
Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe 24-1

 24 Vermischtes

 Fehlerbehandlung

 Parameterübergabe

 Zugriff auf die Umgebungsvariablen (Environment)

 Aufruf eines anderen Programms mit Exec

 Kommandozeilen-Compiler

Gliederung

24.1 Fehler und Fehlerbehandlung ... 2

24.2 Parameterübergabe .. 4

24.3 Zugriff auf die Umgebungsvariablen (Environment) 7

24.4 Aufruf eines anderen Programms mit Exec, auch Command.COM .. 8

24.5 Der Kommandozeilen-Compiler .. 11

24-2 Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe

24.1 Fehler und Fehlerbehandlung

In diesem Kapitel werden nur die Laufzeitfehler behandelt (das sind die Fehler, die

beim Ablauf eines compilierten Programmes auftreten) und nicht die Fehler, die der

Compiler während der Compilation entdeckt und danach die Compilierung abbricht.

Beim Auftreten eines Laufzeit-Fehlers wird das Programm mit der Meldung

 Runtime error nnn at ssss:oooo

abgebrochen. nnn steht für einen maximal dreistelligen Fehlercode, ssss und oooo für

die Segment- und die Offsetadresse (in hex) des Befehls, bei dem der Fehler auftrat.

Diese Meldung ist dann von Nutzen, wenn man den Quellcode nicht besitzt und für die

Fehlersuche ein eigenständiger Debugger, z.B. der Turbo-Debugger eingesetzt werden

kann.

Turbo-Pascal unterscheidet zwei Klassen von Laufzeitfehlern:

• Eingabefehler/Ausgabefehler (Input/Output-Errors). Sie haben Fehlercodes

zwischen 1 und 199 und können mit dem Compilerschalter {$I-} im Programm

abgefangen und somit eventuell auch korrigiert werden.

• Fehler mit sofortigem Abbruch (Fatal Errors). Sie haben Fehlercodes zwischen

200 und 255 und sind durch programmtechnische Maßnahmen nicht korrigierbar.

24.1.1 Die Ein- und Ausgabefehler

Wenn man vor der Ein- oder Ausgabeoperation den Input/Output-Compilerschalter auf

Minus setzt {$I-} (Standardeinstellung: {$I+}), dann können Ein- und Ausgabe-

fehler mit der Standardfunktion »IORresult« abgefragt und unter Umständen

behoben werden. Anschließend ist der Input/Output-Compilerbefehl wieder auf seine

Standardeinstellung {$I+} zu setzen. In der Standardeinstellung wird bei jeder Input/-

Output-Operation eine Prüfroutine aufgerufen, die im Fehlerfall das Programm mit dem

zutreffenden Fehlercode abbricht.

Bei fehlerfreier Input/Output-Operation liefert IOResult den Wert 0, ansonsten

einen Wert zwischen 1 und 199 nach der späteren Auflistung. Der Fehlercode kann auf

eine Variable mit dem Datentyp Word zugewiesen werden. Letzeres ist notwendig,

wenn nach mehr als einer Fehlermöglichkeit abgefragt werden muß, da die Funktion

IOResult nach jedem Aufruf wieder den Wert 0 annimmt.

Dazu ein Beispiel:

program Pas24011; { Druckerfehler }

uses

 CRT, PRINTER;

var

 Fehlercode: Word;

Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe 24-3

begin

 ClrScr;

 repeat

 {$I-}

 WriteLn(Lst, 'Ausgabeversuch auf Drucker');

 Fehlercode := IOResult;

 {$I+}

 case Fehlercode of

 0: WriteLn('K e i n Druckerfehler');

 159: WriteLn('Druckerfehler 159: Out of Paper');

 160: WriteLn('Fehler 160: Allgemeiner Peripheriefehler');

 else WriteLn('Sonstiger Fehler, Fehlercode: ', Fehlercode);

 end;

 repeat until ReadKey <> '';

 if Fehlercode <> 0 then

 begin

 Write('Fehler beheben. Wenn fertig Taste Enter');

 repeat

 until ReadKey = #13;

 WriteLn; WriteLn;

 end;

 until Fehlercode = 0;

end.

Die Ein- und Ausgabefehler (genaue Beschreibung siehe Online-Hilfe):

2 File not found
3 Path not found
4 Too many files (zu viele Dateien gleichzeitig geöffnet. Siehe Config.SYS)
5 File access denied (Dateizugriff verweigert)
6 Invalid file handle (wahrscheinlich Dateivariable zerstört)
12 Invalid file access mode (ungültigerDateimodus)
15 Invalid drive number (unzulässige Laufwerkskennung)
16 Cannot remove current directory (Verzeichnis kann nicht gelöscht werden)
17 Cannot rename across drives (Rename nicht möglich)

100 Disk read error
101 Disk write error
102 File not assigned (Datei-Variable keinem DOS-Namen zugeordnet)
103 File not open
104 File not open for input
105 File not open for output
106 Invalid numeric format (ungültiges numerisches Format)

150 Disk is write protected (Diskette ist schreibgeschützt)
151 Unknown Unit (Peripheriegerät nicht bekannt/angeschlossen)
152 Drive not ready (Laufwerk nicht betriebsbereit)
153 Unknown command (ungültiger DOS-Code)
154 CRC error in data (Prüfsummenfehler beim Lesen Diskette/Platte)
155 Bad drive request structure length (ungültiger Disk-Parameterblock)
156 Disk seek error (Positionierfehler)
157 Unknown media type (unbekanntes Sektorformat)
158 Sector not found

24-4 Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe

159 Printer out of paper
160 Device write fault (Schreibfehler bei Peripheriegerät)
161 Devive read fault (Lesefehler bei Peripheriegerät)
162 Hardware failure (nicht genau bestimmbarer Hardware-Fehler)

24.1.2 Die Fehler mit sofortigem Abbruch

 Fatal Errors. Genaue Beschreibung siehe Online-Hilfe

Diese Fehler lassen sich nicht korrigieren und haben Fehlercodes zwischen 200 und

255.

200 Division by zero (Division durch Null)

201 Range check error (Fehler bei der Bereichsüberprüfung)

202 Stack overflow error (Stackspeicher reicht nicht mehr aus)

203 Heap overflow error (Heapspeicher reicht nicht mehr aus)

204 Invalid pointer operation (fehlerhafte Zeiger-Operation)

205 Floating point overflow (Überlauf bei Fließkomma-Daten)

206 Floating point underflow (Unterlauf bei Fließkomma-Daten, bei 80x87)

207 Invalid floating point operation (Fließkomma-Fehler)

208 Overlay manager not installed (keine Overlay-Verwaltung)

209 Overlay file read error

24.2 Parameterübergabe

Jedem ausführbaren DOS-Programm (Extension COM, EXE, und BAT) können optional

Parameter übergeben werden.

Zur Erinnerung: Das Formatieren einer Diskette im Laufwerk A kann z.B. wie folgt

geschehen:

FORMAT A: /V:name

An den EXE-File »FORMAT« des Betriebssystem wurden zwei Parameter übergeben,

einmal die Laufwerkskennung »A:« und der Switch »/V«, mit dem der Diskette nach

dem Formatieren ein Name gegeben werden kann. Als Trennzeichen zwischen dem

Befehl und den Parametern dienten ein oder mehrere Leerzeichen.

In ähnlicher Weise können an kompilierte Pascal-Programme (Dateien mit der Exten-

sion .EXE) beim Aufruf Parameter übergeben werden, auf die im Programm reagiert

werden kann.

Für das Handhaben der Parameter dienen in Turbo-Pascal die beiden Funktionen

• ParamCount

• ParamStr(nummer)

Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe 24-5

Die Funktion »ParamCount« liefert die Anzahl der übergebenen Parameter mit dem

Datentyp Word, wobei als Trennzeichen zwischen den Parametern nur zählen: Leer-

zeichen (eines oder mehrere) oder Tabulatoren.

Die Parameter werden immer als Strings übergeben. Gegebenenfalls sind Ziffernstrings

im Programm mit »Val« in Numerik zu konvertieren. Die üblichen Trennzeichen für

String-Konstanten (in Basic und C das Anführungszeichen »"«, in Pascal das Hoch-

komma »'«) werden nur als normale Textzeichen und nicht als Trennzeichen inter-

pretiert.

Beispiel: Es liege ein Exe-File »TEST.EXE« vor. Beim Aufruf von der DOS-Kom-

mandozeile aus mit:

 TEST Huber Maier

 werden die zwei Parameter »Huber« und »Maier« übergeben. Die Funk-

tion »ParamCount« liefert den Wert 2.

 Beim Aufruf mit:

 TEST Huber A:\Lager.DAT '80335 München'

 werden die vier Parameter »Huber«, »A:\Lager.DAT«, »'80335« und

»München'« übergeben (das Hochkomma wird nicht als Trennzeichen

interpretiert). Die Funktion »ParamCount« liefert somit den Wert 4.

Den Parameter-String selbst liefert die Funktion »ParamStr(nummer)«

Mit dem letzten Beispiel:

ParamStr(1) ─────> Huber

ParamStr(2) ─────> A:\Lager.DAT

ParamStr(3) ─────> '80335

ParamStr(4) ─────> München'

Wenn »nummer« (Word-Ausdruck) den Wert 0 hat, dann liefert diese Funktion den

Namen des laufenden Programms.

Für die Programmerstellung in der Turbo-Pascal-Entwicklungsumgebung besteht die

Möglichkeit, über Menüpunkt

 »Start/Parameter...« im Fenster »Kommandozeilenparameter«

Parameter einzugeben und somit den Programmlauf des EXE-Files zu simulieren. Diese

Einstellungen können jederzeit geändert werden. Sie sollten aber nicht mit »Option/-

Speichern« abgespeichert werden.

24-6 Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe

program Pas24021; { Kap. 24.2: Parameterübergabe }
uses
 CRT;

var
 s: string;
 i, n: Word;

begin
 ClrScr;

 n := ParamCount;

 if n = 0
 then WriteLn('Es wurde kein Parameter übergeben')
 else for i := 1 to n do
 begin
 WriteLn('Der Parameter ', i, ': ', ParamStr(i));

 if ParamStr(i) = 'Huber'
 then WriteLn(#7, 'Parameter »Huber« übergeben');
 end;

 WriteLn('Der Parameterstring Nr. 0: ', ParamStr(0));
 { Der Name des laufenden Programms }

 repeat
 until ReadKey <> '';
end.

program Pas24022; { Parameterübergabe. Logarithmusberechnung }
 { Für praktische Anwendungen: Nach dem Kompilieren auf }

 { "Destination Disk" EXE-File umbenennen in "Log.EXE" }
 { Aufrufbeispiel in DOS-Eingabezeile: Log 0.3 }

uses
 CRT;

var { In diesem einfachen Programm nur globale Variablen }
 n: Word;
 s: string;
 x: Real;
 Fehlercode: Word;

procedure Ausgabe;
begin
 WriteLn('Dek. Logarithmus von ', x, ': ', Ln(x) / Ln(10));

 repeat
 until ReadKey <> '';
end;

procedure Eingabe;
begin
 repeat
 Write('Eingabe Zahl für Logarithmusberechnung > 0: ');
 ReadLn(s);

 Val(s, x, Fehlercode);
 until (Fehlercode = 0) and (x > 0);
end;

begin
 ClrScr;

Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe 24-7

 n := ParamCount;

 if n = 1
 then begin
 Val(ParamStr(1), x, Fehlercode);
 if (Fehlercode = 0) and (x > 0)
 then Ausgabe
 else begin
 Eingabe;
 Ausgabe;

 end;
 end
 else begin
 Eingabe;

 Ausgabe;
 end;
end.

24.3 Zugriff auf die Umgebungsvariablen

 Der Umgebungsspeicher (Environment)

Mit Hilfe der Unit DOS und der dort definierten Funktionen EnvCount, EnvStr()

und GetEnv() kann in Turbo-Pascal auf die Variablen des Umgebungsspeichers

(engl. Environment) zugegriffen werden. Das folgende Demo-Programm zeigt den

Zugriff. Siehe auch Befehl SET im Kap. Betriebssystem MS-DOS.

program Pas24031; { Environment-Test mit Unit DOS }

uses

 CRT, DOS;

const

 UmgebVariable = 'PATH'; { DOS: groß/klein beliebig }

 { 'COMSPEC', 'PATH', 'DIR', 'PROMPT', 'DIRCMD', 'TEMP' }

var

 i, iMax: Integer;

begin

 ClrScr;

 iMax := EnvCount; { Anzahl der Einträge in der Environmenttabelle }

 WriteLn('------ Das Environment ------- ');

 for i := 1 to iMax do { Zählung ab 1 }

 WriteLn(i, ' ', EnvStr(i));

 WriteLn;

 WriteLn('Der Wert der Umgebungs-Variablen ', UmgebVariable,

 ': ', GetEnv(UmgebVariable));

 repeat

 until ReadKey <> '';

end.

24-8 Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe

24.4 Aufruf eines anderen Programms mit Exec

Mit der Standardprozedur Exec (Execute, benötigt Unit "DOS") kann innerhalb eines

Pascal-Programms ein anderes ausgeführt werden. Beim Aufruf können optional Kom-

mandozeilenparameter übergeben werden.

Format: Exec(programmname, parameter)

programmname Stringausdruck. Name des Programms. Zwingend mit Extension

(.COM, .EXE, .BAT), ggf. mit Laufwerkskennzeichnung und Zu-

griffspfad.

parameter Stringausdruck. Kommandozeilenparameter. Wenn keine existie-

ren, ist »´´« (leerer String) einzugeben, ansonsten müssen sie mit

»/C« eingeleitet werden.

Fehler bei der Ausführung können über die Funktion DOSError (Unit DOS) abgefragt

werden. Die mögliche Werte und die Erklärungen zeigt folgende Tabelle:

DOSError Erklärung DOSError Erklärung

2 Datei nicht gefunden 8 Nicht genug Arbeitspeicher
3 Pfad nicht gefunden 10 Ungültige Umgebung
5 Zugriff verweigert 11 Ungültiges Format
6 Ungültiges Handle 12 Keine weiteren Dateien

Wichtig:

• Im Pascal-Programm, das Exec() benutzt, muß unbedingt eine maximale Heap-

Einstellung vorgenommen werden, entweder über Menüeinstellung oder mit dem

Compilerbefehl »{$M stack, heapMin, heapMax}«. Anderenfalls wird der

gesamte Speicher als belegt angenommen und der Aufruf mit Exec führt zum

DOSError 8: »Kein Platz im Hauptspeicher«. Die maximale Heapgröße sollte so

klein wie möglich gewählt werden, ggf. auch 0, wenn das aufzurufende Programm

großen Speicherbedarf besitzt.

• Turbo-Pascal besetzt einige Interrupt-Vektoren (Behandlung der Interrupt-Vektoren

erst in Kap. "Systemnahe Programmierung"). Damit diese nicht vom aufgerufenen

Programm benutzt oder verändert werden können, empfiehlt es sich, diese Interrupt-

Vektoren vor dem Aufruf von Exec() mit den der Standardprozedur

 SwapVectors

 zu sichern und nach dem Aufruf mit der gleichen Prozedur wieder herzustellen.

SwapVectors ist in der Unit DOS deklariert.

{$M 16384,0,0} { Compilerbefehl $M wegen Begrenzung des Heaps

 unbedingt notwendig. Hier "HeapMin" und

 "HeapMax" auf 0, also kein Heap }

program Pas24041; { Aufruf des MS-DOS-Kommandointerpreters }

 { "Command.COM" mit und ohne Parameter }

Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe 24-9

uses

 CRT, DOS; { Unit DOS für: SwapVectors,

 Exec(),

 DOSError,

 DOSExitCode }

procedure Fehlerbehandlung;

begin

 if DOSError <> 0

 then WriteLn(#7#13#10, 'DOSError: ', DOSError);

 if DOSExitCode <> 0 then

 begin

 WriteLn(#7#13#10, 'DOSExitcode: ', DOSExitCode);

 { Es folgt der Aufruf der Standardfunktionen "Lo()" }

 { und "Hi()". Sie liefern als Byte-Typ den Low- bzw. }

 { High-Teil eines Word- oder Integertypen }

 WriteLn('Der Low-Teil: ', Lo(DOSExitCode));

 WriteLn('Der High-Teil: ', Hi(DOSExitCode));

 WriteLn('Der Low-Teil ist der "normale" Exitcode');

 WriteLn('Der High-Teil kann nur annehmen: ');

 WriteLn(' 0 = Normales Programmende');

 WriteLn(' 1 = Abbruch mit Strg-C ');

 WriteLn(' 2 = Gerätefehler ');

 WriteLn(' 3 = Keep-Prozedur für TSR');

 end;

 if (DOSError <> 0) or (DOSExitCode <> 0)

 then repeat until ReadKey <> '';

end;

begin

 ClrScr;

 TextColor(Yellow);

 Write(#13#10#13#10, '1. Aufruf DOS-Kommandointerpreter ' +

 'mit internem Befehl "dir": ');

 repeat until ReadKey <> '';

 WriteLn;

 SwapVectors; { Interrupt-Vektoren sichern }

 Exec('C:\Command.COM', '/C dir /W'); { Aufruf mit Befehl }

 SwapVectors; { Wieder alte Interrupt-Vektoren }

 Fehlerbehandlung;

 Write(#13#10#13#10, '2. Aufruf DOS-Kommandointerpreter ' +

 'ohne Befehl (DOS mit "exit" beenden) ... ');

 repeat until ReadKey <> '';

 SwapVectors; { Interrupt-Vektoren sichern }

 Exec('C:\Command.COM', ''); { Aufruf ohne Befehl }

 SwapVectors; { Wieder alte Interrupt-Vektoren }

 Fehlerbehandlung;

end.

{$M 16384,0,0} { Compilerbefehl $M wegen Begrenzung des Heaps

 unbedingt notwendig. Hier "HeapMin" und

 "HeapMax" auf 0, also kein Heap }

program Pas24042; { Aufruf eines anderen Programms }

24-10 Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe

uses

 CRT, DOS; { Unit DOS für: SwapVectors,

 Exec(),

 DOSError, DOSExitCode }

var

 Programmname,

 Parameter: string; { Kommandozeilen-Parameter }

procedure WriteXY(Sp, Ze: Byte; Meldung: string);

begin

 GotoXY(Sp, Ze);

 Write(Meldung);

end;

begin

 TextColor(Yellow); TextBackground(Blue);

 repeat

 ClrScr;

 WriteXY(5, 5, 'Demo: Aufruf eines beliebigen Programms ' +

 'in einem Pascal-Programm');

 WriteXY(5, 6, 'Programmname komplett mit Zugriffspfad ' +

 'und Extension (.COM, .EXE, .BAT)');

 WriteXY(5, 7, 'Beenden mit Enter-Taste alleine');

 WriteXY(5, 9, 'Programmname: '); ClrEoL;

 WriteXY(5, 10, 'Parameter: '); ClrEoL;

 GotoXY(20, 9); ReadLn(Programmname);

 if Programmname = ''

 then Exit; { >>>>>>>>>>>> }

 GotoXY(20, 10); ReadLn(Parameter);

 if Parameter = ''

 then Parameter := ''''

 else Parameter := '/C ' + Parameter;

 WriteLn;

 SwapVectors; { Interrupt-Vektoren sichern }

 Exec(Programmname, Parameter); { Aufruf }

 SwapVectors; { Wieder alte Interrupt-Vektoren }

 WriteLn; WriteLn;

 if DOSError = 0

 then WriteLn('Hier Pascal-Programm nach dem Aufruf eines ' +

 'anderen Programms ... ')

 else WriteLn('DOSError: ', DOSError);

 WriteLn('Der Exitcode des aufgerufenen Programms: ', DOSExitCode);

 repeat

 until ReadKey <> '';

 until Programmname = '';

end.

Dr. K. Haller Turbo-Pascal Kap. 24: Fehlerbehandlung, Parameterübergabe 24-11

24.5 Der Kommandozeilen-Compiler

Bei großen Pascal-Programmen kann es vorkommen, daß der Arbeitsspeicher nicht

mehr ausreicht, um das Programm zu compilieren. Besonders dann, wenn das Compilat

auch im Arbeitsspeicher abgelegt wird. Abhilfe schafft in diesem Fall das Compilieren

zu einer EXE-Datei. Aber auch dann kann es bei großen Programmen zu Problemen

kommen, da die Integrierte Entwicklungsumgebung IDE (Integrated Development

Environment) ebenfalls im Arbeitsspeicher steht. In diesen Fällen muß auf der Betriebs-

system-Ebene der Kommandozeilen-Compiler benutzt werden. Die IDE kann zum

Erstellen des Quellcodes benutzt werden; es kann dazu aber auch jeder beliebige Text-

Editor benutzt werden, der ASCII-Dateien erzeugen kann.

Der Kommandozeilen-Compiler hat die Dateibezeichnung TPC.EXE und steht üblicher-

weise in BIN-Verzeichnis des Borland-Verzeichnisses BP.

Format: TPC [parameter/schalter] dateiname [parameter/schalter]

tpc Kommandozeilen-Compiler TPC.EXE, ggf. mit Zugriffspfad

parameter/schalter Müssen alle mit »/« eingeleitet werden und sind ansonsten fast

vollständig mit denen der IDE identisch. Groß-/Kleinschrei-

bung beliebig. Compilerbefehle und -schalter können aber

auch im Quelltext vorhanden sein. Beim TPC-Aufruf sind die

geschweiften Klammern wegzulassen.

dateiname Name der Pascal-Quelldatei. Das Compilat bekommt den glei-

chen Namen, aber die Extension .EXE.

Beispiel: C:\BP\BIN\TPC /$M 65520,0,0 C:\Student\Pas24031.PAS

 Der Stack wird in diesem Beispiel auf den Höchstwert 65520 gesetzt,

HeapMin und HeapMax dagegen auf 0, also kein Heap.

50190608 Dr. K. Haller

