
Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays 23-1

 23 Include-Dateien, Units und Overlays

Gliederung

23.1 Vorbemerkungen... 2

23.2 Demo Include-Dateien .. 4

23.3 Demo Units ... 5

23.4 Demo Overlays ... 6

23-2 Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays

23.1 Vorbemerkungen

Die Instrumente Include-Dateien, Units und Overlays dienen zum Erzeugen größerer

Programme, was z.B. schon notwendig wird, wenn der Quelltext die 64-KByte-Grenze

überschreitet.

Zu Include-Dateien

• Mit dem Compilerbefehl {$I dateiname } kann eine beliebige Pascal-Quelltextdatei
in das aktuelle Programm eingefügt werden. Hinweis: Zwischen der geschweiften
Klammer/AUF und dem Dollarzeichen des Compilerbefehls dürfen keine Blanks
stehen.

• Die Deklaration der Include-Datei muß vor dem Ausführungsteil des aktuellen Pro-
gramms stehen.

• Die Include-Datei muß einen abgeschlossenen Programmblock enthalten, d.h. voll-
ständige Deklarationen von Konstanten, Typen, Variablen, Prozeduren und
Funktionen.

• Es können mehrere Include-Dateien aufgeführt werden.

• Include-Dateien dürfen selbst auch wieder Include-Dateien bis zu einer 15-fachen
Schachtelungstiefe enthalten.

• An Prozeduren und Funktionen von Include-Dateien können in üblicher Weise Para-
meter übergeben werden, d.h. mit Wert oder mit Adresse (»var«).

• Bei jeder Compilation des aktuellen Programms muß auch die Include-Datei com-
piliert werden, was Zeit kostet.

Zu Units

• Units sind compilierte Programm-Module mit der Extension ».TPU« (Turbo-Pascal-
Unit) bzw. ».BPU« (Borland-Pascal-Unit) Der Quelltext der Unit beginnt mit dem
reservierten Wort »unit« und enthält einen Interface-Teil, einen Implementationsteil
und einen optionalen Initialisierungsteil.

• Der Interfaceteil beginnt mit dem reservierten Wort »interface«. Er enthält die
öffentlichen Deklarationen, die somit von anderen Programmen genutzt werden kön-
nen. Der Interfaceteil stellt somit die Software-Schnittstelle zu anderen Programmen
dar; der Anwender der Unit muß die öffentlichen Deklarationen kennen, nicht aber
deren Implementierung. Der Interface-Teil kann beliebige öffentliche Deklarationen
enthalten (andere Units, Konstanten, Typen, Variablen, Prozeduren und Funktionen).

• Der Implementierungsteil beginnt mit dem reservierten Wort »implementation«. Er

enthält die eigentliche Programmierung der im Interfaceteil aufgeführten Prozeduren

und Funktionen. Der Implentierungsteil kann beliebige private Deklarationen enthal-

Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays 23-3

ten (Units, Konstanten, Typen, Variablen, Prozeduren und Funktionen). Die privaten

Deklarationen sind dem Benutzer der Unit nicht zugänglich.

• Der Initialisierungsteil ist optional. Falls vorhanden, dann ist er mit »begin« einzu-

leiten. Der Initialisierungsteil ist im wesentlichen für die Initialisierung von öffentli-

chen Variablen vorgesehen und wird deshalb nur selten gebraucht.

• Mit Units kann man Turbo-Pascal in einfacher Weise um häufig benötigte Prozedu-

ren und Funktionen erweitern.

• Turbo-Pascal selbst stellt acht Standard-Units zur Verfügung (SYSTEM, CRT, DOS,

PRINTER, OVERLAY, GRAPH, TURBO3 und GRAPH3). Die ersten fünf sind in der

Datei Turbo.TPL gespeichert, die restlichen drei in der Datei Graph.TPU.

• Mit Ausnahme der Standard-Unit SYSTEM müssen alle anderen Units und somit

auch die eigenen Units bei Gebrauch mit »uses« deklariert werden.

• Eine (compilierte) Unit kann bis 64 KByte groß sein.

Zu Overlays

• Mit Units können zwar sehr große Programmpakete entwickelt werden; durch die
Beschränkung des DOS-Speichers auf 640 KByte kann es aber doch zu Problemen
kommen, da Teile des Speichers vom Betriebssystem belegt sind. Einen Ausweg
bietet bei geeigneter Programmstruktur die Overlaytechnik, mit der im Prinzip
grenzenlos große Programme entwickelt werden können.

• Unter Overlay-Technik versteht man das Nachladen von verschiedenen Programm-
Modulen in immer den gleichen Teil des Arbeitsspeichers. Der Zeitpunkt des
Nachladens wird durch das Programm selbst gesteuert. Beim Nachladen wird das
nicht mehr benötigte alte Modul im Arbeitsspeicher überschreiben; es steht aber auf
dem Datenträger (Platte/Diskette) nach wie vor zur Verfügung und kann bei Bedarf
auch wieder geladen werden.

23.2 Demo Include-Dateien

program Pas23021; { Demo Kap 23.1: Include-Dateien }

uses
 CRT;

{$I C:\Student\Pas23022.PAS >>>>> die Include-Datei mit
 Zugriffspfad, der ggf. anzupassen ist. }

var
 i: Integer;
 Name: string;

begin
 ClrScr;
 Name := ' Anton';

 Write('Hier Hauptdatei: ');

23-4 Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays

 for i := 1 to 5 do
 Write('*');
 WriteLn(Name);

 WriteLn('Hier Konstante aus der Include-Datei: ', NN);

 IncludeDemo(Name); { Prozedur aus Include-Datei }

 Write('Hier Hauptdatei: ');
 for i := 1 to 5 do
 Write('-');
 WriteLn(Name);

 { Die Bildschirmausgabe: }
 { |Hier Hauptdatei: ***** Anton }
 { |Hier Konstante aus der Include-Datei: Huber Toni }
 { |Hier Prozedur aus der Include-Datei: !!!!! Anton }
 { |Hier Hauptdatei: ----- Huber }

 repeat
 until ReadKey <> '';
end.

 { Include-Datei »Pas23022.PAS«. Kein "program" bei Include-Datei }
const
 NN = 'Huber Toni';

procedure IncludeDemo(var s: string);
var { Parameterübergabe hier mit Adresse !!! }
 i: Integer;
begin
 Write('Hier Prozedur aus der Include-Datei: ');
 for i := 1 to 5 do
 Write('!');
 WriteLn(s);
 s := ' Huber';
end;

23.3 Demo Units

program Pas23031; { Demo Kap. 23.3: Units }

uses
 CRT, PAS23032; { ... mit der eigenen Unit »PAS23032.TPU« }

var
 x, y: Real;

begin
 ClrScr;

 extWriteXY(10, 10, 'Eine Prozedur aus der Unit »PAS23032.TPU«');
 { Die Bezeichner der externen Routinen lasse ich zur
 besseren visuellen Erkennung mit "ext" beginnen.
 Ansichtssache! }

 WriteLn; WriteLn;

 x := 100.0; { Man teste auch mit: x := -100.0; }
 y := extLog10(x);

Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays 23-5

 Write('Der dekadische Logarithmus von ', x:6:2, ': ', y:6:2);

 repeat
 until ReadKey <> '';
end.

unit Pas23032; { Quelltext: »Pas23032.PAS«. Mit "Compile/Compile" }
 { oder "Alt-F9" auf "Destination Disk" compilieren }

interface { ----- 1. Unit-Teil: Interface ----------------- }
 { ... Öffentliche Deklarationen }
 { Hier: Eine Prozedur und eine Funktion ... }

 procedure extWriteXY(Spalte, Zeile: Byte; Meldung: string);

 function extLog10(x: Real): Real;

implementation { ----- 2. Unit-Teil: Implementation ------------ }

 uses { Private Deklaration einer Standard-Unit wegen }
 CRT; { späterem »GotoXY« in der Implementierung }

 procedure Abbruch(z: Real); { Private Deklaration }
 begin { einer Prozedur }
 WriteLn;
 WriteLn('Das Argument des Logarithmus ist mit ', z);
 WriteLn('kleiner oder gleich Null. Abbruch nach Return ...');
 ReadLn;
 Halt(1); { >>>>>>>>>>>> }
 end;

 procedure extWriteXY; { Implementierung der Prozedur »extWriteXY« }
 begin
 GotoXY(Spalte, Zeile);
 Write(Meldung);
 end;

 function extLog10; { Implementierung der Funktion »extLog10« }
 begin { Hier: Dekadischer Logarithmus }
 if x > 0
 then extLog10 := Ln(x)/Ln(10)
 else Abbruch(x); { Aufruf einer privaten Prozedur }
 end;

{ begin } { ----- 3. Unit-Teil: Initialisierung ----------- }
 { Optional. Hier nicht vorhanden. }
end. { ----- Ende der Unit --------------------------- }

23.4 Demo Overlays

Fehlt noch ... (kommt auch nicht mehr! kha)

40180601 Dr. K. Haller

