal .. 11

27.5 Inline-Code und Assembler-Code in Turbo-Pascal .. 12

27.6 Die Turbo-Pascal-Unit DOS ... 14

27.7 Die Interrupts im Überblick .. 16

27.8 Beispiel: Zeichenausgabe über Pascal, DOS, BIOS und Hardware 32

27.9 Diverse Demo-Programme A

27.9.1 Tastatur-Statusbytes, Umschalttasten (BIOS-Interrupt 16h) 36

27.9.2 BIOS-Interrupt 11h, Konfiguration feststellen ... 39

27.9.3 Maus-Interrupt 33h ... 41

27.9.4 BIOS-Interrupt 10h, Bildschirm, Cursorposition, Zeichen und Attribut 45

27.9.5 Absolute Speicheradressierung, Bildschirm in Datei speichern 47

27.9.6 BIOS-Interrupt 13h, Diskette, Platte .. 49

27.10 Diverse Demo-Programme B

27.10.1 BIOS-Interrupt 12h, Speicherkapazität abfragen .. 52

27.10.2 BIOS-Interrupt 10h, Cursor .. 53

27.10.3 BIOS-Interrupt 17h, Druckerstatus ... 54

27.10.4 ROM-Basic-Interrupt 18h, ROM-Basic (nicht bei allen PCs) 55

27.10.5 Speicherauszug (Hex-Dump) .. 56

Durch die Entwicklung des Betriebssystems MS-Windows sind einige Abschnitte dieses

Kapitels nicht mehr so von Bedeutung wie früher. Für das Verständnis eines Betriebssystems

sind sie dennoch hilfreich. In den Lehrveranstaltungen wird nur eine Auswahl aus diesem

Kapitel behandelt.

27-2 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

27.1 Definition

Unter systemnaher Programmierung in einer höheren Programmiersprache versteht man

das Programmieren von Anweisungen oder Funktionen, in denen unmittelbar auf

Speicherstellen (Adressen) des Rechners oder auf Register des Prozessors zugegriffen

wird, den Aufruf von Interrupts, z.B. für die Mausprogrammierung und auch die Defi-

nition bzw. Aufruf von (kleineren) Programmen in der Maschinensprache mit den

Mitteln der höheren Programmiersprache.

Systemnahe Programmierung ist z.B. bei zeitkritischen Programmteilen angebracht. Die

Übertragbarkeit von Pascal-Programmen mit systemnahen Programmteilen auf andere

Rechner kann problematisch werden.

Turbo-Pascal gestattet den direkten Zugriff auf Speicherstellen; außerdem können Pro-

zessorbefehle mit inline direkt in den Quelltext eingegeben werden, ab Turbo-Pascal

6.0 mittels asm auch in den mnemotechnischen Bezeichnungen der Assemblersprache.

27.2 Operationen mit Bit-Mustern

Bei systemnaher Programmierung sind oft Operationen mit Bit-Mustern notwendig.

Unter Bit-Muster versteht man eine aus den Zeichen '0' und '1' bestehende Zeichenfolge,

entsprechend dem binären Zahlensystem. Für die Operationen werden die logischen

Operatoren and, or, not und xor, sowie die Schiebeoperatoren shl (shift left) und

shr (shift right) verwendet. Diese Operatoren stehen mit gleichen Bezeichnungen

sowohl in Pascal als auch im Assembler zur Verfügung.

Die folgenden Beispiele beziehen sich auf ein Bit-Muster mit der Länge 8, entsprechend

einem Byte. Die Zählung der Bits beginnt zweckmäßigerweise rechts mit 0.

Für die späteren Demonstration der Bit-Muster-Operationen wird ein beliebiges Bit-

Muster namens VOR angenommen. Durch die Operationen wird das Bit-Muster

namens NACH erzeugt.

 <───── i ──────
 7 6 5 4 3 2 1 0 8 Bit, Nummer 0 .. 7
╔═╤═╤═╤═╤═╤═╤═╤═╗
║ │ │ │ │ │ │ │ ║
╚═╧═╧═╧═╧═╧═╧═╧═╝
 s s
 │ └─ LSB, least significant bit (niedrigste Wertigkeit)
 └─────────────── MSB, most significant bit (höchste Wertigkeit)

27.2.1 Zu den Shift-Operatoren shl und shr

Bei den meisten der späteren Bit-Operationen wird zur Veranschaulichung die Potenz-

schreibweise 2i benutzt. Bekanntlich gibt es in Pascal die Potenzfunktion nicht als

Standardfunktion. Die Nachstellung mit Exponential- und Logarithmusfunktion wäre

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-3

für die anstehenden Aufgaben zu aufwendig. Wesentlich eleganter und effizienter läßt

sich das Problem mit dem Shift-Left-Operator shl oder dem Shift-Right-Operator

shr lösen. Die folgende Tabelle zeigt Anwendungen des Shift-Left- und des Shift-

Right-Operators.

Es gilt:

20 = 1 shl 0 = 1 27 = 128 shr 0 = 128
21 = 1 shl 1 = 2 26 = 128 shr 1 = 64
22 = 1 shl 2 = 4 25 = 128 shr 2 = 32
23 = 1 shl 3 = 8 24 = 128 shr 3 = 16
24 = 1 shl 4 = 16 23 = 128 shr 4 = 8
25 = 1 shl 5 = 32 22 = 128 shr 5 = 4
26 = 1 shl 6 = 64 21 = 128 shr 6 = 2
27 = 1 shl 7 = 128 20 = 128 shr 7 = 1
-------------------- ---------------------
28 = 1 shl 8 = 256 (0) 2-1 = 128 shr 8 = 0
29 = 1 shl 9 = 512 (0) 2-2 = 128 shr 9 = 0
-------------------- ---------------------
usw. usw.

 Bytetyp, i = 0..7: 2i = 1 shl i = 128 shr (7 - i)

 Wordtyp, i = 0..15: 2i = 1 shl i = 32768 shr (15 - i)

Bei Benutzung von Variablen für die Ergebnisse bei Shift-Operationen ist auf den

Definitionsbereich des Datentyps zu achten, z.B. 0..255 bei Typ Byte. Bei Konstanten

steht in Turbo-Pascal der Bereich des Typs LongInt zur Verfügung. Beim "Hinausschie-

ben" nach rechts wird als Ergebnis 0 geliefert, da Schiebeoperatoren nur für Ganzzahlen

definiert sind.

Das folgende Demo-Programm zeigt die Wirkung der Schiebeoperatoren und mögliche

Fehler:

program Pas27021; { Die Schiebe-Operatoren shl und shr }
uses
 CRT;
var
 i: ShortInt;

 ByteLinks,
 ByteRechts: Byte;
 WordLinks,

 WordRechts: Word;
begin
 ClrScr;

 WriteLn(' Datentyp Byte. Shift richtig für i = 0..7');
 WriteLn(' 2 hoch i = [1 shl i] = [128 shr (7 - i)]');
 WriteLn(' ---');

 for i := -2 to 9 do { Richtig nur für i = 0..7, Byte }
 begin
 ByteLinks := (1 shl i);
 ByteRechts := (128 shr (7 - i));
 WriteLn(' 2 hoch ', i:2, ' = ', ByteLinks:6, ByteRechts:14);
 end;

27-4 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 WriteLn; Write(' Weiter mit Return ... '); ReadLn; WriteLn;

 WriteLn(' Datentyp Word. Shift richtig für i = 0..15 ');
 WriteLn(' 2 hoch i = [1 shl i] = [32768 shr (15 - i)]');

 WriteLn(' --');
 for i := -2 to 17 do { Richtig nur für i = 0..15, Word }
 begin
 WordLinks := (1 shl i);
 WordRechts := (32768 shr (15 - i));
 WriteLn(' 2 hoch ', i:2, ' = ', WordLinks:6, WordRechts:16);

 end;
 repeat
 until ReadKey <> '';
end.

Die Ausgabe für den ersten Programmteil:

 Datentyp Byte. Shift richtig für i = 0..7

 2 hoch i = [1 shl i] = [128 shr (7 - i)]

 2 hoch -2 = 0 0

 2 hoch -2 = 0 0

 2 hoch 0 = 1 1

 2 hoch 1 = 2 2

 2 hoch 2 = 4 4

 2 hoch 3 = 8 8

 2 hoch 4 = 16 16

 2 hoch 5 = 32 32

 2 hoch 6 = 64 64

 2 hoch 7 = 128 128

 2 hoch 8 = 0 0

 2 hoch 9 = 0 0

27.2.2 Bit-Muster um i-Stellen nach links verschieben

┌────────────────────────┐

│ NACH := VOR shl i │ i = 0 ... 7. Von rechts

└────────────────────────┘ shl: shift left

Das Bit-Muster wird rechts mit Nullen aufgefüllt. Die Verschiebung um eine Stelle

nach links verdoppelt den Wert des Bit-Musters. Bits, die "hinausgeshiftet" werden,

gehen verloren. In Turbo-Pascal jedoch Abbruch mit Fehlermeldung, wenn die Ober-

grenze des vereinbarten Datentyps, z.B. bei Byte = 255 überschritten wird.

1. Beispiel: i = 2, VOR = 0001 1111, dez 31, hex H1F

 NACH = 0111 1100, dez 124, hex H7C

 ───

 31 shl 2 ==> 124

2. Beispiel: i = 1, VOR = 1000 0000, dez 128, hex H80

 NACH = 0000 0000, dez 0, hex H00

 ───

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-5

 128 shl 1 ==> 0 (Zu Pascal siehe oben)

27.2.3 Bit-Muster um i-Stellen nach rechts verschieben

┌────────────────────────┐
│ NACH := VOR shr i │ i = 0 ... 7. Von rechts.
└────────────────────────┘ shr: shift right

Das Bit-Muster wird links mit Nullen aufgefüllt. Die Verschiebung um eine Stelle nach

rechts halbiert den Wert des Bit-Musters. Beim "Hinausschieben" aller Bits wird das

Ergebnis 0 geliefert.

1. Beispiel: i = 2, VOR = 1001 0000, dez 144, hex H90

 NACH = 0010 0100, dez 36, hex H48

 ───

 144 shr 2 ==> 36

2. Beispiel: i = 1, VOR = 0000 0001, dez 1, hex H01

 NACH = 0000 0000, dez 0, hex H00

 ───

 1 shr 1 ==> 0

27.2.4 Das i-te Bit setzen, die anderen Bits nicht verändern

┌───────────────────────┐
│ NACH := VOR or 2i │ i = 0 ... 7. Von rechts.
└───────────────────────┘

1. Beispiel: i = 5, VOR = 0101 1111, dez 95, hex H5F

 25 = 0010 0000, dez 32, hex H20

 ───

 NACH = VOR or 25 = 0111 1111, dez 127, hex H7F

 95 or 32 ==> 127

2. Beispiel: i = 5, VOR = 0111 1111, dez 127, hex H7F

 25 = 0010 0000, dez 32, hex H20

 ───

 NACH = VOR or 25 = 0111 1111, dez 127, hex H7F

 127 or 32 ==> 127 (Achtung: 127 or 34 ==> 127)

27.2.5 Das i-te Bit löschen, die anderen Bits nicht verändern

┌───────────────────────────────┐
│ NACH := VOR and (not 2i) │ i = 0 ... 7. Von rechts
└───────────────────────────────┘ Klammern nicht notwendig

1. Beispiel: i = 3, 23 = 0000 1000, dez 8, hex H08

 not 23 = 1111 0111, dez 247, hex HF7

 VOR = 0101 1101, dez 93, hex H5D

 not 23 = 1111 0111

27-6 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 ──

 NACH = VOR and (not 23) = 0101 0101, dez 85, hex H55

 93 and (not 8) ==> 85

2. Beispiel: i = 3, 23 = 0000 1000, dez 8, hex H08

 not 23 = 1111 0111, dez 247, hex HF7

 VOR = 0101 0101, dez 85, hex H55

 not 23 = 1111 0111

 ───

 NACH = VOR and (not 23) = 0101 0101, dez 85, hex H55

 85 and (not 8) ==> 85

27.2.6 Das i-te Bit invertieren, die anderen Bits nicht verändern

┌────────────────────────┐
│ NACH := VOR xor 2i │ i = 0 ... 7. Von rechts
└────────────────────────┘ xor: Exklusives Oder

1. Beispiel: i = 6, VOR = 0001 1111, dez 31, hex H1F

 26 = 0100 0000, dez 64, hex H40

 ───

 NACH = VOR xor 26 = 0101 1111, dez 95, hex H5F

 31 xor 64 ==> 95

2. Beispiel: i = 6, VOR = 0101 1111, dez 95, hex H5F

 26 = 0100 0000, dez 64, hex H40

 ──

 NACH = VOR xor 26 = 0001 1111, dez 31, hex H1F

 95 xor 64 ==> 31

27.2.7 Testen, ob das i-te Bit gesetzt ist. Ergebnistyp Boolean

i = 0 ... 7. Von rechts
Das innere Klammerpaar
ist notwendig!

1. Beispiel: i = 6, VOR = 0101 1111, dez 95, hex H5F

 26 = 0100 0000, dez 64, hex H40

 ──

 (VOR and 26) = 0100 0000, dez 64, hex H40

 (VOR and 26) = 26 ==> Bit6gesetzt = True

2. Beispiel: i = 6, VOR = 0001 1111, dez 31, hex H1F

 26 = 0100 0000, dez 64, hex H40

 ──

BitIgesetzt := ((VOR and 2
i
) = 2

i
)

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-7

 (VOR and 26) = 0000 0000, dez 0, hex H00

 (VOR and 26) <> 26 ==> Bit6gesetzt = False

27.2.8 Bit-Muster löschen (alle Bits auf 0)

┌─────────────────────────┐
│ NACH := VOR xor VOR │ xor: Exklusives Oder
└─────────────────────────┘ Alternative zu: NACH := 0

Beispiel: VOR = 0001 1111, dez 31, hex H1F

 VOR = 0001 1111, dez 31, hex H1F

 ───

 NACH = VOR xor VOR = 0000 0000, dez 0, hex H00

 31 xor 31 ==> 0

27.2.9 Anwendung: Zahlenkonvertierung

a) Konvertierung dezimal in binär

program Pas27022; { Zahlenkonvertierung "dezimal-binär" }
 { K. Haller }

uses
 CRT;

type
 Str16 = string[16];
 Str21 = string[21];

var
 Dezimalzahl: Word;

 BinaerString: Str16;
 BinaerString_Formatiert: string[21];

function BinStr(Dezimalzahl: Word): Str16; { ───────────┐}
var {│}
 Temp: Str16; {│}

 i: Byte; {│}
begin {│}
 if Dezimalzahl > 255 {│}
 then Temp := '0000000000000000' {│}
 else Temp := '________00000000'; {│}
 for i := 0 to 15 do {│}
 if Dezimalzahl and (1 shl i) = (1 shl i) {│}
 then Temp[Length(Temp) - i] := '1'; {│}
 BinStr := Temp; {│}

end; {──┘}

function Formatierung(BinaerString: Str16): Str21; { ───┐}
var {│}
 Temp: Str21; {│}
begin {│}
 Temp := BinaerString; {│}
 Insert(' ', Temp, 5); {│}

27-8 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 Insert(' ', Temp, 14); {│}

 Insert('│', Temp, 10); {│}
 Insert('│', Temp, 1); {│}
 Insert('│', Temp, 21); {│}

 Formatierung := Temp; {│}
end; { ───┘}
begin
 ClrScr;
 WriteLn('Zahlenkonvertierung dezimal-binär');
 WriteLn('Man achte auf Fehler, wenn Eingabe nicht im ',

 'Word-Bereich liegt.');
 WriteLn;
 WriteLn('Eingabe dezimal, Ende mit 0. Binär unformatiert ',

 ' Binär formatiert');
 WriteLn('---',
 '----------------------');

 repeat
 Write('Dezimal (0..65535): ');
 {$R- Range-Prüfung ausnahmsweise auf AUS }

 ReadLn(Dezimalzahl);
 {$R+}
 BinaerString := BinStr(Dezimalzahl);

 BinaerString_Formatiert := Formatierung(BinaerString);
 GotoXY(33, WhereY - 1);
 WriteLn(BinaerString, ' ', BinaerString_Formatiert);

 until Dezimalzahl = 0;

 repeat
 until ReadKey <> '';
end.

Eine mögliche Bildschirmausgabe:

Zahlenkonvertierung "dezimal-binär"

Man achte auf Fehler, wenn Eingabe nicht im Word-Bereich liegt.

Eingabe dezimal, Ende mit 0. Binär unformatiert Binär formatiert

Dezimal (0..65535): 1 ________00000001 │____ ____│0000 0001│

Dezimal (0..65535): 2 ________00000010 │____ ____│0000 0010│

Dezimal (0..65535): 4 ________00000100 │____ ____│0000 0100│

Dezimal (0..65535): 8 ________00001000 │____ ____│0000 1000│

Dezimal (0..65535): 16 ________00010000 │____ ____│0001 0000│

Dezimal (0..65535): 32 ________00100000 │____ ____│0010 0000│

Dezimal (0..65535): 64 ________01000000 │____ ____│0100 0000│

Dezimal (0..65535): 128 ________10000000 │____ ____│1000 0000│

Dezimal (0..65535): 129 ________10000001 │____ ____│1000 0001│

Dezimal (0..65535): 254 ________11111110 │____ ____│1111 1110│

Dezimal (0..65535): 255 ________11111111 │____ ____│1111 1111│

Dezimal (0..65535): 256 0000000100000000 │0000 0001│0000 0000│

Dezimal (0..65535): 65534 1111111111111110 │1111 1111│1111 1110│

Dezimal (0..65535): 65535 1111111111111111 │1111 1111│1111 1111│

Dezimal (0..65535): 65536 ________01100100 │____ ____│0110 0100│

Dezimal (0..65535): 65537 ________00000001 │____ ____│0000 0001│

Dezimal (0..65535): 65538 ________00000010 │____ ____│0000 0010│

b) Konvertierung binär in dezimal

program Pas27023; { Zahlenkonvertierung "binär-dezimal" }
 { K. Haller }

uses
 CRT;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-9

var
 Dezimalzahl: Word;
 BinaerString: string;
 i, Zeile: Byte;
 Fehlerfrei: Boolean;
begin
 ClrScr;
 WriteLn('Zahlenkonvertierung binär-dezimal');
 WriteLn;

 WriteLn('Eingabe binär, 1..16 Stellen. Ende mit 0. Dezimal');
 WriteLn('--');

 repeat
 Zeile := WhereY;
 repeat
 Fehlerfrei := True;
 GotoXY(1, Zeile);
 Write('Eingabe binär:'); ClrEoL;

 GotoXY(16, Zeile);
 ReadLn(BinaerString);
 if (Length(BinaerString) < 1) or
 (Length(BinaerString) > 16)
 then Fehlerfrei := False;
 if Fehlerfrei
 then for i := 1 to Length(BinaerString) do
 if (BinaerString[i] <> '0') and
 (BinaerString[i] <> '1')

 then Fehlerfrei := False;
 until Fehlerfrei;

 while Length(BinaerString) < 16 do
 BinaerString := '0' + BinaerString;

 Dezimalzahl := 0;
 for i := 0 to 15 do
 if BinaerString[16 - i] = '1'
 then Dezimalzahl := Dezimalzahl + 1 shl i;

 GotoXY(44, WhereY - 1);

 WriteLn(Dezimalzahl);
 until Dezimalzahl = 0;
 repeat
 until ReadKey <> '';
end.

27.3 Speicheradressierung. Segment und Offset

Der Stammvater der Intel-Mikroprozessoren für PCs, der Intel 8086 (auch 8088) besitzt

20 Adreßleitungen. Damit lassen sich 220 = 1 048 576 Speicherstellen adressieren, das

sind 1024 KByte oder 1 MByte. Jüngere Prozessoren besitzen mehr Adreßleitungen und

somit einen größeren Adreßbereich (i80286 mit 24 Adreßleitungen, ab i80386 mit 32

Adreßleitungen). Aus Kompatibilitätsgründen laufen aber auf diesen Prozessoren die

üblichen MS-Programme im sog. Real-Mode, der nur den Adreßbereich bis 1 MByte

verwaltet. Nur mit besonderen Maßnahmen kann der zusätzliche Adreßraum genutzt

27-10 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

werden (Einsatz des Betriebssystems OS/2, Windows, Nutzung als Plattencache oder

RAM-Disk, Emulation eines Expansionsspeichers usw. Siehe Kap. Betriebssystem).

Die folgenden Ausführungen beziehen sich auf den 8086 bzw. den Real-Mode der neu-

eren Intel-Prozessoren mit dem gemeinsamen Merkmal, daß die Speicheradressen nicht

fortlaufend (linear) durchgezählt werden, im Gegensatz zu Prozessoren anderer Her-

steller, wie z.B. Motorola. Vielmehr wird der Adreßbereich in Segmente unterteilt, die

an beliebigen Vielfachen von 16 Byte (= 1 Paragraph) beginnen können und maximal

64 KByte groß sein können. Die relative Adresse zum Segmentbeginn nennt man

Offset, der aber nicht über eine maximale Segmentgröße hinausgehen kann. Für eine

Adresse außerhalb dieser Grenze muß eine Segmentumschaltung vorgenommen

werden.

Die segmentierte Speicheradresse wird in folgender Notation angegeben:

 segment:offset

Es ist allgemein üblich (aber nicht notwendig), diese Angaben in hexadezimaler Nota-

tion zu machen. Da der Segmentbeginn immer ein Vielfaches von 16 darstellt, ergibt

sich als letzte Stelle für den Segmentbeginn eine hexadezimale Null, die vereinbarungs-

gemäß weggelassen wird. Bei der Bildung der physischen Adresse wird die Segment-

adresse um vier Bit nach links geschoben, was einer Multiplikation mit dem Faktor 16

entspricht, anschließend wird der Offset addiert.

Durch diese Technik bedingt, können sowohl Segment als auch Offset nur Werte

zwischen 0 und 65535 (in hex: h0000 und hFFFF) annehmen und somit in den 16-Bit-

Registern des Prozessors 8086 gespeichert werden.

Man beachte, daß in Pascal das Dollarzeichen $ als Hex-Vorsatzzeichen dient.

Beispiel 1: Physikalische Adresse des ersten Tastatur-Statusbytes, in üblicher Hex-

Notation 0040:0017, in Pascal $0040:$0017
 16 * (0*4096 + 0*256 + 4*16 + 0*1) +

 (0*4096 + 0*256 + 1*16 + 7*1) = 1047

Beispiel 2: Physikalische Adresses des Beginns des Farbbildschirmspeichers, in

üblicher Hex-Notation B800:0000 (Mono: B000:0000)
 16 * (11*4096 + 8*256) = 753664

Beispiel 3: Die höchste physikalische Adresse, die rein rechnerisch mit den höchsten

Werten von Segment und Offset gebildet werden kann, in üblicher Hex-

Notation FFFF:FFFF (in Pascal $FFFF:$FFFF)
 16 * (15*4096 + 15*256 + 15*16 + 15) +

 15*4096 + 15*256 + 15*16 + 15 = 1 114 095

 Diese Adresse kann aber nicht mehr mit den 20 Adreßleitungen (A0 bis

A19, 220 = 1 048 576) des Intel 8086 dargestellt werden. Mit MS-DOS

ab Version 5.0 und ab Prozessor 80286 kann aber dieser über 1 MByte

hinausgehende und 64 KByte große Speicherbereich im Real-Mode

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-11

adressiert werden. Details siehe Kap. Betriebssystem (HMA, High

Memory Area, Behandlungsroutine für die Adreßleitung A20).

Wichtig: Die gleiche physikalische Adresse kann aus vielen Kombinationen von

Segment:Offset gebildet werden.

27.4 Zugriff auf Speicheradressen in Turbo-Pascal

Den Zugriff auf Speicheradressen (Speicherstellen) gestattet der in Turbo-Pascal vor-

definierte (Pseudo-) Array Mem[..] (Mem steht für Memory) in den drei Varianten:

 Mem[segment:offset] Datentyp Byte, 1 Byte

 MemW[segment:offset] Datentyp Word, 2 Byte

 MemL[segment:offset] Datentyp LongInt, Doppelwort, 4 Byte

segment:offset Beide Ausdrücke mit Datentyp Word. Konstanten in der Regel in Hex-

Notation.

Der Zugriff kann mit diesem vordefiniertem Turbo-Pascal-Array sowohl lesend (RAM-

und ROM-Speicherstellen) als auch schreibend (nur RAM-Speicherstellen) sein. In

anderen Programmiersprachen gibt es getrennte Sprachelemente für Lesen und Schrei-

ben, in Basic und C z.B. Peek für Lesen und Poke für Schreiben.

Beispiel:

....

var

 B: Byte;

 W: Word;

....

begin

 B := Mem[$0040:$0017]; { Lesen, 1 Byte }

 W := MemW[$0040:$0017]; { Lesen, 2 Byte }

 Mem[$0040:$0017] := 156; { Schreiben, 1 Byte }

 MemW[$0040:$0017] := 64156; { Schreiben, 2 Byte }

end.

Beispiel: Beschreiben der Bildschirmspeicherstellen

program Pas27041; { Bildschirmspeicher }
 { Zum Bildschirmspeicher: B800:0000 (color) bzw. B000:0000 (mono)

 Jeder Schreibstelle sind im Bildschirmspeicher 2 Bytes zuge-
 ordnet. Im ersten Byte (geradzahlige Adresse) steht das Zeichen;

27-12 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 im zweiten Byte (ungeradzahlige Adressen) steht das Attribut des

 Zeichens (Farbe Vordergrund/Hintergrund, blinkend oder nicht).
 Das folgende Demo-Programm schreibt über den vordefiniertem Array
 »Mem[segment:offset]« direkt in den Bildschirmspeicher. Es werden

 alle 256 ASCII-Zeichen geschrieben und zwar in der linken oberen
 Ecke beginnend (Offset = 0 für das erste Zeichen). Das Attribut
 wird von Zeichen zu Zeichen gewechselt, der Einfachheit halber

 mit dem Wert der Laufvariablen.

 • Mit »Mem[segment:offset]« können beliebige Speicherstellen

 byteweise angesprochen werden.
 • Mit »MemW[segment:offset]« werden Speicherstellen mit 2 Bytes
 (Typ Word) angesprochen.

 • Mit »MemL[segment:offset] werden Speicherstellen mit 4 Bytes
 (Typ LongInt) angesprochen.

 In allen Fällen sind »segment« und »offset« Ausdrücke mit dem
 Datentyp Word.

 Man sei bei direkten Speicherzugriffen vorsichtig!
 }

var
 i: Integer;

begin
 for i := 0 to 255 do
 begin
 Mem[$b800:2*i] := i; { Das erste Byte: Das Zeichen }
 Mem[$b800:2*i + 1] := i; { Das zweite Byte: Das Attribut }
 end; { Zur Demo: Jedes Zeichen mit }
 { anderem Attribut. }
 repeat until ReadKey <> '';
end.

27.5 Inline-Code und Assembler-Code in Turbo-Pascal

a) Inline-Codes

... sind Prozessor-Codes (Bytezahlen 0..255, $00..$ff), die in den Pascal-Quelltext ein-

gebaut werden, üblicherweise in Hex-Notation, d.h. in Pascal mit vorausgestellten

Dollarzeichen. Die Codes kann man sich z.B. durch Disassemblieren eines (kleinen)

COM-Files mit dem Hilfsprogramm DEBUG verschaffen. Siehe Kap. 30. Inline-Codes

werden nach dem reservierten Word inline und einer öffnenden runden Klammer byte-

weise eingegeben. Als Trennzeichen dient der Schrägstrich /. Beendet werden Inline-

Codes mit der schließenden runden Klammer. Die Eingabe der Codes ist ansonsten

formatfrei.

Format für Inline-Codes:

inline (code[/code]...)

b) Assembler-Codes (ab Turbo-Pascal 6.0)

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-13

... sind Codes in den mnemotechnischen Bezeichnungen der Assemblersprache. Mit

gewissen Einschränkungen können diese Codes ab Turbo-Pascal 6.0 assembliert

werden. Details siehe Handbuch.

Format für Assembler-Codes:

asm

 asm-Anweisung { Wenn mehrere Assembler-Anweisungen, dann }

 { Trennzeichen Semikolon oder Zeilenvorschub }

end;

1. Beispiel

program Pas27051; { Print Screen (Hardcopy) über Interrupt h05 }

 { Turbo-Pascal, "inline" und "asm" }

begin

 WriteLn;

 WriteLn(' Hardcopy mit Inline-Code »int h05« ');

 Write(' Wenn Drucker bereit, Taste Return: '); ReadLn;

 inline ($CD/$05); { Im Assembler: int 05 ; Interrupt 05 }

 { = Auslösen einer Hardcopy }

 WriteLn;

 WriteLn(' Hardcopy mit Asm-Code (Pascal 6.0) ');

 Write(' Wenn Drucker bereit, Taste Return: '); ReadLn;

 asm { »asm« Assembler-Code, ab Turbo-Pascal 6.0 }

 int $05 { Bei mehreren Assembler-Anweisungen als }

 end; { Trennzeichen Semikolon oder neue Zeile }

end.

2. Beispiel:

program Pas27052; { ASCII-Zeichensatz mit inline-Code }

 { Turbo-Pascal 5.0/6.0 }

begin

 WriteLn; WriteLn; WriteLn('ASCII-Zeichensatz über Inline-Code: ');

 inline (

 $b1/$ff/ { 01: mov CL, ff ; CL mit hex FF = dez 255 }

 $88/$ca/ { 02: mov DL, CL ; Wert von CL in DL }

 $b4/$02/ { 03: mov AH, 02 ; Funktion 02 bei Interrupt 21 }

 $cd/$21/ { 04: int 21 ; = Zeichen in DL anzeigen }

 $fe/$c9/ { 05: dec CL ; CL dekrementieren }

 $75/$f6/ { 06: jnz 0102 ; jump if not zero. Siehe unten}

 $90/ { 07: nop ; no operation (überflüssig) }

 $b4/$08/ { 08: mov AH, 08 ; Funktion 08 bei Interrupt 21 }

 $cd/$21/ { 09: int 21 ; = Zeicheneingabe ohne Echo }

 $b4/$4c/ { 10: mov AH, 4c ; Funktion 4C bei Interrupt 21 }

 $cd/$21/ { 11: int 21 ; = Programm beenden }

 $90/ { 12: nop ; no operation (überflüssig) }

 $90); { 13: nop ; dto. }

 (* • Zur Sprungdistanz $f6 in Zeile 06: $f6 = 246. Das höchste

 Bit ist gesetzt, da > 127. Somit negative Sprungdistanz

27-14 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 (255 - 246) = 9 Byte rückwärts auf erstes Byte in Zeile 02

 (Adresse h0102 bei COM-File).

 Maximale Sprünge: -128 und +127. Bei größeren Distanzen

 über Zwischenwert und von dort weiter.

 • Das Programm gibt den Ascii-Code rückwärts aus. Einige

 Steuerzeichen werden interpretiert. Welche? BEL, BS, HT, LF

 *)

end.

27.6 Die Turbo-Pascal-Unit DOS

In der Unit DOS sind in Turbo-Pascal zahlreiche Konstanten, Datentypen, Variablen,

Prozeduren und Funktionen definiert. Nachstehend nur eine Auswahl für systemnahe

Programmierung:

a) Record-Typ Registers

Der Record-Typ Registers ist ein vordefinierter Record, der auschließlich aus

varianten Teilen besteht. Er ist in der Unit DOS wie folgt definiert:

type

 Registers = record

 case Integer of

 0: (AX, BX, CX, DX, BP, SI, DI, DS, ES, Flags: Word);

 1: (AL, AH, BL, BH, CL, CH, DL, DH: Byte);

 end;

Wenn beispielsweise im Pascal-Programm eine Variable mit dem freien aber sinnvoll

gewählten Bezeichner "Reg" (Registervariable) mit dem vordefinierten Record-Daten-

typ Registers (aus Unit DOS) definiert ist, dann kann auf die einzelnen Register

über die Felder der Registervariable nach einem Interrupt-Aufruf wie folgt zugegriffen

werden:

var

 Reg: Registers;

Reg.AX 16-Bit-Register AX

Reg.AL 8-Bit-Register AL

Reg.BH 8-Bit-Register BH

Reg.Flags 16-Bit-Register Flags

Beispiel: if Reg.AL <> 0 then

 WriteLn(Reg.AX);

In ähnlicher Weise können die Registervariablen mit einem Wert für einen folgenden

Interrupt-Aufruf belegt werden.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-15

Beispiel: Reg.AL := 23;

b) Flag-Konstanten:

FCarry = $0000; Bit 0: Carry-Flag. Übertrags-Flag

FParity = $0004; Bit 2: Paritäts-Flag

FAuxiliary = $0010; Bit 4: Auxiliary-Flag. Hilfsübertrags-Flag

FZero = $0040; Bit 6: Zero-Flag. Null-Flag

FSign = $0080; Bit 7: Sign-Flag. Vorzeichen-Flag

FOverflow = $0800; Bit 11: Overflow-Flag. Überlauf-Flag

Die vorstehenden sechs Flags sind Status-Flags. Sie signalisieren das Ergebnis einer

arithmetischen oder logischen Operation.

Die Bits 1, 3, 5, 12, 13, 14, 15 des Flag-Registers werden beim Intel 8086 nicht benutzt.

Die Bits 8 (Trap, Einzelschritt-Flag), 9 (Interrupt-Flag) und 10 (Direction, Richtungs-

Flag) sind Steuerflags um die Arbeitsweise des Prozessors zu beeinflussen.

Wenn beispielsweise im Pascal-Program mit Reg ein Record-Datentyp Registers

(aus Unit DOS) definiert ist, dann können die einzelnen Flags z.B. wie folgt abgefragt

werden:

if Reg.Flags and FCarry <> 0 then ...

 (True, wenn Carry-Flag gesetzt, False wenn nicht gesetzt)

if Reg.Flags and FZero = 0 then ...

 (True, wenn Zero-Flag nicht gesetzt. False wenn gesetzt)

c) Prozedur Intr Format: Intr(interruptNr, registervariable)

Diese Prozedur führt einen Interrupt aus. Siehe Beispiel in 27.8

d) Prozedur MsDOS Format: MsDOS(registervariable)

Diese Prozedur führt einen DOS-Funktionsaufruf aus (= Interrupt 21h). Siehe Beispiel

in 27.8

e) Prozedur GetIntVec Format: GetIntVec(interruptNr, zeigervariable)

Diese Prozedur ermittelt die Adresse, auf die ein Interrupt-Vektor zeigt.

f) Prozedur SetIntVec Format: SetIntVec(interruptNr, zeiger)

Diese Prozedur setzt einen Interrupt-Vektor auf eine bestimmte Adresse.

g) Funktion DosVersion

Diese Funktion liefert die DOS-Version im Datentyp Word. Die beiden Bytes müssen

getrennt interpretiert werden. Im niederwertigen Byte (Low-Byte) steht Hauptnummer,

27-16 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

im höherwertigen Byte (High-Byte) die Unternummer. Mit den Standardfunktion

Lo(..) und Hi(..) können die beiden Bytes getrennt angesprochen werden.

Beispiel:

 ...

 WriteLn('DOS-Version: ', Lo(DosVersion), '.', Hi(DosVersion));

 ...

27.7 Die Interrupts im Überblick

Dieses Kapitel enthält einen Überblick über die Interrupts. Eine vollständige Behandlung ist an dieser

Stelle nicht möglich. Es werden nur die Interrupts bzw. die Funktionen mit ihren Registerbelegungen

genauer erklärt, die bei den Praktikumsaufgaben bzw. Demo-Programmen verwendet werden.

Literaturhinweise:

[1] Microsoft MS-DOS Programmer's Reference. Version 3.3, Microsoft Corporation, 1988. Nur DOS-

Interrupts.

[2] Microsoft Mouse, Programmmer's Reference Guide, Microsoft Corporation, 1986. Nur Maus-Inter-

rupt 33h.

[3] W. Höfs "MS-DOS", Sybex-Ratgeber, Sybex-Verlag, 1986. Nur DOS-Interrupts

[4] P. Norton "Neues Programmierhandbuch für IBM PC & PS/2", Microsoft Press Vieweg-Verlag,

1989. Kurzbeschreibung der meisten Interrupts

[5] M. Tischer "PC Intern 3.0", Data Becker Verlag, 1993. Ausführliche Beschreibung aller Interrupts.

27.7.1 Die Interrupt-Vektoren

Das Betriebssystem (von Microsoft) und das BIOS (Basic Input Output System des Rechnerherstellers)

stellen ihre Dienste in einer Vielzahl von Interrupt-Routinen zur Verfügung. Diese Routinen sind wie Pas-

cal-Prozeduren auzufassen. Am Ende steht der Befehl IRET (interrupt return, Maschinencode CFh = dez

207), von dort aus wird an das aktuelle Programm zurückgekehrt und mit der nächsten Anweisung fortge-

setzt. An die Interrupt-Routinen können über Register Werte übergeben werden, ähnlich den Parametern

in Pascal. In ähnlicher Weise können Interrupts auch Werte über Register zurückliefern. Der Zugriff auf

die Interrupt-Routinen erfolgt nicht direkt durch die Angabe der Segment:Offset-Adresse, sondern über

eine Tabelle, in der die Segment:Offset-Adressen (Interrupt-Vektoren) in der Reihenfolge der Interrupt-

Nummern gespeichert sind. Die Tabelle befindet sich am Anfang des RAM-Speichers und wird beim

Booten angelegt. Da RAM-Speicherstellen überschrieben werden können, ist es auch möglich, die

Segment:Offset-Adressen so zu ändern ("Interrupt-Vektor verbiegen"), daß sie auf andere oder eigene

Routinen weisen. Die alten Werte sollte man aber später wieder reaktivieren.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-17

Das folgende Schema zeigt den Ablauf bei einem Interrupt-Aufruf:

 Aktuelles Interrupt- Interrupt-
 Programm vektoren-Tabelle Routinen
┌────────────┐ 00 ┌──────────┐ ~~~~~~~~~~
│ ... │ 01 │ │ │ ... │
│ ... │ 02 │ │ │ ... │
│ ... │ .. │ │ Seg:Off ┌──>─── start │
│ ... │ .. │ │ │ │ ... │
│ ... │ .. │ │ │ │ ... │
│ ... │ ┌─>─ nn ── Seg:Off ────>───────────┘ │ ... │
│ ... │ │ .. │ │ │ ... │
│ int nn ────>───┘ .. │ │ │ ... │
│ ... ────<───┐ .. │ │ ┌──<─── IRET │
│ ... │ │ ff └──────────┘ │ │ ... │
│ ... │ │ │ │ ... │
│ ... │ └──────────────────────<───────────┘ │ ... │
└────────────┘ ~~~~~~~~~~

Da in der üblichen Intel-Notation Segment und Offset durch je 2 Byte dargestellt werden, sind für einen

Vektor 4 Byte in der Tabelle notwendig. Die Interrupt-Nummer wird durch eine 1-Byte-Zahl ausgedrückt.

Somit sind 256 Interrupt-Nummern möglich (wenn auch nur der kleinere Teil vergeben ist). Die Tabelle

hat somit einen Umfang von 256 * 4 Byte = 1024 Byte = 1 KByte. Sie befindet sich ganz am Anfang des

RAM-Speichers, also Segment-Adresse 0 und Offset-Adressen von 0 bis 1023, in hex: 0000h bis 03ffh).

Bei jedem Eintrag wird zuerst die Offset- und dann die Segment-Adresse aufgeführt. Es ist weiter zu

beachten, daß bei einem (16-bit-) Wort das niederwertige Byte (Low-Byte) zuerst gespeichert wird (Intel-

Notation).

Interruptvektoren-Tabelle im Segment 0000h:

 Offset
 ╔════════╗
 0000h ║ ║ ─────────────────┐
 0001h ╟────────╢ ├── Interrupt 00h
 0002h ║ ║ │
 0003h ╠════════╣ ─────────────────┘
 0004h ║ ║ ─────────────────┐
 0005h ╟────────╢ ├── Interrupt 01h
 0006h ║ ║ │
 0007h ╠════════╣ ─────────────────┘
         ~~~~~~~~~~ 
         ~~~~~~~~~~ 
 ╟────────╢
 ║ ║
 ╠════════╣
 ║ ║ Offset─Low ────┐
 ╟────────╢ Offset─High ├── Interrupt nnh
 ║ ║ Segment─Low │
 ╠════════╣ Segment─High ────┘
 ║ ║
 ╟────────╢
 ║ ║
 ╠════════╣
         ~~~~~~~~~~ 
         ~~~~~~~~~~ 
 ║ ║
 ╠════════╣
 ║ ║ ─────────────────┐
 ╟────────╢ ├── Interrupt ffh
 ║ ║ │ ffh = dez 255
 03ffh ╚════════╝ ─────────────────┘
(= dez 1023)

Demo-Programm: Auslesen der Interrupt-Vektoren

program Pas27071; { Kap: 27.7: Interrupt-Vektoren }
 { K. Haller }

 { Hinweis: Über die hier gezeigten Methoden hinaus gibt es

 in Turbo-Pascal noch die DOS-Prozedur "GetIntVec(int_nr,

27-18 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 pointer_variable)". Siehe auch DOS-Prozedur "SetIntVec(int_nr,

 pointer)"
 }

uses
 CRT, DOS;

type
 String5 = string[5];

var
 Ch: Char;

 i: Integer;

 Dez: LongInt; { Nur für Einzug }
 Segment,
 Offset: Word;

 Physik_Adresse,
 Segment_LongInt: LongInt;
 Zeiger: Pointer; { Pointer = vordefinierter Datentyp

 für untypisierten Zeiger }

function Dez_HexStr(x: Word): String5;
var
 TempStr: String5;

begin
 TempStr := '';
 while x <> 0 do
 begin
 TempStr := Copy('0123456789ABCDEF',
 (x mod 16) + 1, 1) + TempStr;
 x := x div 16;
 end;
 while Length(TempStr) < 4 do
 TempStr := '0' + TempStr;
 Dez_HexStr := '$' + TempStr;
end;

begin
 ClrScr;

 New(Zeiger);
 GetIntVec(5, Zeiger); { Interrupt 5: Hardcopy }

 WriteLn(' Mit "Ctrl-F4" Evaluate die Pointer-Variable "Zeiger" ');

 WriteLn(' für Interrupt-Vektor für BIOS-Interrupt 5 = Hardcopy ');
 Write (' = $F000:$FF54 anzeigen (j/n): ');

repeat
 Ch := UpCase(ReadKey);
 until (Ch = 'J') or (Ch = 'N');
 WriteLn(Ch);
 WriteLn;

 if Ch = 'J' then Halt; { >>>>>>>>>>>>>>>> }

 repeat
 Write('Eingabe Interrupt-Vektor (dez oder $hex, Ende mit -1): ');
 ReadLn(i);
 if (i >= 0) and (i <= 255) then
 begin
 Offset := MemW[0:i*4];
 Segment := MemW[0:i*4 + 2];

 Segment_LongInt := Segment; { sonst Fehler bei "16 *" }
 Physik_Adresse := 16 * Segment_LongInt + Offset;
 WriteLn(' Interrupt dez ', i:3, ' hex $',

 Copy(Dez_HexStr(i), 4, 2), ' ',

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-19

 Dez_HexStr(Segment), ':',

 Dez_HexStr(Offset),
 ' Physikalisch: ', Physik_Adresse);
 WriteLn;

 WriteLn(' Jetzt über Mem[..] statt MemW[..]: ');
 Offset := Mem[0:i*4 + 0] + 256 * Mem[0:i*4 + 1];
 Segment := Mem[0:i*4 + 2] + 256 * Mem[0:i*4 + 3];

 Segment_LongInt := Segment; { Sonst Fehler bei "16 *" }
 Physik_Adresse := 16 * Segment_LongInt + Offset;
 WriteLn(' Interrupt dez ', i:3, ' hex $',

 Copy(Dez_HexStr(i), 4, 2), ' ',
 Dez_HexStr(Segment), ':',
 Dez_HexStr(Offset),

 ' Physikalisch: ', Physik_Adresse);
 WriteLn;
 end;
 until i < 0;
end.

Demo-Programm: "Verbiegen" eines Interrupts

program Pas27072; { Interrupt-Vektor verbiegen }
 { Turbo-Pascal, K. Haller }

 { Hinweise:
 • Mit "MemW[segment:offset]" kann man Datentyp Word im richtigen
 Format abspeichern und auch auslesen, d.h. es wird berück-

 sichtigt, daß das Low-Byte zuerst gespeichert wird. Auf diese
 Möglichkeit wurde hier bewußt verzichtet; die Vektorkomponenten
 werden im Programm mit "Mem[segment:offset]" byteweise ange-

 sprochen und erst dann zusammengesetzt mit:

 Word = LowByte + 256 * HighByte

 • Auf die elegantere, aber nicht so durchsichtige Lösung der

 gestellten Aufgaben mittels der Turbo-Pascal-DOS-Prozeduren
 "GetIntVec(int_nr, pointervariable)" und "SetIntVec(int_nr,
 pointer)" wurde hier verzichtet.

 }

uses
 CRT, DOS;

const
 i = 4; { Interrupt 04h = Overflow. Vektor wird zeit-
 weise auf 05h verbogen }

 j = 5; { Interrupt 05h = Hardcopy }

var
 Segment, Segment_Alt,

 Offset, Offset_Alt: Word;
 Byte0, Byte0_Alt,
 Byte1, Byte1_Alt,

 Byte2, Byte2_Alt,
 Byte3, Byte3_Alt: Byte;
 Reg: Registers; { Recordtyp aus Unit DOS }

begin
 ClrScr;

 WriteLn; WriteLn;

 WriteLn(' Hardcopy-Interruptvektor ermitteln und "verbiegen" ');
 WriteLn; WriteLn; WriteLn; WriteLn;

27-20 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 Byte0_Alt := Mem[0:i*4 + 0]; { Offset-Low }

 Byte1_Alt := Mem[0:i*4 + 1]; { Offset-High }
 Byte2_Alt := Mem[0:i*4 + 2]; { Segment-Low }
 Byte3_Alt := Mem[0:i*4 + 3]; { Segment-High }

 Offset_Alt := Byte0_Alt + 256 * Byte1_Alt;
 Segment_Alt := Byte2_Alt + 256 * Byte3_Alt;
 WriteLn(' Interrupt 0', i, 'h = Overflow. Segment:Offset = ',

 Segment_Alt:5, ':', Offset_Alt:5, ' (in dez)');
 WriteLn;
 WriteLn(' Jetzt wird Interrupt 04h auf 05h = Hardcopy "verbogen"');

 Mem[0:i*4 + 0] := Mem[0:j*4 + 0]; { Offset-Low }
 Mem[0:i*4 + 1] := Mem[0:j*4 + 1]; { Offset-High }
 Mem[0:i*4 + 2] := Mem[0:j*4 + 2]; { Segment-Low }

 Mem[0:i*4 + 3] := Mem[0:j*4 + 3]; { Segment-High }

 Byte0 := Mem[0:j*4 + 0]; { Offset-Low }
 Byte1 := Mem[0:j*4 + 1]; { Offset-High }

 Byte2 := Mem[0:j*4 + 2]; { Segment-Low }
 Byte3 := Mem[0:j*4 + 3]; { Segment-High }

 Offset := Byte0 + 256 * Byte1;

 Segment := Byte2 + 256 * Byte3;

 WriteLn(' Interrupt 0', i, 'h = Hardcopy. Segment:Offset = ',
 Segment:5, ':', Offset:5, ' (in dez)');

 WriteLn;

 WriteLn(' Jetzt wird über Software-Aufruf des Interrupts 04h ');
 Write(' Hardcopy ausgelöst. Wenn Drucker bereit, Taste Return ');

 repeat
 until ReadKey = #13;

 Intr($04, Reg);

 WriteLn; WriteLn;
 WriteLn(' Jetzt wird der alte Interruptvektor reaktiviert: ');
 Mem[0:i*4 + 0] := Byte0_Alt; { Offset-Low }

 Mem[0:i*4 + 1] := Byte1_Alt; { Offset-High }
 Mem[0:i*4 + 2] := Byte2_Alt; { Segment-Low }
 Mem[0:i*4 + 3] := Byte3_Alt; { Segment-High }

 Byte0 := Mem[0:i*4 + 0]; { Offset-Low }
 Byte1 := Mem[0:i*4 + 1]; { Offset-High }
 Byte2 := Mem[0:i*4 + 2]; { Segment-Low }

 Byte3 := Mem[0:i*4 + 3]; { Segment-High }

 Offset := Byte0 + 256 * Byte1;
 Segment := Byte2 + 256 * Byte3;

 WriteLn(' Interrupt 0', i, 'h = Overflow. Segment:Offset = ',
 Segment:5, ':', Offset:5, ' (in dez)');

 repeat
 until ReadKey <> '';
end.

27.7.2 Die Interrupts

┌───────┬──────┬───┐
│ Inter-│ │ │
│ rupt │ Typ │ Bemerkungen │
╞═══════╪══════╪═══╡
│ 00h │ CPU │ Division durch null │
│ 01h │ CPU │ Einzelschritt │
│ 02h │ CPU │ NMI. Nicht maskierbarer Interrupt │
│ 03h │ CPU │ Breakpoint │

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-21

│ 04h │ CPU │ Überlauf │
│ 05h │ BIOS │ Hardcopy │
│ │ │ │
│ 08h │ CPU │ Zeitgeber │
│ 09h │ CPU │ Tastatur │
│ │ │ │
│ 10h │ BIOS │ Bildschirm, 18 Funktionen │
│ 11h │ BIOS │ Konfiguration │
│ 12h │ BIOS │ Feststellen der Speichergröße │
│ │ │ │
│ 13h │ BIOS │ Disketten/Platten (formatieren, schreiben, lesen, usw.) │
│ │ │ Für Disketten 9 Funktionen, für Festplatten 15 Funktionen │
│ │ │ │
│ 14h │ BIOS │ Serielle Schnittstelle, 4 Funktionen │
│ 15h │ BIOS │ Diverses für AT (alter Kassetteninterrupt), 8 Funktionen │
│ 16h │ BIOS │ Tastatur, 3 Funktionen │
│ 17h │ BIOS │ Parallele Drucker-Schnittstelle (Centronics), 3 Funktionen │
│ 18h │ BIOS │ ROM-Basic (IBM) │
│ 19h │ BIOS │ Booten des Rechners │
│ 1Ah │ BIOS │ Datum und Zeit, 8 Funktionen │
│ 1Bh │ BIOS │ Tastatur: Break-Taste betätigt │
│ 1Ch │ BIOS │ Periodischer Interrupt │
│ 1Dh │ BIOS │ Video-Tabelle │
│ 1Eh │ BIOS │ Laufwerkstabelle │
│ 1Fh │ BIOS │ Zeichentabelle, nur Pointer │
│ 20h │ DOS │ Programm beenden (besser über Int 21h, Funktion 4Ch) │
│ │ │ │
│ 21h │ DOS │ Allgemeine DOS-Funktionen │
│ │ │ Über 100 Funktionen und Unterfunktionen │
│ │ │ │
│ 22h │ DOS │ Programm beenden. Siehe Int 20h. │
│ 23h │ DOS │ Break-Taste betätigt │
│ 24h │ DOS │ Kritischer Fehler │
│ 25h │ DOS │ Absolutes Lesen (Platte, Diskette) │
│ 26h │ DOS │ Absolutes Schreiben (Platte/Diskette) │
│ 27h │ DOS │ Programm beenden, aber im Speicher belassen │
│ │ │ │
│ 33h │ Maus │ Maus oder Lichtgriffel, über 30 Funktionen │
│ │ │ │
│ 67h │ EMS │ Expanded Memory System nach LIM, 11 Funktionen │
└───────┴──────┴───┘

Nachfolgend werden die Interrupts kurz erläutert. Nur bei einigen ausgewählten An-

wendungen werden genauere Informationen gegeben.

Zum Interrupt 00h: Division durch null

Der zugehörige Vektor wird von DOS auf eine Routine gelegt, die eine Fehlermeldung ausgibt. Nach dem

abschließenden Interrupt-Return-Befehl IRET wird das Programm mit dem Befehl fortgesetzt, der auf

den fehlerhaften Divisionsbefehl folgt.

Zum Interrupt 01h: Einzelschritt

Wird von der CPU dann aufgerufen, wenn das Trap-Bit des Flag-Registers gesetzt ist. Dann wird das

Programm schrittweise ausgeführt. Das BIOS setzt den Interrupt-Vektor aber auf den Befehl IRET, so

daß beim Setzen des Trap-Bits außer einer Verlangsamung nichts passiert. Sinnvoll nur bei Testprogram-

men wie DEBUG um Programmablauf und Registerbelegung verfolgen zu können. DEBUG "verbiegt"

den Interrupt-Vektor auf eine eigene Routine, in der das Trap-Bit auch wieder gelöscht werden kann.

Zum Interrupt 02h: NMI, nicht maskierbarer Interrupt

27-22 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Dieser Interrupts kann im Gegensatz zu allen anderen nicht mit dem Befehl CLI (clear interrupts,

Löschen des Interrupt-Flags IF im Flag-Register) gesperrt werden. Beim Auftreten von RAM-Fehlern

wird auf diesen Interrupt verzweigt, der das System anhält.

Zum Hardware-Interrupt 03h: Breakpoint

Innerhalb eines Testprogramms (z.B. DEBUG) Unterbrechungspunkte setzen um Registerinhalte anzu-

zeigen.

Zum Interrupt 04h: Überlauffehler

Der Interrupt wird unter bestimmten Umständen aufgerufen, wenn das Ergebnis einer Operation nicht

mehr in die dafür vorgesehene Registerbreite paßt, was z.B. bei einer Multiplikation der Fall sein kann.

DOS setzt aber den Interruptvektor standardmäßig auf den Befehl IRET, so daß der Interrupt nicht zur

Wirkung kommt.

Zum Interrupt 05h: Hardcopy

Nach Drücken der Taste PrtSc (deutsch Druck) wird eine Hardcopy des Text-Bildschirms auf den

Drucker ausgegeben. Bei Graphik-Bildschirmen muß vorher das Programm GRAPHICS.COM geladen

werden. Die Grafik-Ausgabe ist aber nur bei IBM-Grafik-Druckern oder dazu kompatiblen Druckern

fehlerfrei.

Zum Interrupt 08h: Zeitgeber

Der Schwingquarz des Timer-Bausteins arbeitet mit einer Frequenz von 1.193.180 Hz. Nach 216 = 65536

Schwingungen erzeugt der Timer-Baustein einen Aufruf des Interrupts 08h, d.h. in einer Sekunde

18,20648193 mal (ca. 18,2mal). Diese Frequenz ist unabhängig von der Taktfrequenz des Mikro-

prozessors (8 MHz, 16 MHz, 25 MHz, 33 MHz, 40 MHz usw.).

Zum Interrupt 09h: Tastatur

Ein eigener Tastatur-Prozessor überwacht die Tastatur. Der Interrupt wird ausgelöst, wenn eine Taste

gedrückt oder losgelassen wird. Die weitere Verarbeitung erfolgt über nachgeschaltete BIOS-Tastatur-

Routinen.

Zum Interrupt 10h: Bildschirm

 ┌─ Funktionsnummer
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen │
╞═════╪═════╪══╡
│ 00h │ │ Video-Modus setzen │
│ 01h │ │ Gestalt des Cursors definieren │
│ 02h │ │ Cursor positionieren │
│ 03h │ │ Cursorposition ermitteln │
│ 05h │ │ Bildschirmseite auswählen │
│ 06h │ │ Textzeilen noch oben scrollen │
│ 07h │ │ Textzeilen nach unten scrollen │
│ 08h │ │ Zeichen/Attribut an Cursorstelle lesen │
│ 09h │ │ Zeichen/Attribut an Cursorstelle schreiben, ohne Cursorversatz │
│ 0Ah │ │ Zeichen an Cursorstelle schreiben, altes Attribut, ohne Cursorversatz │
│ 0Bh │ 00h │ Auswahl Farbe für Rahmen und Hintergrund │
│ 0Bh │ 01h │ Auswahl Farbpalette für Graphik 320 * 200 │
│ 0Ch │ │ Graphikpunkt schreiben │

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-23

│ 0Dh │ │ Graphikpunkt lesen │
│ 0Eh │ │ Zeichen an Cursorstelle schreiben, altes Attribut, mit Cursorversatz │
│ 0Fh │ │ Video-Modus auslesen │
│ 10h │ xxh │ Nur für EGA/VGA: Unterfunktionen xx = 00, 01, 02, 03, 07, 10, 12 │
│ │ │ 13, 15, 17, 18, 19, 1A, 1B │
│ 11h │ xxh │ Nur für EGA/VGA: Unterfunktionen xx = 00, 01, 02, 03, 10, 11, 12, 14, 30 │
│ 12h │ xxh │ Nur für EGA/VGA: Unterfunktionen xx = 10, 20, 30, 31, 32, 33, 34, 36 │
│ 13h │ │ Ausgabe Zeichenkette an bestimmter Cursorposition │
│ 1Ah │ │ Nur VGA: Code für Emulation einer anderen Bildschirmkarte ermitteln │
└─────┴─────┴──┘

Zur Funktion 02h des Bildschirm-Interrupts 10h, Cursor positionieren

Eingabe: AH = 02h

 BH = Nummer der Bildschirmseite (0, 1, ..)

 DH = Bildschirmzeile (0..24, Text)

 DL = Bildschirmspalte (0..79, Text)

Ausgabe: keine

Zur Funktion 03h des Bildschirm-Interrupts 10h, Cursorposition ermitteln

Eingabe: AH = 03h

 BH = Nummer der Bildschirmseite (0, 1, ..)

Ausgabe: DH = Bildschirmzeile (0..24, Text)

 DL = Bildschirmspalte (0..79, Text)

 CH = Anfangszeile des Cursors

 CL = Endzeile des Cursors

Zur Funktion 09h des Bildschirm-Interrupts 10h, Zeichen und Attribut schreiben

Eingabe: AH = 09h

 AL = (ASCII-) Code des Zeichens

 BL = Attribut des Zeichens

 CX = Anzahl der Wiederholungen der Zeichenausgabe

 BH = Nummer der Bildschirmseite (0, 1, ..)

Ausgabe: keine

Bei dieser Funktion werden Steuerzeichen nicht interpretiert. Der Cursor wird mit Ausnahme der Wieder-

holungen nicht versetzt; er muß deshalb mit der Funktion 02h versetzt werden.

Zum Interrupt 11h: Konfiguration

Der Interrupt 11h hat keinen weiteren Eingabeparameter. Das Ergebnis wird im Register AX zurückgelie-

fert, wobei die Bits einzeln interpretiert werden müssen und zwar unterschiedlich bei PC/XT- und bei

AT-Rechnern. Es interessiert nur der AT-Rechner:

Für AT-Rechner gilt:

<──────── Bit─Nr ────────────── │ Bit 0..7: AL, Bit 8..15: AH
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 │
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 │ Bedeutung (für AT und PS─2)
════════════════════════════════╪═══════════════════════════════
x x │ Anzahl der parallelen Drucker
. . x │ Nicht verwendet
. . . x │ Nicht verwendet
. . . . x x x │ Anzahl serielle Schnittstellen
. x │ Nicht verwendet
. x x │ Anzahl Diskettenlaufwerke ─ 1
 │ 0 0: 1 Diskettenlaufwerk
 │ 0 1: 2 Diskettenlaufwerke

27-24 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 │ 1 0: 3 Diskettenlaufwerke
 │ 1 1: 4 Diskettenlaufwerke
. x x │ Bildschirmmodus beim Booten
 │ 0 0: Nicht verwendet
 │ 1 0: Color, 80 * 25
 │ 0 1: Color, 40 * 25
 │ 1 1: Monochrom, 80 * 25
. x . . . │ Nicht verwendet
. x . . │ Zeigegerät (Maus) installiert
. x . │ Coprozessor installiert
. x │ Diskettenlaufwerk(e) vorhanden
════════════════════════════════╪═══════════════════════════════
5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 │
1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 │

Anmerkung: Der Bildschirmmodus kann nach dem Booten verändert worden sein. Der aktuelle Modus

kann nicht mit dem Interrupt 11h abgefragt werden, sondern muß mit der Funktion 0Fh des Interupts 10h

ausgelesen werden. Das Ergebnis steht dann im Register AL.

Zum Interrupt 12h: Speicher unter 1 MByte ermitteln

Nach Aufruf dieses Interrupts steht im Register AX die Speichergröße in KByte. Die Speichergröße über

1 MByte kann mit der Funktion 88h des Interrupts 15h (Diverses für AT) abgefragt werden.

Zum Interrupt 13h: Diskette/Platte

Die Laufwerke werden intern mit folgenden Nummern angesprochen:

00h Diskettenlaufwerk A: 80h Plattenlaufwerk C:

01h Diskettenlaufwerk B: 81h Plattenlaufwerk D:

 82h Plattenlaufwerk E: usw.
 ┌─ Funktionsnummer
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen │
╞═════╪═════╪══╡
│ 00h │ │ Reset │
│ 01h │ │ Status lesen │
│ 02h │ │ Lesen │
│ 03h │ │ Schreiben │
│ 04h │ │ Verifizieren │
│ 05h │ │ Formatieren │
│ 08h │ │ Nur Platte: Format ermitteln │
│ 09h │ │ Nur Platte: Anpassung fremder Laufwerke │
│ 0Ah │ │ Nur Platte: Erweitertes Lesen │
│ 0Bh │ │ Nur Platte: Erweitertes Schreiben │
│ 0Dh │ │ Nur Platte: Reset │
│ 10h │ │ Nur Platte: Laufwerk bereit │
│ 11h │ │ Nur Platte: Rekalibrierung des Laufwerks │
│ 14h │ │ Nur Platte: ControllerÄDiagnose │
│ 15h │ │ Feststellen des Laufwerktyps. Nur AT │
│ 16h │ │ Nur Diskette: Fesstellen des Diskettenwechsels. Nur AT │
│ 17h │ │ Nur Diskette: Diskettenformat festlegen. Nur AT │
└─────┴─────┴──┘

Zum Interrupt 14h: Serielle Schnittstelle

 ┌─ Funktionsnummer
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen │
╞═════╪═════╪══╡
│ 00h │ │ Initialisierung │
│ 01h │ │ Ein Zeichen senden │
│ 02h │ │ Ein Zeichen empfangen │

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-25

│ 03h │ │ Status ermitteln │
└─────┴─────┴──┘

Zum BIOS-Interrupt 15h: Diverses für AT

Dieser Interrupt diente früher als Kassetteninterrupt und wurde mit der Einführung der AT-Rechner

(Mikroprozessor Intel 80286) geändert.

 ┌─ Funktionsnummer
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen │
╞═════╪═════╪══╡
│ 83h │ │ Flag nach Zeitintervall setzen │
│ 84h │ 00h │ Status-Abfrage der Joystick-Feuerknöpfe │
│ 84h │ 01h │ Position der Joysticks abfragen │
│ 85h │ │ Taste SysReq (S-Abf) betätigt │
│ 86h │ │ Warten bis bestimmte Zeit verstrichen │
│ 87h │ │ Speicherbereich über 1 MByte verschieben │
│ 88h │ │ Speichergröße über 1 MByte ermitteln │
│ 89h │ │ Umschaltung in Protected Mode │
└─────┴─────┴──┘

Hinweis zur Funktion 88h: Die Speichergröße unter 1 MByte kann mit dem Interrupt 12h abgefragt

werden.

Zur Funktion 88h des AT-Interrupts 15h:

Eingabe: AH = 88h

Ausgabe: AX = Größe des Speichers (über 1 MByte) in KByte

Zum Interrupt 16h: Tastatur

 ┌─ Funktionsnummer
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen │
╞═════╪═════╪══╡
│ 00h │ │ Ein Zeichen aus Tastaturpuffer lesen │
│ 01h │ │ Abfrage, ob Zeichen im Tastaturpuffer │
│ 02h │ │ Status der Tastatur ermitteln │
└─────┴─────┴──┘

Zur Funktion 02h des Tastatur-Interrupts 16h:

Eingabe: AH = 02h

Ausgabe: AL = Statusbyte der Tastatur nach folgender Tabelle:

<─── Bit─Nr ─── │ Bit 0..7, Byte 0040:0017
7 6 5 4 3 2 1 0 │ Bedeutung
════════════════╪════════════════════════════════
x │ 1 = Insert an
. x │ 1 = Caps_Lock an
. . x │ 1 = Num_Lock an
. . . x . . . │ 1 = Scroll_Lock an
. . . . x . . . │ 1 = Alt─Taste bet„tigt
. x . . │ 1 = Ctrl─Taste bet„tigt
. x . │ 1 = linke Shift─Taste bet„tigt
. x │ 1 = rechte Shift─Taste bet„tigt
────────────────┴────────────────────────────────

Hinweise:

• Das von der Funktion 02h zurückgelieferte Statusbyte wird aus dem ersten Tastatur-Statusbyte im

RAM gelesen, das sich an folgender Segment:Offset-Adresse befindet: 0400:0017 (hex). Da sich

27-26 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

diese Adresse im RAM befindet, kann der Inhalt auch geändert werden; in Turbo-Pascal z.B. mit

"Mem[segmet:offset] := ...". Auf diese Weise ist es z.B. möglich, die Num-Lock-Taste per Software

zu aktivieren, in dem man das Bit 5 auf 1 setzt. Es kann nicht immer davon ausgegangen werden, daß

das Tastaturstatusbyte von allen Anwenderprogrammen im ursprünglichen Sinn interpretiert wird.

• In der nächsten RAM-Speicherstelle, also 0040:0018 ist ein weiteres Tastatur-Statusbyte abgelegt, das

wie folgt zu interpretieren ist:

<─── Bit─Nr ─── │ Bit 0..7: Byte 0040:0018
7 6 5 4 3 2 1 0 │ Bedeutung
════════════════╪══════════════════════════════════════
x │ 1 = Insert gedr•ckt
. x │ 1 = Caps_Lock gedr•ckt
. . x │ 1 = Num_Lock gedr•ckt
. . . x . . . │ 1 = Scroll_Lock gedr•ckt
. . . . x . . . │ 1 = Pause oder Ctrl─Num_Lock gedr•ckt
. x . . │ 1 = Sys_Req oder S_Abf gedr•ckt
. x . │ 1 = linke Alt─Taste bet„tigt
. x │ 1 = linke Ctrl─Taste bet„tigt
────────────────┴──────────────────────────────────────

Siehe auch Tastatur-Demoprogramm.

Zum Interrupt 17h: Drucker (parallel, Centronics)

 ┌─ Funktionsnummer

 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐

│ │ │ Bemerkungen │

╞═════╪═════╪══┴

│ 00h │ │ Ein Zeichen auf Drucker ausgeben │

│ 01h │ │ Drucker initialisieren │

│ 02h │ │ Druckerstatus ermitteln │

└─────┴─────┴──┘

Zur Funktion 00h des Drucker-Interrupts 17h, Zeichen auf Drucker ausgeben:

Eingabe: AH = 00h

 AL = (ASCII-) Code des Zeichens

 DX = Nummer des Druckers, wobei 0000h = LPT1:, 0001h = LPT2:

Ausgabe: AH = Statusbyte des Druckers nach folgender Tabelle:

<─── Bit─Nr ─── │ Bit 0..7: Drucker─Status
7 6 5 4 3 2 1 0 │ Bedeutung
════════════════╪════════════════════════════
x │ 0 = Drucker ist besch„ftigt
. x │ 1 = Empfang best„tigt
. . x │ 1 = Papier aus
. . . x . . . │ 1 = Drucker auf On Line
. . . . x . . . │ 1 = šbertragungsfehler
. x . . │ nicht verwendet
. x . │ nicht verwendet
. x │ 1 = Time─Out─Fehler
────────────────┴────────────────────────────

Zur Funktion 01h des Drucker-Interrupts 17h, Drucker intialisieren:

Eingabe: AH = 01h

 DX = Nummer des Druckers, wobei 0000h = LPT1:, 0001h = LPT2:

Ausgabe: AH = Statusbyte des Druckers nach vorstehender Tabelle:

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-27

Zur Funktion 02h des Drucker-Interrupts 17h, Druckerstatus abfragen:

Eingabe: AH = 02h

 DX = Nummer des Druckers, wobei 0000h = LPT1:, 0001h = LPT2:

Ausgabe: AH = Statusbyte des Druckers nach vorstehender Tabelle:

Zum Interrupt 18h: ROM-Basic

Falls ROM-Basic vorhanden ist, z.B. bei IBM-PCs, wird es mit diesem Interrupt gestartet. Nach Beenden

des Interrupts ist aber keine Rückkehr zum aufrufenden Programm möglich. Warm- oder Kaltstart erfor-

derlich. Der Interrupt 18h hat keinen Parameter.

Zum Interrupt 19h: Booten des Rechners

Nach Aufruf dieses Interrupts wird der Rechner gebootet. Er wird auch von der Tastaturroutine bei der

Tastenkombination Ctrl+Alt+Del (Affengriff Strg+Alt+Entf) aufgerufen. Der Interrupt 19h hat keinen

Parameter.

Zum BIOS-Interrupt 1Ah: Datum und Zeit. Nur AT

Der Zeitzähler wird in der Sekunde 18,2 mal inkrementiert, genauer: 18,2064819336 mal.

 ┌─ Funktionsnummer
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen │
╞═════╪═════╪══┴
│ 00h │ │ Zeitzähler auslesen │
│ 01h │ │ Zeitzähler setzen │
│ 02h │ │ Uhrzeit auslesen │
│ 03h │ │ Uhrzeit setzen │
│ 04h │ │ Datum auslesen │
│ 05h │ │ Datum setzen │
│ 06h │ │ Alarmzeit setzen │
│ 07h │ │ Alarmzeit löschen │
└─────┴─────┴──┘

Zum Interrupt 1Bh: Break-Taste

Mit diesem Interrupt wird beim Betätigen der Tastenkombination Ctrl+Break wird zunächst nur ein Flag

gesetzt. Erst wenn über eine DOS-Funktion Zeichen ein- oder ausgegeben werden, wird das Programm

abgebrochen. Der Interrupt 1Bh hat keinen Parameter.

Zum Interrupt 1Ch: Periodischer Interrupt

Der Timer-Baustein ruft den (Hardware-) Interrupt 08h in der Sekunde 18,2mal auf. Am Ende des Inter-

rupts 08h wird der Interrupt 1Ch aufgerufen, dessen Vektor normalerweise auf einen Interrupt-Return-

Befehl IRET zeigt, so daß keine Aktion erfolgt. Durch "Verbiegen" des Vektors auf eine eigene Routine

könnte man aber z.B. auf dem Bildschirm immer die aktuelle Uhrzeit anzeigen. Der Interrupt 1Ch hat

keinen Parameter.

Zum BIOS-Interrupt 1Dh: Zeiger auf Videotabelle

Der Interruptvektor zeigt nicht auf eine ausführbare Routine, sondern auf eine Tabelle, die Informationen

über die eingesetzte Video-Karte enthält.

27-28 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Zum BIOS-Interrupt 1Eh: Zeiger auf Laufwerkstabelle

Der Interruptvektor zeigt ebenfalls nicht auf eine ausführbare Routine, sondern auf eine Tabelle, die

Informationen über den eingesetzten Disketten-Controller enthält.

Zum BIOS-Interrupt 1Fh: Zeiger auf Zeichentabelle

Der Interruptvektor zeigt ebenfalls nicht auf eine ausführbare Routine, sondern auf eine Tabelle, die

Informationen über die Bitmuster (Bitmap) der Zeichen mit den Code-Nummern > 127 enthält. Die

Bitmaps werden vom Befehl GRAFTABL angelegt. Die Bitmaps der Zeichen <= 127 sind dagegen fest

im ROM abgelegt.

Zum DOS-Interrupt 20h: Programm beenden

Statt dieses Interrupts sollte man besser die Funktion 4Ch des DOS-Interrupts 21h benutzen, weil diese

die Rückgabe eines Exit-Codes an das aufrufende Programm gestattet.

Zum DOS-Interrupt 21h: Allgemeine DOS-Funktionen

DOS-Version 3.xx

 ┌─ Funktionsnummer DOS-Interrupt 21h
 │ ┌─ Unterfunktion
┌──┴──┬──┴──┬──┐
│ │ │ Bemerkungen (P/D = Platte/Diskette) │
╞═════╪═════╪══╡
│ 00h │ │ Programm beenden. Besser Funktion 4Ch │
│ 01h │ │ Zeicheneingabe mit Echo │
│ 02h │ │ Ausgabe eines Zeichens │
│ 03h │ │ Empfang eines Zeichens von serieller Schnittstelle │
│ 04h │ │ Ausgabe eines Zeichens auf serielle Schnittstelle │
│ 05h │ │ Ausgabe eines Zeichens auf Drucker │
│ 06h │ │ Direkte Zeichenein-/-ausgabe. Ohne Prüfung Ctrl-C │
│ 07h │ │ Direkte Zeicheneingabe ohne Echo. Ohne Prüfung Ctrl-C │
│ 08h │ │ Zeicheneingabe ohne Echo │
│ 09h │ │ Ausgabe einer Zeichenkette │
│ 0Ah │ │ Eingabe einer Zeichenkette │
│ 0Bh │ │ Eingabestatus lesen │
│ 0Ch │ │ Eingabepuff. lösch. u. Eingabefunktion aufrufen (01,06,07,08) │
│ 0Dh │ │ Inhalt Blockpuffer auf P/D schreiben │
│ 0Eh │ │ Aktuelles Laufwerk definieren │
│ 0Fh │ │ Datei öffnen │
│ 10h │ │ Datei schließen │
│ 11h │ │ Ersten Datei-Eintrag im FCB (File Control Block) suchen │
│ 12h │ │ Nächsten Datei-Eintrag im FCB suchen │
│ 13h │ │ Datei löschen │
│ 14h │ │ Sequentielles Lesen aus Datei │
│ 15h │ │ Sequentielles Schreiben in Datei │
│ 16h │ │ Neue Datei anlegen und öffnen │
│ 17h │ │ Datei umbenennen │
│ 19h │ │ Nummer des aktuellen Laufwerks ermitteln (0 = A, 1 = B ...) │
│ 1Ah │ │ Verlegung der Disk Transfer Area (DTA) │
│ 1Bh │ │ Kenngrößen aktuelles Laufwerk ermitteln (u.a. Typ, Sektoren) │
│ 1Ch │ │ Kenngrößen eines bestimmtes Laufwerk ermitteln │
│ 21h │ │ Wahlfreies Lesen P/D │
│ 22h │ │ Wahlfreies Schreiben P/D │
│ 23h │ │ Dateigröße ermitteln │
│ 24h │ │ Positionszeige für wahlfreien Zugriff setzen │
│ 25h │ │ Interruptvektor auf anderen Wert setzen (Interrupt verbiegen) │
│ 26h │ │ Programm-Segment-Präfix (PSP) an andere Adresse kopieren │
│ 27h │ │ Wahlfreies Lesen mehrerer Datensätze │

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-29

│ 28h │ │ Wahlfreies Schreiben mehrerer Datensätze │
│ 29h │ │ Dateinamen in File Control Block (FCB) schreiben │
│ 2Ah │ │ Datum ermitteln │
│ 2Bh │ │ Datum setzen │
│ 2Ch │ │ Uhrzeit ermitteln │
│ 2Dh │ │ Uhrzeit setzen │
│ 2Eh │ │ Verify-Flag bei Schreiben P/D setzen │
│ 2Fh │ │ Adresse der Data Transfer Arera (DTA) ermitteln │
│ 30h │ │ DOS-Versionsnummer ermitteln │
│ 31h │ │ Programm beenden, aber im Speicher belassen │
│ 33h │ 00h │ Lesen Break-Flag (ob auf Ctrl-C geprüft werden soll) │
│ 33h │ 01h │ Setzen Break-Flag │
│ 35h │ │ Interrupt-Adresse ermitteln │
│ 36h │ │ Freie Kapazität P/D ermitteln │
│ 38h │ 00h │ Landesspezifische Symbole und Formate ermitteln │
│ 38h │ 01h │ Landesspezifische Symbole und Formate setzen │
│ 39h │ │ Unterverzeichnis erstellen │
│ 3Ah │ │ Unterverzeichnis löschen │
│ 3Bh │ │ Unterverzeichnis wählen │
│ 3Ch │ │ Neue Datei erstellen bzw. vorhandene leeren │
│ 3Dh │ │ Datei öffnen │
│ 3Eh │ │ Datei schließen │
│ 3Fh │ │ Bestimmte Anzahl von Zeichen von Datei lesen │
│ 40h │ │ Bestimmte Anzahl von Zeichen in Datei schreiben │
│ 41h │ │ Datei löschen │
│ 42h │ │ Positionszeiger für wahlfreien Zugriff P/D setzen │
│ 43h │ 00h │ Attribut einer Datei ermitteln │
│ 43h │ 01h │ Attribut einer Datei setzen │
│ 44h │ 00h │ Attribut eines Zeichentreibers ermitteln │
│ 44h │ 01h │ Attribut eines Zeichentreibers setzen │
│ 44h │ 02h │ Daten von Zeichentreiber empfangen │
│ 44h │ 03h │ Daten an Zeichentreiber übergeben │
│ 44h │ 04h │ Daten von Blocktreiber empfangen │
│ 44h │ 05h │ Daten an Blocktreiber übergeben │
│ 44h │ 06h │ Eingabestatus eines Gerätetreibers ermitteln │
│ 44h │ 07h │ Ausgabestatus eines Gerätetreibers ermitteln │
│ 44h │ 08h │ Test, ob Datenträger gewechselt werden kann (D = j, P = n). │
│ 44h │ 09h │ Netzwerk: Test, ob Laufwerk auf anderem Rechner │
│ 44h │ 0Ah │ Netzwerk: Test, ob Datei auf anderem Rechner │
│ 44h │ 0Bh │ Netzwerk: Anzahl der Zugriffswiederholungen setzen │
│ 45h │ │ Kanal duplizieren │
│ 46h │ │ Kanal auf zweiten Kanal kopieren │
│ 47h │ │ Pfadnamen des aktuellen Verzeichnisses ermitteln │
│ 48h │ │ RAM-Speicher reservieren │
│ 49h │ │ RAM-Speicher freigeben │
│ 4Ah │ │ Größe des reservierten RAM-Speichers ändern │
│ 4Bh │ 00h │ Anderes Programm laden und ausführen, dann zurück │
│ 4Bh │ 03h │ Anderes Programm laden ohne Ausführung (Overlay) │
│ 4Ch │ │ Programm mit Exit-Code (im Register AL) beenden │
│ 4Dh │ │ Exit-Code eines anderen Programms ermitteln │
│ 4Eh │ │ Ersten Eintrag einer Datei im Verzeichnis suchen │
│ 4Fh │ │ Nächsten Eintrag einer Datei im Verzeichnis suchen │
│ 54h │ │ Verify-Flag lesen │
│ 56h │ │ Datei umbenennen │
│ 57h │ 00h │ Datum und Uhrzeit der letzten Datei-Modifikation ermitteln │
│ 57h │ 01H │ Datum und Uhrzeit der letzten Datei-Modifikation setzen │
│ 58h │ 00h │ Strategie für Speicherzuteilung ermitteln │
│ 58h │ 01h │ Strategie für Speicherzuteilung setzen │
│ 59h │ │ Erweiterte Fehlercodes ermitteln │
│ 5Ah │ │ Temporäre Datei anlegen │
│ 62h │ │ Adresse des Programmsegment-Prefixs (PSP) ermitteln │
└─────┴─────┴──┘

Bei allen Aufrufen des Interrupts 21h ist die Funktionsnummer in das Register AH zu schreiben.

Zur Funktion 02h des DOS-Interrupts 21h, Ausgabe eines Zeichens:

Eingabe: AH = 02h

 DL = (ASCII-) Code des Zeichens

Ausgabe: keine

27-30 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Die Bildschirmausgabe erfolgt an der aktuellen Cursorstelle mit dem alten Attribut. Der Cursor wird ver-

setzt. Steuerzeichen werden bei der Bildschirmausgabe interpretiert.

Zur Funktion 4Ch des DOS-Interrupts 21h, Programm mit EXIT-Code beenden:

Eingabe: AH = 4Ch

 AL = Exit-Code nach eigener Vergabe (00h..ffh)

Ausgabe: keine

Diese Funktion sollte vorzugsweise für die Beendigung von Programmen eingesetzt werden. Auf den

optionale Exit-Code kann in Batch-Programmen mit ERRORLEVEL zugegriffen werden, siehe Kap. 30.

Üblicherweise setzt man den EXIT-Code bei fehlerfreier Programmbeendigung auf null, sonst auf einen

anderen Wert.

Zum Interrupt 22h: Routine zur Programm-Beendigung

Diese Routine darf nicht direkt aufgerufen werden. Sie wird von allen anderen Interrupts zur Beenden

eines Programms automatisch aufgerufen (Interrupt 20h, Funktionen 00h, 21h und 4Ch des Interrupts

21h).

Zum Interrupt 23h: Break-Taste betätigt

Die Routine wird aufgerufen, wenn die Break-Taste oder Ctrl+C betätigt wird. Sie darf aber nicht direkt

aufgerufen werden.

Zum Interrupt 24h: Kritischer Fehler

Die Routine wird aufgerufen, wenn bei einem Hardware-Zugriff ein kritischer Fehler entdeckt wird. Sie

darf nicht direkt aufgerufen werden.

Zum Interrupt 25h: Absolutes Lesen

Mit diesem Interrupt können logisch aufeinanderfolgende Sektoren von Disketten/Platten eingelesen

werden. Als Eingabeparameter braucht der Interrupt u.a. die Laufwerksnummer, die Nummer des ersten

zu lesenden Sektors und die Anzahl der Sektoren.

Zum DOS-Interrupt 26h: Absolutes Schreiben

Analog wie 26h, lediglich Schreiben statt Lesen.

Zum Interrupt 27h: Programmende ohne Speicherfreigabe

Bei diesem Interrupt verbleibt das Programm nach dem Ende resident im Speicher verfügbar (z.B.

Gerätetreiber). Nur bei COM-Programmen möglich. Besser Funktion 31h des DOS-Interrupts 21h

benutzen.

Zum Maus-Interrupt 33h: Maus

In einem späteren Demo-Programm werden einige Funktionen des Maus-Interrupts behandelt. Für den

Maus-Interrupt muß in der Datei Config.SYS mit device der Maustreiber aufgeführt sein. Beispiel für

Eintrag in Datei Config.SYS:

...

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-31

device = C:\MAUS\Mouse.SYS

...

Funktions-Nr des Maus-Interrupts 33h und Kurzerklärung
┌─────┬──┐
│ 00h │ Initialisierung und Reset des Maustreibers │
│ 01h │ Mauscursor anzeigen │
│ 02h │ Mauscursor ausblenden │
│ 03h │ Mausposition und Status der Mausknöpfe ermitteln │
│ 04h │ Mauscursor positionieren │
│ 05h │ Wie oft wurde ein Mausknopf gedrückt? │
│ 06h │ Wie oft wurde ein Mausknopf losgelassen? │
│ 07h │ Horizontale Größe des Maus-Fensters festlegen │
│ 08h │ Vertikale Größe des Maus-Fensters festlegen │
│ 09h │ Gestalt des Maus-Cursors im Graphik-Mode festlegen │
│ 0Ah │ Gestalt des Maus-Cursors im Text-Mode festlegen │
│ 0Bh │ Entfernung der aktuellen Maus-Position von der letzten │
│ 0Ch │ Zusätzliche Benutzer-Interruptroutine installieren │
│ 0Dh │ Emulation des Lichgriffels anschalten │
│ 0Eh │ Emulation des Lichtgriffels abschalten │
│ 0Fh │ Maus-Empfindlichkeit einstellen │
│ 10h │ Ausschlußbereich für Maus festlegen │
│ 12h │ Gestalt des großen Graphik-Mauscursors festlegen │
│ 13h │ Schwelle für Verdoppelung der Mausgeschwindigkeit festlegen │
│ 14h │ Austauschen der Benutzer-Interruptroutine │
│ 15h │ Größe des Maus-Statuspuffers ermitteln │
│ 16h │ Maus-Status sichern │
│ 17h │ Maus-Status restaurieren │
│ 18h │ Alternative Benutzer-Interruptroutine installieren │
│ 19h │ Adresse der alternativen Benutzer-Interruptroutine ermitteln │
│ 1Ah │ Maus-Empfindlichkeit einstellen. Kombination von 0Fh und 13h │
│ 1Bh │ Maus-Empfindlichkeit ermitteln │
│ 1Ch │ Häufigkeit der Maus-Abfrage einstellen (0..200/sec) │
│ 1Dh │ Bildschirmseite für Maus-Cursor setzen │
│ 1Eh │ Bildschirmseite für Maus-Cursor ermitteln │
│ 1Fh │ Maustreiber deakivieren │
│ 20h │ Maustreiber wieder aktivieren │
│ 21h │ Reset des Maustreibers │
│ 24h │ Maustyp ermitteln (Bus, seriell, Inport, PS/2, ...) │
└─────┴──┘

Zum EMS-Interrupt 67h: EMS-Speicher

EMS = Expanded Memory System. Ergänzungspeicher nach Spezifikation der Firmen Lotus,

Intel und Microsoft (LIM-Standard). Neben EMS gibt es noch den erweiterten EMS (EEMS)

der Firmen Ast, Quadram und Aston Tate. Die Software-Schnittstelle zu EMS hat die

Bezeichnung EMM (Expanded Memory Manager).

Expanded Memory (Ergänzungsspeicher) darf nicht mit Extended Memory (Erweiterungs-

speicher) verwechselt werden. Letzter liegt im Adreßbereich über 1 MByte und ist nur von den

Prozessoren Intel 80286, 80386 und höheren im Protected Mode erreichbar, was aber im

normalen DOS-Betrieb nicht möglich ist. Der Erweiterungsspeicher kann aber unter gewissen

Voraussetzungen für RAM-Disk, Platten-Cache, Emulation von Ergänzungsspeicher genutzt

werden. Details siehe Kap. Betriebssystem MS-DOS.

Mit EMS bzw. EMM können nacheinander Speichersegmente (d.h. jeweils 64 KByte groß) aus

dem bis zu 8 MByte großen Ergänzungsspeicher in einen freien Adreßbereich zwischen 640

KByte und 1 MByte eingeblendet werden, der normaler für DOS reserviert ist. Da die

physischen Adressen somit unter 1 MByte liegen, kann EMS somit auf allen MS-DOS-Rech-

nern eingesetzt werden. Voraussetzung ist ist das Einbinden des EMM-Treibers in die Datei

Config.SYS mit "device = ..." und natürlich Software, die den Interrupt 67h auch verwendet.

27-32 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

Das Einblenden geschieht nicht durch Kopieren des Segmentinhaltes des EMS-Speichers in den

Speicherbereich unter 1 MByte, sondern durch Umprogrammieren der Adreßleitungen mittels

Zusatz-Hardware, die sich entweder auf der EMS-Karte oder bereits auf der Hauptplatine

befindet. Der Vorgang wird auch mit Bank Switching oder Memory Mapping bezeichnet.

Gegenüber früheren Bank-Switching-Verfahren ist EMS noch verbessert: Es muß nicht immer

ein ganzes Segment (64 KByte) umgeschaltet werden, sondern Pages (Seiten) mit 16 KByte

können einzeln umgeschaltet werden. Die einzelnen Seiten können beliebig weit voneinander

entfernt liegen.

Das Problem besteht zuerst darin, im Speicherbereich zwischen 640 KByte und 1 MByte einen

nicht benutzten Adreßbereich von 64 KByte Größe für EMS zu finden. Der Bereich zwischen

640 KByte und 1 MByte ist zwar für normale DOS-Anwendungen reserviert, aber

glücklicherweise nicht vollständig vergeben. Üblicherweise ist das Segment mit der Adresse

D000h, das ursprünglich für ROM-Cartridges vorgesehen war, nicht belegt und kann somit für

EMS benutzt werden.

Das folgende Schema zeigt den Speicheraufbau und das Einblenden von EMS:

Segment- Arbeitsspeicher EMS-Speicher
adresse- bis 1 MByte nach LIM
 bis 8/32 MByte 1)
 FFFFh ╔════════╗ ╔════════╗
 ║ ║ Vom ROM- ╟────────╢
 ║ ║ BIOS ╟────────╢
 ║ ║ belegt ╟────────╢
 F000h ╟ ║ ~~~~~~~~~~
 ║ ║ ~~~~~~~~~~
 ║ ║ ╟────────╢
 ║ ║ ┌─────────── ╟────────╢
 E000h ╠════════╣ │ ╟────────╢
 ╟────────╢ EMS-Fenster ──┘ ╟────────╢
 ╟────────╢ 4 Pages ───────────┐ ╟────────╢
 ╟────────╢ … 16 KByte ────────┐ │ ~~~~~~~~~~
 D000h ╠════════╣ ─────┐ │ │ ~~~~~~~~~~
 ║ ║ Reserviert │ │ │ ╟────────╢
 ║ ║ für ROM- │ │ │ ╟────────╢
 ║ ║ Erweiterung │ │ │ ╟────────╢
 C000h ╟────────╢ │ │ └── ╟────────╢
 ║ ║ │ │ ╟────────╢
 ║ ║ Bildschirm- │ │ ╟────────╢
 ║ ║ RAM └──│───── ╟────────╢
 B000h ╟────────╢ │ ╟────────╢
 ║ ║ Zusätzlicher │ ~~~~~~~~~~
 ║ ║ Bildschirm- │ ~~~~~~~~~~
 ║ ║ RAM (EGA/VGA) │ ╟────────╢
 A000h ╟────────╢ ────┬───── │ ╟────────╢
 ║ ║ │ │ ╟────────╢
 ║ ║ │ │ ╟────────╢
 ║ ║ │ │ ╟────────╢
 9000h ╟ ╢ │ └───── ╟────────╢
 ║ ║ 640 KByte ╟────────╢
           ~~~~~~~~~~  RAM-System-                ~~~~~~~~~~ 
           ~~~~~~~~~~  Speicher =                 ~~~~~~~~~~ 
 ║ ║ konventioneller ╟────────╢
 1000h ╟ ╢ Speicher ╟────────╢
 ║ ║ │ ╟────────╢
 ║ ║ │ ╟────────╢
 ║ ║ │ ╟────────╢
 0000h ╚════════╝ ────┴──── ╚════════╝

1) Ab LIM 4.0: EMS-Speicher bis 32 MByte

Der EMS-Interrupt 67h besitzt eine größere Anzahl von Funktionen. Auf die eingangs erwähnte Spezial-

literatur wird verwiesen.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-33

27.8 Beispiel: Zeichenausgabe über Pascal, DOS, BIOS und

Hardware

Das folgende Demo-Programm gibt den ASCII-Zeichensatz aus mit vier verschiedenen

Methoden:

• Pascal

• Aufruf DOS-Interrupt h21, Funktion h02

• Aufruf BIOS-Interrupt h10, Funktionen h02 und h09

• Schreiben in Bildschirmspeicher

program Pas27081; { Kap. 27.8: Ascii-Satz in Pascal, DOS, BIOS

 und Hardware }

 { K. Haller }

uses

 CRT, DOS;

var

 Reg: Registers;

 { Registers ist ein in der Unit DOS definierter (varianter)

 Recordtyp mit den Feldern

 • AX, BX, CX, DX, BP, DI, DS, ES, Flags (16-Bit-Register)

 • AL, AH, BL, BH, CL, CH, DL, DH (8-Bit-Register) }

procedure ReturnTaste;

begin

 GotoXY(10, 25); ClrEoL;

 GotoXY(10, 25);

 Write('Weiter mit Taste Return: ');

 repeat

 until ReadKey = #13;

end;

procedure DOS_Version;

begin

 ClrScr;

 GotoXY(10, 2);

 WriteLn('DOS-Version mit Funktion "DosVersion" aus Unit DOS');

 GotoXY(10, 5);

 WriteLn('Die DOS-Version: ', Lo(DosVersion), '.', Hi(DosVersion));

 ReturnTaste;

end;

procedure AsciiZeichen_mit_Pascal;

var

 i: Byte;

begin

 ClrScr;

 GotoXY(10, 2);

 WriteLn('Ascii-Zeichen mit Pascal');

 for i := 0 to 255 do

 begin

 GotoXY(10 + i mod 64, 5 + i div 64);

 Write(Char(i));

27-34 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 end;

 ReturnTaste;

end;

procedure AsciiZeichen_mit_DOS_Interrupt_h21_Funktion_h02;

var

 i: Byte;

begin

 ClrScr;

 GotoXY(10, 2);

 WriteLn('Ascii-Zeichen mit DOS-Interrupt h21, Funktion h02');

 for i := 0 to 255 do

 begin

 Reg.AH := $02;

 Reg.DL := i;

 GotoXY(10 + i mod 64, 5 + i div 64);

 MsDOS(Reg); { Hat gleiche Wirkung wie "Intr($21, Reg)" }

 { Steuerzeichen BEL, BS, CR und LF werden interpretiert }

 end;

 ReturnTaste;

end;

procedure AsciiZeichen_mit_BIOS_Interrupt_h10_Funktion_h09;

 { Der Interrupt-Aufruf h10, Funktion h09: Zeichen ausgeben

 Steuerzeichen werden nicht interpretiert. Cursor wird

 nicht versetzt. Der Aufruf verändert u.a. Register AX,

 wogegen die Register BX und CX nicht verändert werden }

const

 Wiederholungen = 4;

var

 i: Byte;

begin

 ClrScr;

 GotoXY(10, 2);

 WriteLn('Ascii-Zeichen mit BIOS-Interrupt h10, Funktion h09');

 Reg.BH := 0; { Die Bildschirmseite, 0 = Standard }

 Reg.CX := Wiederholungen; { Anzahl der Zeichenwiederholungen }

 for i := 0 to 127 do

 begin

 Reg.AL := i; { Der Ascii-Code des auszugebenden Zeichens }

 Reg.BL := i; { Das Zeichen-Attribut. Für Demo jedes

 Zeichen mit anderem Attribut darstellen }

 Reg.AH := $09; { Die Funktion h09 }

 GotoXY(10 + i*Wiederholungen mod 64,

 5 + i*Wiederholungen div 64);

 { Cursor "von Hand" versetzen }

 Intr($10, Reg); { Der Interrupt-Aufruf }

 end;

 ReturnTaste;

end;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-35

procedure AsciiZeichen_mit_BIOS_Interrupt_h10_Funktionen_h02_h09;

 { Der Interrupt-Aufruf h10, Funktion h02: Cursor positionieren

 und Kombination mit Funktion h09: Zeichen ausgeben

 Steuerzeichen werden n i c h t interpretiert.

 Die Aufrufe verändern u.a. Register AX,

 wogegen die Register BX und CX nicht verändert werden }

var

 i: Byte;

begin

 ClrScr;

 GotoXY(10, 2);

 WriteLn('Ascii-Zeichen mit BIOS-Interrupt h10');

 GotoXY(10, 3); WriteLn('Funktion h02: Cursor positioniern und ');

 GotoXY(10, 4); WriteLn('Funktion h09: Zeichen ausgeben');

 Reg.BH := 0; { Die Bildschirmseite, 0 = Standard }

 Reg.CX := 1; { Anzahl der Zeichenwiederholungen }

 for i := 0 to 255 do

 begin

 Reg.AH := $02; { Funktion h02: Cursor postionieren }

 Reg.DL := 5 + i*Reg.CX mod 64; { Bildschirmspalte }

 Reg.DH := 8 + i*Reg.CX div 64; { Bildschirmzeile }

 Intr($10, Reg); { Cursor positionieren }

 { --- und jetzt Zeichen ausgeben: --------- }

 Reg.AL := i; { Der Ascii-Code des auszugebenden Zeichens }

 Reg.BL := i; { Das Zeichen-Attribut. Für Demo jedes

 Zeichen mit anderem Attribut darstellen }

 Reg.AH := $09; { Die Funktion h09 }

 Intr($10, Reg); { Der Interrupt-Aufruf }

 end;

 ReturnTaste;

end;

procedure AsciiZeichen_in_Bildschirmspeicher;

const

 BildschirmSegment = $b800; { Farbe: $b800, Mono: $b000 }

 { Segmentadresse des Bildschirmspeichers }

 Startzeile = 5;

var

 i: Byte;

 Offset: Word;

begin

 ClrScr;

 GotoXY(10, 2);

 WriteLn('Ascii-Zeichen mit Attribut in Bildschirmspeicher');

 GotoXY(10, 3);

 WriteLn('Mit vordefin. Array-Variablen "Mem[Segment:Offset]" ');

 for i := 0 to 255 do

 begin

27-36 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 Offset := Startzeile * 80 * 2 + 2*i;

 Mem[BildschirmSegment:Offset] := i; { Zeichen }

 Mem[BildschirmSegment:Offset + 1] := i; { Attribut }

 end;

 ReturnTaste;

end;

procedure Hardcopy;

 { Der Interrupt-Aufruf für Hardcopy: h05 (Hardware-Interrupt) }

var

 Ch: Char;

begin

 GotoXY(10, 25);

 Write('Hardcopy mit Hardware-Interrupt h05 (j/n): n');

 GotoXY(WhereX - 1, WhereY);

 repeat

 Ch := UpCase(Readkey);

 if Ch = #13 then Ch := 'N';

 until (Ch = 'J') or (Ch = 'N');

 Write(Ch);

 if Ch = 'J'

 then Intr($05, Reg);

 { »Reg« wird hier nur wegen der Syntax gebraucht }

 ReturnTaste;

end;

begin

 DOS_Version;

 AsciiZeichen_mit_Pascal;

 AsciiZeichen_mit_DOS_Interrupt_h21_Funktion_h02;

 AsciiZeichen_mit_BIOS_Interrupt_h10_Funktion_h09;

 AsciiZeichen_mit_BIOS_Interrupt_h10_Funktionen_h02_h09;

 AsciiZeichen_in_Bildschirmspeicher;

 Hardcopy;

end.

27.9 Weitere Demo-Programme A

program Pas27091; { **** Umschalttasten abfragen ******************* }

 { Turbo-Pascal, K. Haller }

 { In diesem Programm werden die Tastatur-Statusbytes

 $0040:$0017 und $0040:$0018 durch Zugriff mit

 Mem[segment:offset] gelesen und auch überschrieben.

 Das Lesen des ersten Tastatur-Statusbyte wäre auch

 mit der Funktion $02 des BIOS-Interrupts $16 möglich.

 Das Ergebnis wird im Register AL geliefert. }

uses

 CRT;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-37

const

 Bit0 = 1; Bit1 = 2; Bit2 = 4; Bit3 = 8;

 Bit4 = 16; Bit5 = 32; Bit6 = 64; Bit7 = 128; { Bit-Wertigkeiten }

 { oder z.B. Bit6 = 1 shl 6 }

var

 ByteH17,

 ByteH18: Byte;

 BinaerH17,

 BinaerH18: string[9];

 Taste: Char;

 T17, T18: string;

function Dez_BinStr(Dez: Word): string; { ----------------------- }

const

 BasisBin = 2;

 Blank = ' ';

 Bitmuster_in_Viererbloecken = True;

 { ggf. ändern »Tue« <---> »False« }

var

 BinaerString: string[19];

 BinStringLaenge: Byte;

 Dez_Temp: Word;

begin

 BinaerString := '';

 Dez_Temp := Dez;

 while Dez_Temp <> 0 do

 begin

 if (Dez_Temp mod BasisBin) = 0

 then BinaerString := '0' + BinaerString

 else BinaerString := '1' + BinaerString;

 Dez_Temp := Dez_Temp div BasisBin;

 end;

 if Dez <= 255

 then BinStringLaenge := 8

 else BinStringLaenge := 16;

 while Length(BinaerString) < BinStringLaenge do

 BinaerString := '0' + BinaerString;

 if Bitmuster_in_Viererbloecken

 then if Dez <= 255

 then Insert(Blank, BinaerString, 5)

 else begin

 Insert(Blank, BinaerString, 5);

 Insert(Blank, BinaerString, 10);

 Insert(Blank, BinaerString, 15);

 end;

 Dez_BinStr := BinaerString;

end; { -- }

begin

 ClrScr;

27-38 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 GotoXY(10, 5); Write('Man achte auf die Leuchtdioden. Weiter ... ');

 { Bei den Bit-Manipulationen ist darauf zu achten, daß nur das

 Einzel-Bit verändert wird, die anderen Bits dürfen nicht verändert

 werden! }

 repeat

 Mem[$0040:$0017] := Mem[$0040:$0017] xor Bit4;

 { Bit 4 invertieren, Operator xor }

 Mem[$0040:$0017] := Mem[$0040:$0017] xor Bit5;

 { Bit 5 invertieren, Operator xor }

 Mem[$0040:$0017] := Mem[$0040:$0017] xor Bit6;

 { Bit 6 invertieren, Operator xor }

 Delay(100); { 100 ms warten }

 until KeyPressed;

 Mem[$0040:$0017] := Mem[$0040:$0017] and not Bit4;

 { Bit 4 löschen, Operatoren and not }

 Mem[$0040:$0017] := Mem[$0040:$0017] or Bit5;

 { Bit 5 setzen, Operator or }

 Mem[$0040:$0017] := Mem[$0040:$0017] and not Bit6;

 { Bit 6 löschen, Operatoren and not }

 ClrScr;

 GotoXY(10, 5);

 Write('Umschalttasten abfragen, Ende mit »Ctrl-Break« (kha)');

 TextColor(Green);

 GotoXY(17, 8); Write('Bit-Nr 7654 3210');

 GotoXY(17, 9); Write(' ││││ ││││');

 GotoXY(10, 10); Write('Byte H17: ');

 GotoXY(17, 11); Write(' ││││ ││││');

 GotoXY(10, 12); Write('Byte H18: ');

 repeat

 ByteH17 := Mem[$0040:$0017];

 ByteH18 := Mem[$0040:$0018];

 BinaerH17 := Dez_BinStr(ByteH17);

 BinaerH18 := Dez_BinStr(ByteH18);

 GotoXY(21, 10); TextColor(Green); Write(ByteH17:3);

 TextColor(Yellow); Write(BinaerH17:10); ClrEoL;

 GotoXY(21, 12); TextColor(Green); Write(ByteH18:3);

 TextColor(Yellow); Write(BinaerH18:10); ClrEoL;

 TextColor(Green);

 { Jetzt wird getestet, ob ein bestimmtes Bit gesetzt ist }

 T17 := ''; { ---- Meldung T17 für Byte $17 --------------------- }

 if ByteH17 and Bit0 = Bit0

 then T17 := T17 + ' Shift-R '; { Shift-R }

 if ByteH17 and Bit1 = Bit1

 then T17 := T17 + ' Shift-L '; { Shift-L }

 if ByteH17 and Bit2 = Bit2

 then T17 := T17 + ' Ctrl ';

 if ByteH17 and Bit3 = Bit3

 then T17 := T17 + ' Alt ';

 if ByteH17 and Bit4 = Bit4

 then T17 := T17 + ' Scroll '; { On/Off }

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-39

 if ByteH17 and Bit5 = Bit5

 then T17 := T17 + ' NumLock '; { On/Off }

 if ByteH17 and Bit6 = Bit6

 then T17 := T17 + ' CapsLock '; { On/Off }

 if ByteH17 and Bit7 = Bit7

 then T17 := T17 + ' Insert-Mode '; { On/Off }

 T18 := ''; { ---- Meldung T18 für Byte $18 -------------------- }

 if ByteH18 and Bit0 = Bit0

 then T18 := T18 + ' Ctrl-L '; { Ctrl-Links }

 if ByteH18 and Bit1 = Bit1

 then T18 := T18 + ' Alt-L '; { Alt-Links }

 if ByteH18 and Bit2 = Bit2

 then T18 := T18 + ' SysReq '; { System-Abfrage }

 if ByteH18 and Bit3 = Bit3

 then T18 := T18 + ' Halt '; { Ctrl-NL/Paus }

 if ByteH18 and Bit4 = Bit4

 then T18 := T18 + ' Scroll '; { während Tastendruck }

 if ByteH18 and Bit5 = Bit5

 then T18 := T18 + ' NumLock '; { während Tastendruck }

 if ByteH18 and Bit6 = Bit6

 then T18 := T18 + ' CapsLock '; { während Tastendruck }

 if ByteH18 and Bit7 = Bit7

 then T18 := T18 + ' Insert '; { während Tastendruck }

 GotoXY(35, 10); Write(T17); ClrEol;

 GotoXY(35, 12); Write(T18); ClrEol;

 Delay(100);

 until False; { Endlosschleife. Abbruch nur mit »Ctrl+Break« }

end.

program Pas27092; { BIOS-Interrupt h11: Konfiguration abfragen }

 { Turbo-Pascal, K. Haller }

 {

 Nach dem Aufruf von Interrupt h11 wird im Register AX die

 Konfiguration abgelegt. Die Bedeutung der einzelnen Bits

 beim AT und PS/2 (bei einfachen PCs z.T. anders):

 <──────── Bit─Nr ────────────── │ Bit 0..7: AL, Bit 8..15: AH
 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 │
 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 │ Bedeutung bei AT/PS─2
 ════════════════════════════════╪═══════════════════════════════
 x x │ Anzahl der parallelen Drucker
 . . x │ Reserviert
 . . . x │ Reserviert
 x x x │ Anzahl serielle Schnittstellen
 x │ Nicht verwendet
 x x │ Anzahl Diskettenlaufwerke ─ 1
 │ 0 0: 1 Diskettenlaufwerk
 │ 0 1: 2 Diskettenlaufwerke
 │ 1 0: 3 Diskettenlaufwerke
 │ 1 1: 4 Diskettenlaufwerke
 x x │ Bildschirmmodus beim Booten
 │ 0 0: Nicht verwendet
 │ 1 0: Color, 80 * 25
 │ 0 1: Color, 40 * 25
 │ 1 1: Monochrom, 80 * 25
 x . . . │ Nicht verwendet

27-40 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 x . . │ Zeigegerät (Maus) installiert
 x . │ Coprozessor installiert
 x │ Diskettenlaufwerk(e) vorhanden
 ════════════════════════════════╪═══════════════════════════════
 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 │
 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 │

 Anmerkung: Der Bildschirmmodus kann nach dem Booten verändert

 worden sein. Der aktuelle Modus kann nicht mit dem

 Interrupt h11 abgefragt werden, sondern muß mit der

 Funktion h0F des Interupts h10 ausgelesen werden.

 Das Ergebnis steht dann im Register AL.

 }

uses

 CRT, DOS; { Unit DOS für Interrupt-Aufruf }

type

 String16 = string[16];

var

 Reg: Registers; { "Registers": Record-Typ aus Unit DOS }

 AX: Word;

 Serielle_Schnittstellen: Byte; { RS-232, V.24 (COM1:, COM2: usw) }

 Parallele_Schnittstellen: Byte; { paralleler Drucker (Centronics) }

function Bit(Register: Word; i: Byte): Boolean;

begin { Testet ob Bit i gesetzt }

 if Register and (1 shl i) = 1 shl i

 then Bit := True

 else Bit := False

end;

function BitMuster16(Register: Word): String16;

var

 i: 0..15;

 s: String16;

begin

 for i := 0 to 15 do

 if Register and (1 shl 15 shr i) = (1 shl 15 shr i)

 then s[i + 1] := '1'

 else s[i + 1] := '0';

 BitMuster16 := s;

end;

begin { Die folgende Interpretation gilt für AT-Rechner }

 { und höhere, n i c h t aber für normale PC und XT }

 ClrScr;

 {┌─────────────────────┐ }
 {│} Intr($11, Reg); {│ Interrupt h11: Konfiguration abfragen }
 {└─────────────────────┘ }

 AX := Reg.AX;

 WriteLn('---- Interrupt h11: Konfiguration -----');

 WriteLn('Register AX in dez: ', AX);

 WriteLn;

 WriteLn('Bit-Nr: 5432109876543210');

 WriteLn('Das Bitmuster: ', BitMuster16(AX));

 WriteLn('---------------------------------------');

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-41

 if Bit(AX, 0)

 then WriteLn('Ein oder mehrere Diskettenlaufwerke')

 else WriteLn('Kein Diskettenlaufwerk vorhanden');

 if Bit(AX, 1)

 then WriteLn('Coprozessor vorhanden')

 else WriteLn('Kein Coprozessor vorhanden');

 if Bit(AX, 2)

 then WriteLn('Zeigegerät (Maus) installiert')

 else WriteLn('Kein Zeigegerät (Maus) installiert');

 if Bit(AX, 0) then

 begin

 Write('a) Anzahl der Diskettenlaufwerke: ');

 if not Bit(AX, 7) and not Bit(AX, 6) then WriteLn('1');

 if not Bit(AX, 7) and Bit(AX, 6) then WriteLn('2');

 if Bit(AX, 7) and not Bit(AX, 6) then WriteLn('3');

 if Bit(AX, 7) and Bit(AX, 6) then WriteLn('4');

 { --------- Eleganter mit Shift-Operatoren: --------- }

 Write('b) Anzahl der Diskettenlaufwerke: ');

 WriteLn(AX shl 8 shr 14 + 1);

 end;

 Serielle_Schnittstellen := 0;

 if Bit(AX, 9) then Inc(Serielle_Schnittstellen, 1);

 if Bit(AX, 10) then Inc(Serielle_Schnittstellen, 2);

 if Bit(AX, 11) then Inc(Serielle_Schnittstellen, 4);

 WriteLn('Anzahl der seriellen Schnittstellen: ',

 Serielle_Schnittstellen);

 Parallele_Schnittstellen := 0;

 if Bit(AX, 14) then Inc(Parallele_Schnittstellen, 1);

 if Bit(AX, 15) then Inc(Parallele_Schnittstellen, 2);

 WriteLn('Anzahl der parallelen Schnittstellen: ',

 Parallele_Schnittstellen);

 repeat

 until ReadKey <> '';

end.

program Pas27093; { Maus-Interrupt 33h. Demo: Maus im Text-Mode }

 { Turbo-Pascal 5.0 7002119 K. Haller }

 { In der Datei "Config.SYS" muß mit "device" der (Microsoft-)

 Maustreiber"Mouse.SYS" mit seinem Zugriffspfad aufgeführt sein.

 Beispiel: device = C:\Maus\Mouse.SYS

 Funktions-Nr des Maus-Interrupts 33h und Kurzerklärung

 ───

 00h Initialisierung und Reset des Maustreibers

 01h Mauscursor anzeigen

 02h Mauscursor ausblenden

 03h Mausposition und Status der Mausknöpfe ermitteln

 04h Mauscursor positionieren

 05h Wie oft wurde ein Mausknopf gedrückt?

27-42 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 06h Wie oft wurde ein Mausknopf losgelassen?

 07h Horizontale Größe des Maus-Fensters festlegen

 08h Vertikale Größe des Maus-Fensters festlegen

 09h Gestalt des Maus-Cursors im Graphik-Mode festlegen

 0Ah Gestalt des Maus-Cursors im Text-Mode festlegen

 0Bh Entfernung der aktuellen Maus-Position von der letzten

 0Ch Zusätzliche Benutzer-Interruptroutine installieren

 0Dh Emulation des Lichgriffels anschalten

 0Eh Emulation des Lichtgriffels abschalten

 0Fh Maus-Empfindlichkeit einstellen

 10h Ausschlußbereich für Maus festlegen

 12h Gestalt des großen Graphik-Mauscursors festlegen

 13h Schwelle für Verdoppelung der Mausgeschwindigkeit festlegen

 14h Austauschen der Benutzter-Interruptroutine

 15h Größe des Maus-Statuspuffers ermitteln

 16h Maus-Status sichern

 17h Maus-Status restaurieren

 18h Alternative Benutzer-Interruptroutine installieren

 19h Adresse der alternativen Benutzer-Interruptroutine ermitteln

 1Ah Maus-Empfindlichkeit einstellen. Kombination von 0Fh und 13h

 1Bh Maus-Empfindlichkeit ermitteln

 1Ch Häufigkeit der Maus-Abfrage einstellen (0..200/sec)

 1Dh Bildschirmseite für Maus-Cursor setzen

 1Eh Bildschirmseite für Maus-Cursor ermitteln

 1Fh Maustreiber deakivieren

 20h Maustreiber wieder aktivieren

 21h Reset des Maustreibers

 24h Maustyp ermitteln (Bus, seriell, Inport, PS/2, ...)

 ───

 }

uses

 CRT, DOS;

var

 Reg: Registers; { Recordtyp aus Unit DOS }

 Spalte, Zeile: Byte;

procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);

begin

 GotoXY(Spalte, Zeile);

 Write(Meldung);

end;

procedure Taste;

begin

 WriteXY(9, 25, 'Weiter mit Tastendruck ... ');

 Write(ReadKey);

end;

procedure Maustreiber_initialisieren_und_Reset;

begin

 ClrScr;

 WriteXY(9, 3, 'Maustreiber initialisieren. Funktion 00h ');

 Reg.AX := $0000; Intr($33, Reg);

 if Reg.AX = $ffff

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-43

 then begin

 WriteXY(9, 4, 'Maustreiber ist installiert. ' +

 'Die Maus hat ');

 Write(Reg.BX, ' Knöpfe ');

 end

 else WriteXY(9, 4, 'Kein Maustreiber installiert');

 Taste;

end;

procedure Mauscursor_anzeigen;

begin

 ClrScr;

 WriteXY(9, 3, 'Mauscursor anzeigen. Funktion 01h. ' +

 'Maus bewegen ... ');

 Reg.AX := $0001; Intr($33, Reg);

 Taste;

end;

procedure Mauscursor_ausblenden;

begin

 ClrScr;

 WriteXY(9, 3, 'Mauscursor ausblenden. Funktion 02h');

 Reg.AX := $0002; Intr($33, Reg);

 Taste;

end;

procedure Mausposition_und_Mausknoepfe;

const

 KlickSpalte = 49;

 KlickZeile = 5;

begin

 ClrScr;

 WriteXY(9, 3, 'Mausposition und Mausstatus. Funktion 03h ');

 WriteXY(9, 4, 'Mausknöpfe links, rechts, beide. Auch ziehen ... ');

 WriteXY(9, 5, 'Ende: Mausknopf links auf diesem Punkt: ');

 WriteXY(KlickSpalte, KlickZeile, '•');

 repeat

 repeat

 GotoXY(3, 7); ClrEoL;

 GotoXY(3, 8); ClrEoL;

 GotoXY(3, 9); ClrEoL;

 Reg.AX := $0003; Intr($33, Reg);

 Spalte := 1 + Reg.CX div 8; { Divisor 8 für Text- }

 Zeile := 1 + Reg.DX div 8; { bildschirm 25 * 80 }

 if (Reg.BX and 1) = 1 then

 begin

 WriteXY(9, 7, 'Bit 0: Mausknopf links ');

 Write(' Spalte: ', Spalte:2, ' Zeile: ', Zeile);

 end;

 if (Reg.BX and 2) = 2 then

 begin

27-44 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 WriteXY(9, 8, 'Bit 1: Mausknopf rechts');

 Write(' Spalte: ', Spalte:2, ' Zeile: ', Zeile);

 end;

 if (Reg.BX and 4) = 4 then

 begin

 WriteXY(9, 9, 'Bit 2: Mausknopf mitte ');

 Write(' Spalte: ', Spalte:2, ' Zeile: ', Zeile);

 end;

 until (Reg.BX and 1 = 1) or (Reg.BX and 2 = 2) or

 (Reg.BX and 4 = 4);

 Delay(100); { Sonst Textanzeige auf Bildschirm zu langsam }

 until (Spalte = KlickSpalte) and

 (Zeile = KlickZeile) and ((Reg.BX and 1) = 1);

 Taste;

end;

procedure Mauscursor_positionieren;

const

 Spalte = 40;

 Zeile = 5;

 Mausspalte = (Spalte - 1) * 8; { Multiplikator 8 für }

 Mauszeile = (Zeile - 1) * 8; { Textbildschirm 25 * 80 }

begin

 ClrScr;

 WriteXY(9, 3, 'Mauscursor positionieren. Funktion 04h ');

 WriteXY(9, 4, 'Der Mauscursor müßte auf dem Punkt stehen. ' +

 'Bewegen ... ');

 WriteXY(Spalte, Zeile, '•');

 Reg.CX := Mausspalte;

 Reg.DX := Mauszeile;

 Reg.AX := $0004; Intr($33, Reg);

 Taste;

end;

procedure Mausfenster_und_malen;

const

 Dauer = 5; { Diese Zeit in Sekunden warten. Nur für Demo }

 SpMin = 9; SpMax = 60;

 ZeMin = 9; ZeMax = 20;

 MausspalteMin = (SpMin - 1) * 8; { Multiplikator 8 für }

 MausspalteMax = (SpMax - 1) * 8; { Textbildschirm 25 * 80 }

 MauszeileMin = (ZeMin - 1) * 8;

 MauszeileMax = (ZeMax - 1) * 8;

var

 i, j: Byte;

begin

 ClrScr;

 for i := ZeMin to ZeMax do

 for j := SpMin to SpMax do

 WriteXY(j, i, '·');

 WriteXY(9, 3, 'Mausfenster definieren. Funktionen 07h und 08h ');

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-45

 WriteXY(9, 4, 'Ende nach ');

 Write(Dauer, ' sec. Beide Maustasten. Maus bewegen ... ');

 Reg.CX := MausspalteMin;

 Reg.DX := MausspalteMax;

 Reg.AX := $0007; Intr($33, Reg);

 Reg.CX := MauszeileMin;

 Reg.DX := MauszeileMax;

 Reg.AX := $0008; Intr($33, Reg);

 Delay(Dauer * 1000); { Umrechnung in ms }

 WriteXY(9, 4, #7 + 'Jetzt Fensterfunktion 07h kombiniert ' +

 'mit Funktion 03h ');

 WriteXY(9, 5, 'Links = Punkt setzen, rechts = Punkt löschen, ' +

 'beide = Ende ');

 repeat

 Reg.AX := $0003; Intr($33, Reg); { Mausstatus und -position }

 if (Reg.BX and 1) = 1 then { linke Maustaste }

 begin

 Spalte := 1 + Reg.CX div 8;

 Zeile := 1 + Reg.DX div 8;

 WriteXY(Spalte, Zeile, '•');

 end;

 if (Reg.BX and 2) = 2 then { rechte Maustaste }

 begin

 Spalte := 1 + Reg.CX div 8;

 Zeile := 1 + Reg.DX div 8;

 WriteXY(Spalte, Zeile, '·');

 end;

 until ((Reg.BX and 1) = 1) and ((Reg.BX and 2) = 2);

end;

begin { ------------------------------ }

 Maustreiber_initialisieren_und_Reset;

 Mauscursor_anzeigen;

 Mauscursor_ausblenden;

 Mauscursor_anzeigen;

 Mausposition_und_Mausknoepfe;

 Mauscursor_positionieren;

 Mausfenster_und_malen;

end. { ------------------------------ }

program Pas27094; { BIOS-Interrupt $10: Bildschirm }

 { Turbo-Pascal, K. Haller }

 { ---- Interrupt $10 hat folgende Funktionen:

 $00 Videomodus setzen.

 $01 Cursorform definieren.

 $02 Cursor positionieren.

 $03 Cursorposition auslesen.

 $04 Position des Lichtgriffels auslesen (falls vorhanden).

 $05 Auswahl der aktuellen Bildschirmseite.

 $06 Textzeilen nach oben scrollen.

 $07 Textzeilen nach unten scrollen.

27-46 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 $08 Auslesen des Zeichens und des Attributs.

 $09 Schreiben eines Zeichens und des Attributs.

 Cursor wird nicht versetzt. Steuerzeichen werden

 nicht interpretiert.

 $0A Schreiben eines Zeichens. Attribut wird beibehalten

 Cursor wird nicht versetzt. Steuerzeichen werden

 nicht interpretiert.

 $0B Auswahl von Vordergrund- und Hintergrundfarbe und der

 Farbpalette. Unterfunktionen 0 und 1.

 $0C Grafikpunkt setzen (Koordinaten, Farbe).

 $0D Farbe des Grafikpunktes lesen.

 $0E Schreiben eines Zeichens. Attribut wird beibehalten.

 Cursor wird versetzt. Steuerzeichen werden interpretiert.

 $0F Auslesen des aktuellen Videomodus.

 $13 Zeichenkette mit Attribut ausgeben. Steuerzeichen

 werden interpretiert.

 Es werden hier demonstriert:

 • Funktion $02 (Cursor positionieren) und

 • Funktion $09 (Zeichen mit Attribut ausgeben)

 Zum Attribut-Byte bei Farbbildschirmen:

 Bit 0, 1, 2: Farbe des Zeichens. 3 Bit = 8 Farben, 0..7

 Bit 3: Hellere Farbe des Zeichens (Farben 0..15).

 Bit 4, 5, 6: Farbe des Hintergrundes. 8 Farben.

 Bit 7: Blinkende Darstellung wenn Bit gesetzt.

 Zum Attribut-Byte bei monochromen Bildschirmen:

 Bit 0, 1, 2: Helligkeit/Unterstreichung des Zeichens.

 Nur die drei Kombinationen "000" (schwarz),

 "001" (unterstrichen weiß) und "111" (weiß)

 werden ausgeführt.

 Bit 3: Bei gesetztem Bit 3 größere Zeichen-Helligkeit.

 Bit 4, 5, 6: Helligkeit des Hintergrundes. Nur die zwei

 Kombinationen "000" (schwarz) und "111" (weiß)

 werden ausgeführt.

 Bit 7: Blinkende Darstellung wenn Bit gesetzt.

 }

uses

 CRT, DOS; { Unit DOS für Interrupt-Aufrufe }

const

 Wiederholungen = 5; { Jedes Zeichen so oft ausgeben }

var

 Reg: Registers; { Record-Typ aus Unit DOS }

 i: Byte;

 Zeile, Spalte: Byte;

begin

 ClrScr;

 Zeile := 5;

 Spalte := 1;

 for i := 0 to 255 do

 begin

 Reg.AH := $02; { Funktion $02: Positionierung des Cursors }

 Reg.BH := 0;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-47

 Reg.DL := Spalte - 1; { Interne Zählung ab 0 }

 Reg.DH := Zeile - 1; { Interne Zählung ab 0 }

 Intr($10, Reg);

 ;

 Reg.AH := $09; { Funktion $09: Zeichen mit Attribut ausgeben }

 Reg.BH := 0; { Bildschirmseite }

 Reg.CX := Wiederholungen;

 Reg.AL := i; { Ascii-Code des Zeichens }

 Reg.BL := i; { Jedes Zeichen mit eigenem Attribut }

 Intr($10, Reg);

 ;

 Inc(Spalte, Wiederholungen);

 if Spalte > 80 then

 begin

 Spalte := 1;

 Inc(Zeile);

 end;

 ;

 end;

 repeat

 until KeyPressed;

 ClrScr;

end.

program Pas27095; { Bildschirmspeicher, Turbo-Pascal, K. Haller }

 { Farbbildschirm }

uses

 CRT;

const

 ZeilenMax = 15;

 SpaltenMax = 80;

 iMax = ZeilenMax * SpaltenMax;

 Waagrechtstrich = '-'; { #196 }

 Senkrechtstrich = '│'; { #179 }

type

 Bildschirm_Typ = array[1..ZeilenMax, 1..SpaltenMax, 0..1] of Char;

 { Zeilen, Spalten, Zeichen [0] und Attribut [1] }

var

 Bildschirm_1,

 Bildschirm_2: Bildschirm_Typ absolute $B800:$0000;

 Bildschirm_3: Bildschirm_Typ; { Farbe: $B800:$0000 }

 { Mono: $B000:$0000 }

 Datei_1,

 Datei_2: file of Bildschirm_Typ;

 Nr: Char;

procedure Bildschirm_aufbauen(Nr: Byte; Zeichen: Char;

 Farbe: Byte; iMax: Word);

var

 i: Word;

begin { Im Datenteil des BIOS steht in }

 ClrScr; { der Adresse 0040:0049 die Kennung }

27-48 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 TextColor(Farbe); { des Bildschirms; Zugriff über }

 { Pseudo-Array »Mem[segment:offset]« }

 for i := 1 to iMax do

 Write(Zeichen);

 GotoXY(20, 3);

 Write(' Bildschirm Nr ', Nr, ' ');

 GotoXY(20, 5);

 Write(' Die Bildschirm-Kennung: ',

 Mem[$0040:$0049]); { »3« bei IBM 8513 }

 GotoXY(20, 7);

 Write(' Die ASCII-Nr des ersten Zeichens: ',

 Ord(Bildschirm_1[1, 1, 0]):4);

 GotoXY(20, 8);

 Write(' Das Attribut des ersten Zeichens: ',

 Ord(Bildschirm_1[1, 1, 1]):4);

 GotoXY(20, 14);

 Write(' Ende mit beliebigem Tastendruck ... ');

end;

procedure Bildschirm_3_aufbauen;

const

 Meldung_3: string = ' Bildschirm Nr 3 ';

var

 i, j: Word;

begin

 ClrScr;

 for i := 1 to ZeilenMax do

 for j := 1 to SpaltenMax do

 begin

 Bildschirm_3[i, j, 0] := Chr(((i - 1)*80 + j) mod 256);

 { ... das Zeichen }

 Bildschirm_3[i, j, 1] := Chr(((i - 1)*80 + j) mod 256);

 { ... das Attribut }

 end;

 for i := 1 to Length(Meldung_3) do

 Bildschirm_3[3, 19 + i, 0] := Meldung_3[i];

end;

begin

 Assign(Datei_1, 'Screen-1.DAT');

 Assign(Datei_2, 'Screen-2.DAT');

 { -------------- Nr 1 -- }

 Bildschirm_aufbauen(1, Waagrechtstrich, LightCyan, iMax);

 Rewrite(Datei_1);

 Write(Datei_1, Bildschirm_1);

 Close(Datei_1);

 { -------------- Nr 2 -- }

 Bildschirm_aufbauen(2, Senkrechtstrich, Yellow, iMax);

 Rewrite(Datei_2);

 Write(Datei_2, Bildschirm_1);

 Close(Datei_2);

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-49

 { -------------- Nr 3 -- }

 Bildschirm_3_aufbauen;

 { -- }

 repeat

 GotoXY(15, 24); Write('Bildschirm 1, 2, 3 (Ende mit 0): ');

 repeat

 Nr := ReadKey;

 until Nr in ['0'..'3'];

 case Nr of

 '1': begin

 Reset(Datei_1);

 Read(Datei_1, Bildschirm_1);

 Close(Datei_1);

 repeat

 until KeyPressed;

 end;

 '2': begin

 Reset(Datei_2);

 Read(Datei_2, Bildschirm_2);

 Close(Datei_2);

 repeat

 until KeyPressed;

 end;

 '3': begin

 Bildschirm_1 := Bildschirm_3;

 repeat

 until ReadKey <> '';

 end;

 end;

 until Nr = '0';

end.

program Pas27096; { BIOS-Interrupt 13H: Diskette/Festplatte }

 { Turbo-Pascal, K. Haller }

 { ---- Der Interrupt 13H hat folgende Funktionen: ------------

 (Die Fortsetzungspunkte ... deuten an, daß weitere

 Informationen benötigt werden)

 00H Reset. Eingabe: Funktionsnummer 00H in AH und Laufwerks-

 nummer in DL.

 Die Laufwerksnummern sind wie folgt festgelegt:

 • bei Disketten: 00H, 01H, usw.

 • bei Festplatten: 80H, 81H, usw.

 Gilt auch für andere Funktionen des Interupts 13H.

 Wirkung: Zurückversetzen des Controllers und des Laufwerks

 in in Einschaltzustand; die Schreib-/Leseköpfe werden auf

 eine definierte Spur gesetzt. Beim Festplatten-Reset wird

 aber auch ein Disketten-Reset durchgeführt. Falls nicht

 erwünscht, dann den mit der Funktion 0DH alternativen

 Festplatten-Reset aufrufen.

27-50 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 Ausgabe: Flag in CF (carry flag), wobei 0 = Erfolg,

 1 = Fehler. In AH Statusbyte wie bei Funktion 01H.

 01H Status lesen. Eingabe (außer 01H in AH) Laufwerks-

 nummer in DL (Diskette 00H, 01H. Festplatte 80H, 81H).

 ---- Ausgabe Statusbyte in AH: ---------

 AH = 00H: Kein Fehler.

 AH = 01H: Nicht erlaubte Funktionsnummer.

 AH = 02H: Adreßmarkierung nicht gefunden.

 AH = 03H: Schreibversuch auf schreibgeschützter Diskette.

 AH = 04H: Sektor nicht gefunden.

 AH = 05H: Reset bei Festplatte nicht möglich.

 AH = 06H: Diskette entfernt.

 AH = 07H: Fehlerhafte Festplatten-Parametertabelle.

 AH = 08H: DMA-Überlauf. DMA = direct memory access.

 AH = 09H: DMA über 64 KByte.

 AH = 0AH: Fehlerhafte Sektor-Flag der Festplatte.

 AH = 0BH: Fehlerhafter Zylinder der Festplatte.

 AH = 0CH: Falscher Diskettentyp.

 AH = 0DH: Fehlerhafte Sektorenzahl im Format Festplatte.

 AH = 0EH: Kontrolldaten-Adreßmarkierung bei Festplatte

 gefunden.

 AH = 0FH: DMA-Level außerhalb gültigem Bereich. Festplatte.

 AH = 10H: Mit CRC oder ECC Lesefehler festgestellt. Prüf-

 summenverfahren CRC = cyclical redundancy check.

 Fehlerkorrekturverfahren ECC = error correction

 code.

 AH = 11H: Fehler in ECC-korrigierten Daten. Festplatte.

 AH = 20H: Controller-Defekt.

 AH = 40H: Positionierfehler.

 AH = 80H: Time-out-Fehler. Laufwerk reagiert nicht in

 Zeitspanne.

 AH = AAH: Bei Festplatte: Laufwerk nicht bereit.

 AH = BBH: Unbekannter Festplattenfehler.

 AH = CCH: Schreibfehler Festplatte.

 AH = E0H: Statusfehler Festplatte.

 AH = FFH: Prüfoperation nicht möglich.

 02H Sektoren lesen ...

 03H Sektoren schreiben ...

 04H Sektoren prüfen ...

 05H Spur (Zylinder) formatieren. Für IBM PS/2 mit ESDI-

 Laufwerken nicht diese, sondern Funktion 1AH verwenden.

 Siehe dort. Durch exotische Formatierangaben läßt sich

 "Kopierschutz" erreichen ...

 06H Nur bei PC/XT: Festplattenspur formatieren ...

 07H Nur bei PC/XT: Festplatte ab bestimmten Zylinder

 formatieren ...

 08H Parameter des Laufwerkes lesen.

 Eingaben (außer 08H in AH) Laufwerksnummer in DL,

 wobei: 80H = erste Festplatte, 81H = zweite Festplatte,

 00H = erste Disk, 01H = zweite Disk usw.

 Ausgaben:

 AH: Statusbyte wie bei Funktion 01H.

 CF: 0 = Erfolg, 1 = Fehler.

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-51

 DL: Anzahl der Laufwerke (an einem Controller)

 DH: Anzahl der Schreib-/Leseköpfe, 0 = erster Kopf usw.

 CH: Bit 0 bis 7 der maximale Zylindernummer (Bit 0 bis 9).

 CL: Bit 6 und 7: Bit 8 und 9 der maximalen Zylindernummer

 Bit 0 bis 5: maximale Sektornummer

 Da ein Sektor standardmäßig 512 Byte umfaßt, kann man die

 Gesamtkapazität der Festplatte nach folgender Formel

 berechnen:

 ║ Kapazität = Köpfe * Zylinder * Sektoren * 512 Byte ║

 Mit den max. 10 Bits der Zylindernummern (Bit 0 bis 9)

 ergeben sich max. 2^10 = 1024 Zylinder (Original-DOS).

 Die max. 6 Bits der Sekorennummern (Bit 0 bis 5) ergeben

 max. 2^6 = 64 Sektoren à 512 Byte. Mit einem Kopf somit

 max. (1024 * 64 * 512 Byte) = 33 554 432 Byte = 32 MByte.

 09H Parameter einer (fremden) Festplatte anpassen.

 Interrupt 41H zeigt auf Tabelle für Laufwerk 80H,

 Interrupt 46H zeigt auf Tabelle für Laufwerk 81H.

 Siehe dort. Nicht für ESDI-Laufwerke bei IBM PS/2-

 Rechnern verwenden ...

 0AH "Lange" Sektoren lesen. Ein langer Sektor besteht aus

 einem Sektor mit Daten und einem 4 oder 6 Bytes langen

 Fehlerkorrekturcode (ECC) ...

 0BH "Lange" Sektoren schreiben ...

 0CH Auf Zylinder der Festplatte positionieren ...

 0DH Alternativer Festplatten-Reset.

 Siehe auch Funktion 00H ...

 10H Festplattenlaufwerk bereit? ...

 11H Festplattenlaufwerk neu kalibrieren ...

 14H Diagnose Controller ...

 15H Feststellen des Laufwerk-Typs ...

 16H Diskettenwechsel erkennen ...

 17H Diskettentyp für Formatieren festlegen

 5,25-Zoll: 360 KByte, 1,20 MByte,

 3,50-Zoll: 720 KByte, 1,44 MByte ...

 18H Disketten-/Plattenparameter für Formatieren festlegen ...

 19H Festplattenköpfe auf Parkspur. Nur für IBM PS/2.

 Eingabe: 19H in AL, Laufwerksnummer (80H, 81H) in DL.

 Ausgabe: Fehlerflag in CF, mit 0 = Erfolg, 1 = Fehler.

 Statusbyte in AH.

 1AH ESDI-Laufwerk formatieren. Nur für IBM PS/2 mit "Enhanced

 Small Device Interface"-Adapter ...

 --

 Es wird hier demonstriert:

 • Funktion 08H: Parameter des Laufwerks abfragen

 }

uses

 CRT, DOS; { Unit DOS für Interrupt-Aufrufe }

var

 Reg: Registers; { Record-Typ aus Unit DOS }

 Laufwerke: Byte;

 Ch: Char;

27-52 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 Laufwerk: Byte;

 Zylinder,

 Sektoren,

 Koepfe,

 Speicher: LongInt;

function Bit(Acht_Bit_Register: Byte; i: Byte): Boolean;

begin

 if Acht_Bit_Register and (1 shl i) = 1 shl i

 then Bit := True

 else Bit := False

end;

begin

 ClrScr;

 WriteLn('--- Interrupt 13H, Funktion 08H ---');

 Write('Eingabe Laufwerk (A, B, C, D): ');

 repeat

 Ch := UpCase(ReadKey);

 until Ch in ['A'..'D'];

 WriteLn(Ch);

 case UpCase(Ch) of

 'A': Laufwerk := $00;

 'B': Laufwerk := $01;

 'C': Laufwerk := $80; { Bei Festplatten ist das }

 'D': Laufwerk := $81; { höchste Bit auf 1 gesetzt }

 end;

 Reg.DL := Laufwerk;

 Reg.AH := $08; { Funktion 08H: Parameter der Festplatte lesen }

 Intr($13, Reg);

 { Nachfolgend wird die Konstante "FCarry" aus der Unit DOS

 benutzt. Sie ist dort wie folgt definiert: FCarry = $0001

 »Flags« ist ein Feldbezeichner für den ebenfalls in DOS

 definierten Record-Typ »Registers« }

 WriteLn('Das Statusbyte (0 = in Ordnung): ', Reg.AH:2);

 if Reg.Flags and FCarry = 1 { Carry-Flag abfragen }

 then WriteLn('Carry-Flag auf 1. Fehler.')

 else begin

 WriteLn('Carry-Flag auf 0. Kein Fehler');

 Laufwerke := Reg.DL;

 Koepfe := Reg.DH + 1; { da Zählung ab 0 }

 Zylinder := Reg.CH;

 if Bit(Reg.CL, 6) then Zylinder := Zylinder + 256;

 if Bit(Reg.CL, 7) then Zylinder := Zylinder + 512;

 Zylinder := Zylinder + 1; { da Zählung ab 0 }

 Sektoren := (Reg.CL shl 2) shr 2; { Zählung ab 1 }

 WriteLn('Anzahl der Laufwerke: ', Laufwerke:13);

 WriteLn('Anzahl der Köpfe: ', Koepfe:13);

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-53

 WriteLn('Anzahl der Zylinder: ', Zylinder:13);

 WriteLn('Anzahl der Sektoren: ', Sektoren:13);

 Speicher := Koepfe * Zylinder * Sektoren * 512;

 WriteLn('Speicher in KByte: ', Speicher div 1024:16);

 end;

 WriteLn('-----------------------------------');

 repeat

 until ReadKey <> '';

end.

27.10 Weitere Demo-Programme B

program Pas27101; { Interrupt $12: Speicherkapazität abfragen }

 { Turbo-Pascal K. Haller }

 { Mit diesem Interrupt kann nur die Größe des konventionellen

 Speichers (Basisspeicher, 0..639 KByte) ermittelt werden.

 Ausgabe in KByte.

 }

uses

 CRT, DOS;

var

 Reg: Registers; { Record-Typ aus Unit DOS }

begin

 ClrScr;

 Intr($12, Reg);

 WriteLn('Der konventionelle Speicher in KByte: ', Reg.AX);

 repeat

 until ReadKey <> '';

end.

program Pas27102; { Cursor ON/OFF mit Interrupt $10 }

 { Turbo-Pascal kha }

 { Im Interrupt $10 (dez 016) wird die Farbpalette des Bildschirms

 festgelegt. Der Interrupt hat 16 Funktionen. Die Funktion $03

 ermittelt die aktuelle Cursorposition und die Größe des Cursors,

 wogen mit der Funktion $01 die Cursorgröße bestimmt werden kann.

 }

uses

 CRT, DOS; { Unit DOS für Interrupt-Aufruf }

var

 Cursor_LinieBeginn,

 Cursor_LinieEnde,

 Zeile, Spalte: Byte;

 Register: Registers; { Datentyp aus Unit DOS }

procedure Cursor_Ermitteln; { • Funktion $03: Position und Größe }

begin { des Curors auslesen }

27-54 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 Register.AH := $03; { • Die Cursorlinien werden in der }

 Intr($10, Register); { Zeichenmatrix von oben gezählt. }

 Cursor_LinieBeginn := Register.CH;

 Cursor_LinieEnde := Register.CL;

 Zeile := Register.DH + 1; { plus 1, da Zählung ab 0 }

 Spalte := Register.DL + 1; { plus 1, da Zählung ab 0 }

end;

procedure Cursor_EIN;

begin

 Register.AH := $01;

 Register.CH := Cursor_LinieBeginn;

 Register.CL := Cursor_LinieEnde;

 Intr($10, Register);

end;

procedure Cursor_AUS; { • Funktion $01: Größe Blink-Cursor setzen }

begin { • Normale Werte: mono: 0..13, $00..$0C }

 Register.AH := $01; { color: 0..7, $00..$07 }

 Register.CH := $0D; { • Durch "unmögliche" Werte verschwindet }

 Register.CL := $00; { Cursor. Auch möglich: Mit Funktion $02 des }

 { Intr $10 außerhalb Bildschirm setzen. }

 Intr($10, Register);

end;

procedure Cursor_Spezial;

begin

 Register.AH := $01;

 Register.CH := 2;

 Register.CL := 7;

 Intr($10, Register);

end;

begin

 ClrScr;

 Cursor_Ermitteln;

 Cursor_AUS;

 Write('Cursor unsichtbar. Drücke Return ... '); ReadLn;

 Cursor_EIN;

 Write('Cursor sichtbar. Drücke Return ... '); ReadLn;

 Cursor_Spezial;

 Write('Cursor spezial. Drücke Return ... '); ReadLn;

 Cursor_EIN;

 Write('Cursor normal. Drücke Return ... '); ReadLn;

end.

program Pas27103; { Drucker-Interrupt $17 }

 { Turbo-Pascal, K. Haller }

 { Der Druckerstatus wird im Register AH zurückgeliefert.

 Die Bits 1 und 2 werden nicht benutzt. Die Bedeutung

 der anderen Bits wird im Programm erklärt. }

uses

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-55

 CRT, DOS;

type

 Str8 = string[8];

var

 BinaerString: Str8;

 Reg: Registers; { »Registers«: ein Record-Typ

 aus der Unit »DOS« }

function BinStr(Dezimalzahl: Byte): Str8; { ────────────┐}

var {│}

 Temp: Str8; {│}

 i: Byte; {│}

begin {│}

 Temp := '00000000'; {│}

 for i := 0 to 7 do {│}

 if Dezimalzahl and (1 shl i) = 1 shl i {│}

 then Temp[8 - i] := '1'; {│}

 BinStr := Temp; {│}

end; {──┘}

begin

 ClrScr;

 Reg.DX := $0000; { $0000 = Drucker 1, (paraller Drucker)

 $0001 = Drucker 2 usw. }

 Reg.AH := $02; { Funktion $02 des Drucker-Interrupt $17 }

 { = Druckerstatus abfragen }

 Intr($17, Reg);

 WriteLn('Der Druckerstatus: ', Reg.AH, ' in binär: ',

 BinStr(Reg.AH));

 WriteLn;

 if Reg.AH and (1 shl 0) = 1 shl 0 { Test Bit 0 }

 then WriteLn('Statusbit 0: Time-Out-Fehler')

 else WriteLn('Statusbit 0: Kein Time-Out-Fehler');

 WriteLn('Statusbit 1: Nicht benutzt');

 WriteLn('Statusbit 2: Nicht benutzt');

 if Reg.AH and (1 shl 3) = 1 shl 3 { Test Bit 3 }

 then WriteLn('Statusbit 3: Übertragungsfehler')

 else WriteLn('Statusbit 3: Kein Übertragungsfehler');

 if Reg.AH and (1 shl 4) = 1 shl 4 { Test Bit 4 }

 then WriteLn('Statusbit 4: Drucker On-Line')

 else WriteLn('Statusbit 4: Drucker nicht On-Line');

 if Reg.AH and (1 shl 5) = 1 shl 5 { Test Bit 5 }

 then WriteLn('Statusbit 5: Drucker hat kein Papier')

 else WriteLn('Statusbit 5: Drucker hat Papier');

 if Reg.AH and (1 shl 6) = 1 shl 6 { Test Bit 6 }

 then WriteLn('Statusbit 6: Empfang bestätigt')

 else WriteLn('Statusbit 6: Empfang nicht bestätigt');

 if Reg.AH and (1 shl 7) = 1 shl 7 { Test Bit 7 }

27-56 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 then WriteLn('Statusbit 7: Drucker ist nicht beschäftigt')

 else WriteLn('Statusbit 7: Drucker ist beschäftigt');

 repeat

 until ReadKey <> '';

end.

program Pas27104; { ROM-Basic mit Interrupt 18h starten }

 { ROM-Basic ist eine Minimalversion von Basic. Wie der Name

 besagt, befindet sich dieses Basic fest in ROM, aber nur bei

 IBM PCs und einigen Clones. Wenn ROM-Basic nicht existiert,

 führt der Aufruf von Interrupt 18h zu einem Systemabsturz.

 Im Gegensatz zum ladbaren Basic kann ROM-Basic nicht mit dem

 sonst dafür vorgesehenen Basic-Befehl "SYSTEM" verlassen

 werden; es ist ein Kaltstart erforderlich.

 Das Beispiel »ROM-Basic« wurde nur der Kuriosität wegen in die

 Sammlung aufgenommen.

 Turbo-Pascal, K. Haller }

uses

 CRT, DOS;

var

 Reg: Registers; { »Registers« vordefinierter Recordtyp

 aus der Unit DOS }

begin

 ClrScr;

 GotoXY(5, 5);

 WriteLn(#7, 'Achtung: Nach folgenden Interrupt-Aufruf 18h für');

 GotoXY(5, 6);

 WriteLn('Start ROM-Basic k e i n e Rückkehr am Basic-Ende.');

 GotoXY(5, 7);

 Write('Kaltstart notwendig! Drücke Taste Return ... ');

 repeat

 until ReadKey = #13;

 Intr($18, Reg);

end.

program Pas27105; { früher "Mem_Dump" Speicherauszug }

 { Dr. K. Haller }

uses

 CRT;

const

 SegmentMax = 1 shl 16; { = 65.536 }

 AdressePhysischMax20Addr = 1 shl 20 - 1; { = 1.048.576 - 1 }

 { Max. Adresse bei 20 Adressleitungen, "A0" bis "A19" }

 { (interne Zählung ab 0), z.B. beim i8086. Bei mehr als }

 { 20 Adressleitungen (alle Prozessoren ab i80286) kann }

 { mit der segmentierten Adressierung (Format "ssss:oooo") }

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-57

 { und der 21. Adressleitung "A20" noch ein weiteres 64- }

 { KByte-Segment (HMA = High Memory Area) adressiert }

 { werden. Bei der Adresse }

 { "FFFF:FFFF" = 16*($FFFF) + $FFFF = 1.114.095 }

 { ist aber mit der DOS-Adressierung (max. je vier Hex- }

 { Ziffern = 16 bit für Segment und Offset) Schluss. }

 { Das ROM-BIOS (Basic Input Output System) liegt immer }

 { im Segment "F000" und endet mit "F000:FFFF", also der }

 { höchsten Speicherstelle. In den letzten Bytes steht im }

 { Format "mm/tt/jj" das Freigabedatum, dann folgen noch }

 { drei Bytes. Der Beginn des ROM-BIOS ist hersteller- }

 { spezifisch. BIOS-Erweiterungen liegen in den Segmenten }

 { "C000", "D000" und "E000". }

 AdressePhysischMaxMitHMA = 16*$FFFF + $FFFF; { = 1.114.095 }

 BildschirmSegment = $B800; { Text-Farbbildschirm }

var

 Spalte, Zeile: Byte;

 BildschirmOffset: Word;

 AdressePhysisch: LongInt;

 Segment: LongInt; { Nur für Fehlerprüfung, sonst "Word" }

 OffsetStart,

 OffsetParagraph,

 i, IOFehler: Word;

 B: Byte; { Inhalt der Speicherzelle }

 Ch: Char;

procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);

begin

 GotoXY(Spalte, Zeile);

 Write(Meldung);

end;

function Dez_HexStr(x: Word; L: Byte): string;

var

 TempStr: string;

begin

 TempStr := '';

 while x <> 0 do

 begin

 TempStr := Copy('0123456789ABCDEF', (x mod 16) + 1, 1) +

 TempStr;

 x := x div 16;

 end;

 while Length(TempStr) < L do

 TempStr := '0' + TempStr;

 Dez_HexStr := TempStr;

end;

procedure SpeicherInfos(AdressePhysisch: LongInt);

procedure Info(s1, s2: string);

begin

 TextColor(Yellow);

 s1 := 'Hintergrund der Hex-Codes ' + s1;

27-58 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 WriteXY(3, 3, s1); ClrEol;

 GotoXY(3, 4); ClrEoL;

 WriteXY(3 + Pos(':', s1) + 1, 4, s2); ClrEoL;

end;

begin

 if (AdressePhysisch >= 0) and { Interrupt-Vektoren }

 (AdressePhysisch < 1024) then { in anderer Farbe }

 begin

 Info('cyan: Arbeitsspeicher bis 1 KByte',

 'Interruptvektoren');

 TextBackground(Cyan);

 end;

 if (AdressePhysisch >= 1024) and

 (AdressePhysisch < 640*1024) then

 begin

 Info('grün: Arbeitsspeicher von 1 KByte bis 640 KByte', '');

 TextBackground(Green);

 end;

 if (AdressePhysisch >= 640*1024) and

 (AdressePhysisch < 16*BildschirmSegment) then

 begin

 Info('braun: Hoher Speicherbereich UMA von 640 KByte',

 'bis Bildschirmspeicher');

 TextBackground(Brown);

 end;

 if (AdressePhysisch >= 16*BildschirmSegment) and

 (AdressePhysisch <= 16*BildschirmSegment + 4000) then

 begin

 Info('hellgrau: Bildschirmspeicher',

 'Ab Segment $B800, 4000 Byte');

 TextBackground(LightGray);

 end;

 if (AdressePhysisch >= 16*BildschirmSegment + 4000) and

 (AdressePhysisch <= 16*$C000) then

 begin

 Info('braun: Weiterer Video-RAM-Bereich', '');

 TextBackground(Brown);

 end;

 if (AdressePhysisch >= 16*$C000) and

 (AdressePhysisch <= AdressePhysischMax20Addr) then

 begin

 Info('magenta: Hoher Speicherbereich UMA nach Bildschirm-',

 'speicher. ROM-BIOS und BIOS-Erweiterungen');

 TextBackground(Magenta);

 end;

 if (AdressePhysisch > AdressePhysischMax20Addr) then

 begin

 Info('rot: High Memory Area HMA, 64 KByte ab 1024 KByte',

 'Nur mit 21. Adressleitung "A20"');

 TextBackGround(Red);

 end;

end;

Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal 27-59

procedure Vorspann;

begin

 TextColor(White); TextBackground(Blue); ClrScr;

 WriteXY(10, 5, 'Programm zum Betrachten des DOS-Speichers');

 WriteXY(10, 7, 'Bei Hex-Eingaben Pascal-Vorsatzzeichen $');

 TextColor(Yellow);

 WriteXY(50, 7, '$');

 TextColor(White);

 repeat

 WriteXY(10, 9, 'Eingabe Start-Segment (Beispiel ');

 TextColor(Yellow); Write('$F000');

 TextColor(White); Write('): '); ClrEoL;

 {$I-}

 ReadLn(Segment);

 IOFehler := IOResult;

 {$I+}

 if IOFehler = 0 then if Segment < 0

 then IOFehler := 4711;

 if IOFehler = 0 then if Segment >= SegmentMax

 then IOFehler := 4711;

 until IOFehler = 0;

end;

begin { ------------- Hauptprogramm --------------------- }

 Vorspann;

 ClrScr;

 TextColor(Yellow); WriteXY(1, 5, ' Segm:Offs ');

 TextColor(LightGray);

 WriteXY(13, 5, ' 00 01 02 03 04 05 06 07 08 09' +

 ' 0A 0B 0C 0D 0E 0F 0123456789ABCDEF');

 TextColor(LightGray);

 WriteXY(3, 25, 'Ende mit Esc, weiter mit ' +

 'beliebiger Taste ... ');

 TextColor(Yellow); WriteXY(12, 25, 'Esc');

 TextColor(White); TextBackground(Blue);

 WriteXY(1, 1, 'FH München, Stg Druckereitechnik, Dr. K. Haller');

 WriteXY(77, 25, 'XXX');

 repeat

 GotoXY(3, 6);

 ;

 for OffsetParagraph := 0 to 4095 do { 0 bis 65535 Byte }

 begin

 OffsetStart := OffsetParagraph * 16;

 TextColor(LightGray);

 WriteXY(3, WhereY, Dez_HexStr(Segment, 4) + ':');

 Write(Dez_HexStr(OffsetStart, 4));

 for i := 0 to 15 do { 16 Bytes in einer Zeile darstellen }

 begin

 Spalte := WhereX;

 Zeile := WhereY;

 B := Mem[Segment:OffsetStart + i];

27-60 Dr. K. Haller Turbo-Pascal Kap. 27: Systemnahe Programmierung in Pascal

 AdressePhysisch := 16 * Segment + OffsetStart + i;

 ;

 SpeicherInfos(AdressePhysisch);

 ;

 GotoXY(Spalte, Zeile);

 ;

 WriteXY(14 + 3*i, WhereY, Dez_HexStr(B, 2));

 if i < 15 then Write(' ');

 ;

 { Alle Zeichen in Bildschirmspeicher }

 BildschirmOffset := (WhereY - 1)*160 + (62 + i)*2;

 Mem[BildschirmSegment:BildschirmOffset] := B;

 { Code des Zeichens }

 Mem[BildschirmSegment:BildschirmOffset + 1] := Yellow;

 { Attribut des Zeichens }

 TextBackground(Blue);

 end;

 if WhereY < 22 then WriteLn;

 if WhereY = 22 then

 begin

 TextColor(Yellow);

 WriteXY(59, 22, '¦¦ ');

 WriteXY(59, 23, '+- Physische Adresse ');

 GotoXY(62, 24); Write('dez ', AdressePhysisch);

 GotoXY(49, 25);

 Ch := ReadKey;

 if Ch = #27

 then Halt(0)

 else GotoXY(1, 6);

 end;

 end;

 ;

 Segment := Segment + (1 shl 12);

 { (1 shl 12) = 4096 = 65536 div 16 }

 if Segment > 65535 { Notwendige Minus-1-Korrektur für }

 then Segment := 65535; { Segment, das in HMA hineinreicht }

 until AdressePhysisch = AdressePhysischMaxMitHMA;

 GotoXY(3, 25); ClrEoL;

 WriteXY(3, 25, #7 + 'Beenden mit beliebigem ' +

 'Tastendruck ... ');

 GotoXY(WhereX - 7, WhereY);

 repeat

 until ReadKey <> '';

end.

70180609 Dr. K. Haller

