Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays 23-1

23 Include-Dateien, Units und Overlays

Gliederung

23.1 VOrbemerkUNQgeN.........ccvoiieiee et 2
23.2 DemMO INCIUAE-DALEIEN ...eee e eeeeeees 4
23.3 DEMO UNIES oottt et e e e e e e e e e e e eeeereereeeeeeeeees 5

23.4 DemO OVEIIAYSooveeiiieieecee ettt 6

23-2 Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays

23.1 Vorbemerkungen

Die Instrumente Include-Dateien, Units und Overlays dienen zum Erzeugen groRerer
Programme, was z.B. schon notwendig wird, wenn der Quelltext die 64-KByte-Grenze
uberschreitet.

Zu Include-Dateien

Mit dem Compilerbefehl {$1 dateiname } kann eine beliebige Pascal-Quelltextdatei
in das aktuelle Programm eingefugt werden. Hinweis: Zwischen der geschweiften
Klammer/AUF und dem Dollarzeichen des Compilerbefehls dirfen keine Blanks
stehen.

Die Deklaration der Include-Datei muR vor dem Ausfuhrungsteil des aktuellen Pro-
gramms stehen.

Die Include-Datei muf3 einen abgeschlossenen Programmblock enthalten, d.h. voll-
stdndige Deklarationen von Konstanten, Typen, Variablen, Prozeduren und
Funktionen.

Es kdnnen mehrere Include-Dateien aufgefuhrt werden.

Include-Dateien dirfen selbst auch wieder Include-Dateien bis zu einer 15-fachen
Schachtelungstiefe enthalten.

An Prozeduren und Funktionen von Include-Dateien konnen in Ublicher Weise Para-
meter (bergeben werden, d.h. mit Wert oder mit Adresse (»var«).

Bei jeder Compilation des aktuellen Programms muf} auch die Include-Datei com-
piliert werden, was Zeit kostet.

Zu Units

Units sind compilierte Programm-Module mit der Extension ». TPU« (Turbo-Pascal-
Unit) bzw. ».BPU« (Borland-Pascal-Unit) Der Quelltext der Unit beginnt mit dem
reservierten Wort »unit« und enthalt einen Interface-Teil, einen Implementationsteil
und einen optionalen Initialisierungsteil.

Der Interfaceteil beginnt mit dem reservierten Wort »interface«. Er enthdlt die
offentlichen Deklarationen, die somit von anderen Programmen genutzt werden kon-
nen. Der Interfaceteil stellt somit die Software-Schnittstelle zu anderen Programmen
dar; der Anwender der Unit muf} die 6ffentlichen Deklarationen kennen, nicht aber
deren Implementierung. Der Interface-Teil kann beliebige 6ffentliche Deklarationen
enthalten (andere Units, Konstanten, Typen, Variablen, Prozeduren und Funktionen).

Der Implementierungsteil beginnt mit dem reservierten Wort »implementation«. Er
enthélt die eigentliche Programmierung der im Interfaceteil aufgefuihrten Prozeduren
und Funktionen. Der Implentierungsteil kann beliebige private Deklarationen enthal-

Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays 23-3

ten (Units, Konstanten, Typen, Variablen, Prozeduren und Funktionen). Die privaten
Deklarationen sind dem Benutzer der Unit nicht zugéanglich.

Der Initialisierungsteil ist optional. Falls vorhanden, dann ist er mit »begin« einzu-
leiten. Der Initialisierungsteil ist im wesentlichen fiir die Initialisierung von 6ffentli-
chen Variablen vorgesehen und wird deshalb nur selten gebraucht.

Mit Units kann man Turbo-Pascal in einfacher Weise um hadufig benétigte Prozedu-
ren und Funktionen erweitern.

Turbo-Pascal selbst stellt acht Standard-Units zur Verfiigung (SYSTEM, CRT, DOS,
PRINTER, OVERLAY, GRAPH, TURBO3 und GRAPH3). Die ersten funf sind in der
Datei Turbo.TPL gespeichert, die restlichen drei in der Datei Graph.TPU.

Mit Ausnahme der Standard-Unit SYSTEM missen alle anderen Units und somit
auch die eigenen Units bei Gebrauch mit »uses« deklariert werden.

Eine (compilierte) Unit kann bis 64 KByte grof sein.

Zu Overlays

Mit Units konnen zwar sehr grof’e Programmpakete entwickelt werden; durch die
Beschrankung des DOS-Speichers auf 640 KByte kann es aber doch zu Problemen
kommen, da Teile des Speichers vom Betriebssystem belegt sind. Einen Ausweg
bietet bei geeigneter Programmstruktur die Overlaytechnik, mit der im Prinzip
grenzenlos grof3e Programme entwickelt werden kénnen.

Unter Overlay-Technik verstent man das Nachladen von verschiedenen Programm-
Modulen in immer den gleichen Teil des Arbeitsspeichers. Der Zeitpunkt des
Nachladens wird durch das Programm selbst gesteuert. Beim Nachladen wird das
nicht mehr bendtigte alte Modul im Arbeitsspeicher uberschreiben; es steht aber auf
dem Datentrager (Platte/Diskette) nach wie vor zur Verfligung und kann bei Bedarf
auch wieder geladen werden.

23.2 Demo Include-Dateien

program Pas23021; { Demo Kap 23.1: Include-Dateien }

uses

CRT;

{$I C:\Student\Pas23022.PAS >>>>> die Include-Datei mit

Zugriffspfad, der ggf. anzupassen ist. }

var

i: Integer;
Name: string;

begin

ClrScr;
Name := ' Anton';

Write ('Hier Hauptdatelc.cccccoaat ")y

23-4 Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays

for i := 1 to 5 do
Write('*');
WriteLn (Name) ;

WriteLn ('Hier Konstante aus der Include-Datei: ', NN);

IncludeDemo (Name) ; { Prozedur aus Include-Datei }

Write ('Hier Hauptdateilc.cc.o00 ")
for i 1 to 5 do

Write('-");
WriteLn(Name)

Die Bildschirmausgabe: }

{

{ |Hier Hauptdateic.c.c......1 ***%%% Anton }
{ |Hier Konstante aus der Include-Datei: Huber Toni }
{ |Hier Prozedur aus der Include-Datei: !!!!! Anton }
{ |Hier Hauptdatelc.. 0.0 ————— Huber }
repeat

until ReadKey <> '';

end.

{ Include-Datei »Pas23022.PAS«. Kein "program" bei Include-Datei }
const
NN = 'Huber Toni'

procedure IncludeDemo (var s: string);

var { Parameteriibergabe hier mit Adresse !!! }
i: Integer;
begin
Write ('Hier Prozedur aus der Include-Datei: ');
for i := 1 to 5 do
Write('!'");
WriteLn(s) ;
s := ' Huber'
end;

23.3 Demo Units

program Pas23031; { Demo Kap. 23.3: Units }

uses
CRT, PAS23032; { ... mit der eigenen Unit »PAS23032.TPU« }

var
X, y: Real;

begin
ClrScr;

extWriteXY (10, 10, 'Eine Prozedur aus der Unit »PAS23032.TPU«');
{ Die Bezeichner der externen Routinen lasse ich zur
besseren visuellen Erkennung mit "ext" beginnen.
Ansichtssache! }

WritelLn; Writeln;

b
|

= 100.0; { Man teste auch mit: x := -100.0; }
extLogl0 (x) ;

=
Il

Dr. K. Haller Turbo-Pascal Kap. 23: Include-Dateien, Units und Overlays 23-5

Write ('Der dekadische Logarithmus von ', x:6:2, ': ', y:6:2);
repeat
until ReadKey <> '';
end.
unit Pas23032; { Quelltext: »Pas23032.PAS«. Mit "Compile/Compile™ }
{ oder "Alt-F9" auf "Destination Disk" compilieren }
interface { ————— 1. Unit-Teil: Interface --—--—--——--—-———-——- }
{ ... Offentliche Deklarationeneeeee.. }
{ Hier: Eine Prozedur und eine Funktion .. }

procedure extWriteXY (Spalte, Zeile: Byte; Meldung: string);

function extLoglO(x: Real): Real;

implementation { ===== 2. Unit-Teil: Implementation --—-—-----—-—-—-- }
uses { Private Deklaration einer Standard-Unit wegen }
CRT; { spaterem »GotoXY« in der Implementierung }
procedure Abbruch(z: Real); { Private Deklaration }
begin { einer Prozedur }
Writeln;
WritelLn ('Das Argument des Logarithmus ist mit ', z);
WritelLn ('kleiner oder gleich Null. Abbruch nach Return ...");
ReadLn;
Halt (1); { >>>>>>>>>>>>)
end;

procedure extWriteXY; { Implementierung der Prozedur »extWriteXY« }
begin

GotoXY (Spalte, Zeile);

Write (Meldung) ;

end;
function extLoglO; { Implementierung der Funktion »extLoglO« }
begin { Hier: Dekadischer Logarithmus }
if x > 0
then extLogl0 := Ln(x)/Ln(10)
else Abbruch (x); { Aufruf einer privaten Prozedur }
end;
{ begin } { ===== 3. Unit-Teil: Initialisierung —--——-——-——-—-————-- }
{ Optional. Hier nicht vorhanden. }
end. { ===== Dnoe der UnilE —sccccccososososososososo=s }

23.4 Demo Overlays

Fehlt noch ... (kommt auch nicht mehr! kha)

40180601 Dr. K. Haller

