Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-1

21 Bildschirmgrafik

Gliederung

21.1 Allgemeines zur BildschirmgrafiK...........ccccooiiiiiiniiic e 2
21.2 Die Grafikprozedur PUtPIXElccoooveiiiiiiiie e 3
21.3 Weitere Grafikprozeduren und -funktionen............cccccevveveiivecinenne. 4
21.4 Allgemeines Demo-Programmcccocverveieeiinesieeseesee e seeeseneneas 6
21.5 Demo-Programm MOIF8.........cccccveieiieresiee e se e 11
21.6 Demo-Programm Fraktale 1 (B. Mandelbrot)cccccovevveiennne 13
21.7 Demo-Programm Fraktale 2 (B. Martin)ccccoevviviivnnnenensnnnnn, 18
21.8 Demo-Programm Fourier-Reihen.........cccoccvevvevii i, 20

21.9 Demo-Programm Lissajous-FIgurenccccccevevevieiieeneesee s, 26

21-2 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.1 Allgemeines zur Bildschirmgrafik

Fur die komfortable Erstellung von Bildschirmgrafiken steht in Turbo-Pascal die Unit
»GRAPH.TPU« zur Verfligung. Sie enthélt eine Vielzahl von vordefinierten Grafikpro-
zeduren, -funktionen und -konstanten.

Wichtig: Im Menupunkt Option/Verzeichnisse mull im Feld Unit-Verzeichnis ein Zu-
griffspfad zur Unit »\GRAPH.TPU« eingetragen sein. Bei Standard-Installation auf einer
Festplatte: »C:\BP\UNITS«.

AuRer dieser Unit benétigt man noch die Grafiktreiber fur die Bildschirmkarte, z.B.
"EGAVGA.BGI" fir VGA-Grafikkarten mit einer Auflasung von 640 * 480 und bei
Verwendung von Vektorschriften die entsprechenden Schriftdateien, z.B. "Goth.CHR"
oder "Trip.CHR".

Die Grafiktreiber und auch die Schriften stehen bei Standardinstallation im Verzeichnis
"C:\BP\BGI". Der Zugriffspfad zum Grafiktreiber muf} im Programm genannt werden.

»BGl« bedeutet Borland Graphic Interface.
Es konnen nur Strings auf den Grafikbildschirm geschrieben werden. Numerische Daten
sind deshalb vorher in Strings zu konvertieren.

Die Koordinaten des Grafik-Bildschirms:

Xmax
0 ® >
0
Y
*P(x, V)
\ 4
Ymax

Bei einer Grafikkarte von z.B. 640 * 480 laufen die x-Koordinaten von 0..639 und die
y-Koordinaten von 0..479.

Zu Beginn eines Grafikprogramms mul} die Grafik entsprechend der verwendeten
Grafikkarte initialisiert werden. Dabei ist besonders darauf zu achten, dal der
Zugriffspfad zum zutreffenden Grafiktreiber richtig gesetzt ist.

Das folgende kleine Programm zeigt die Initialisierung der Grafik, die Verwendung der
Grafikprozedur Circle und auch das Beenden der Grafik.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-3

program Pas21011; { Grafik }

uses
CRT, GRAPH;

var
Grafiktreiber,
Grafikmodus: Integer;
begin
Grafiktreiber := Detect;
{ Mit "Detect" automatische Erkennung des Grafiktreibers, }
{ nicht bei allen Grafikkarten, wohl aber z.B. bei VGA }

InitGraph (Grafiktreiber, Grafikmodus, 'C:\BP\BGI');
{ Der Zugriffspfad ist ggf. anzupassen
{ Wenn "Grafikmodus" nicht vorher spezifiziert, dann wird
{ automatisch die hochste Aufldsungsstufe eingestellt

e e e

Circle (200, 100, 80); { Kreis: xM = 200, yM = 100, r = 80
repeat
until ReadKey <> '';
CloseGraph; { Zurick zum Textmodus }
end.

21.2 Die Grafikprozedur PutPixel

Die Prozedur »PutPixel« ist die wichtigste aller Grafikprozeduren und dient zum Setzen
eines Pixels (picture element) an der Position x/y. Durch Uberschreiben mit der
Hintergrundfarbe kann das Pixel auch wieder "geléscht" werden.

Format: PutPixel (x, y, farbe)
X x-Koordinate. Integer-Ausdruck
y y-Koordinate. Integer-Ausdruck

farbe Pixelfarbe. Word-Ausdruck (Werte 0 bis 15)
oder vordefinierte Konstanten nach folgender Auflistung:

Die vordefinierten Farbkonstanten:

0 Black 4 Red 8 Darkgray 12 Lightred
1 Blue 5 Magenta 9 Lightblue 13 Lightmagenta
2 Green 6 Brown 10 Lightgreen 14 Yellow

3 Cyan 7 Lightgray 11 Lightcyan 15 White

21-4 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.3 Weitere wichtige Grafikprozeduren, -funktionen und -

konstanten (Auswahl)

Abkurzungen:

K
)
F

K

Konstante
Prozedur
Funktion

Detect
Zweck: Automatische Erkennung des Grafiktreibers.
Die automatische Erkennung des VGA-Karten problemlos mdglich.

InitGraph(grafiktreiber, grafikmodus, pfad)

Zweck: Initialisierung der Grafik.

grafiktreiber Integervariable. Vorher initialisiert, z.B. mit Detect.

grafikmodus Integervariable. Braucht mit Ausnahme der beiden genannten
Grafikkarten nicht initialisiert zu sein, wenn die hochste Auflo-
sungsstufe gewdinscht wird.

prfad Zugriffspfad zum Grafiktreiber, z.B. zum Treiber fur die VGA
Karte "EGAVGA.BGI".

CloseGraph
Zweck: Beendet den Grafikmodus und wechselt zum Textmodus. Am Programm-
ende nicht notwendig.

PutPixel (x, y, farbe)
Zweck: Pixel setzen/l6schen. Siehe 21.2.

Line(x1, v1, x2, y2)

Zweck: Linie vom Punkt P1(x1, yI)zum PunktP2(x2, y2)ziehen.

x1, v1, x2, y2 Integer-Ausdriicke

Hinweis: Bei allen Linien-Operationen (Linien, Rechtecke, Kreise usw.) werden die
Linien mit dem Standardlinienart (SolidLn = durchgezogene Linie) und in der Stan-
darddicke (NormWidth = 1 Pixel) gezeichnet, wenn nicht mit der Grafikprozedur
"SetLineStyle" andere Linienarten oder -dicken vereinbart werden. Details siehe
spateres Demo-Programm und Handbuch.

MoveTo (x, V)
Zweck: Versetzt den (unsichtbaren) Grafikcursor zum Punkt P(x, v).
X,y Integer-Ausdriicke

LineTo(x, V)
Zweck: Zeichnet Linie vom aktuellen Cursorpunkt zum Punkt P(x,),
X,y Integer-Ausdriicke

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-5

P RectAngle(x1, yl, x2, y2)
Zweck: Zeichnet achsparalleles Rechteck mit der linken oberen Ecke P1(x1, v1)
und der rechten unteren Ecke P2(x2, y2).
x1, v1, x2, y2 Integer-Ausdriicke

F GetMaxX
Zweck: Liefert maximalen X-Wert (z.B. 639 bei VGA 640 * 480) im Ergebnis-
Datentyp Integer.

F GetMaxyY
Zweck: Liefert maximalen Y-Wert (z.B. 479 bei VGA 640 * 480) im Ergebnis-
Datentyp Integer.

P Circle(x, y, radius)
Zweck: Zeichnet Kreis um Mittelpunkt M(x, y) mit radius.
x, v Integer-Ausdriicke
radius Word-Ausdruck

P Arc(x, vy, winkelStart, winkelEnd, radius)
Zweck: Zeichnet Kreisbogen um Mittelpunkt M(x, vy) mit radius zwischen
Anfangswinkel winkelStart und Endwinkel winkelEnd.

X,y Integer-Ausdriicke
radius Word-Ausdruck
winkelStart,

winkelEnd Word-Ausdriicke. Winkel im Gradmal, ansonsten aber Dreh-
richtung und Ausgangspunkt im mathematischen Sinne.

P OutText (s)
Zweck: Gibt String s an der aktuellen Position des Grafikcursors aus. Numerische
Daten mussen in Strings gewandelt werden.
s String-Ausdruck

P OutTextXY(x, y, S)
Zweck: Gibt String s an der Position P(x, y) aus. Numerische Daten mussen in
Strings gewandelt werden.
x, v Integer-Ausdriicke
s String-Ausdruck

F GetPixel (x, y)
Zweck: Liefert die farbe des Pixels P(x, y) mit Ergebnis-Datentyp Word. Werte
zwischen 0 (= Black) und 15 (= White). Zu farbe siehe 21.2.
X,y Integer-Ausdriicke

Allgemeiner Hinweis: Es ist auch im Grafik-Modus mdoglich, mit »Read« bzw
»ReadLn« Daten von der Tastatur einzulesen. Die Benutzereingaben erscheinen am
aktuellen Punkt des Grafikcursors (wenn noch Cursor nicht bewegt wurde, dann in der
linken oberen Bildschirmecke) und kdnnen mit der Taste »Backstep« editiert werden.

21-6 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

Das folgende Demo-Programm enthalt weitere Grafik-Prozeduren und Funktionen. Die
Erklarung ist aus der Programmumgebung zu entnehmen. Weitere Details siehe Online-
Hilfe.

21.4 Allgemeines Demo-Programm

program Pas21041; { Kapitel 21: Bildschirmgrafik }

{ Dieses Demo-Programm enthdlt z.T. fixe Koordinaten fir die VGA-
Farb-Grafikkarte in der Aufldsung 640 * 480. Fir andere Grafik-
Karten wird im allgemeinen eine Anpassung der Koordinaten
notwendig sein.

Dieses Demo-Programm verwendet nur einen Teil der in der Unit
»GRAPH.TPU« definierten Funktionen, Prozeduren und Konstanten
und zwar:

Bezeichner Bedeutung
GetMaxX function
GetMaxY function
GraphResult function
GraphErrorMsg function
InitGraph procedure
PutPixel procedure Die wichtigste Grafik-Prozedur
RectAngle procedure
OutTextXY procedure
Line procedure
MoveTo procedure
SetLineStyle procedure
Line procedure
LineTo procedure
Bar procedure
Circle procedure
CloseGraph procedure
SetTextStyle procedure
SetViewPort procedure
ClearViewPort procedure
ClipON const
ClipOFF const
grOk const
Detect const
Black const
White const
DottedLn const
NormWidth const
ThickWidth const
SolidFill const
CloseDotFill const
XHatchFill const
ShlashFill const
BkSlashfill const
GothikFont const
HorizDir const
VertDir const

}

uses
CRT, GRAPH; { Die Turbo-Pascal-Unit »GRAPH.TPU« }
const
Zugriffspfad = 'C:\BP\BGI'; { Zugriffspfad z.

Treiber »EGAVGA.BGI« }
1

{ Ggf. anpassen

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-7

var
Grafiktreiber,
Grafikmodus,
Grafikfehlercode: 1Integer;

Xmax: Integer;
Ymax: Integer;
Farbe,

Schriftgroesse: Word;

Xy Y

x1l, y1,

X2, Y2,

ye,

DeltaX,

Deltay,

Radius: Integer;
XmaxStr,

YmaxStr: string(3];
GrafiktreiberStr,
GrafikmodusStr,

FarbeStr: string[3];

begin
Grafiktreiber := Detect; { Konstante "Detect" aus Unit GRAPH }
{ Automatische Erkennung des installierten Grafiktreibers }

InitGraph (Grafiktreiber, Grafikmodus, Zugriffspfad);
{ Wenn mehrere Grafik-Modi existieren, wahlt die Grafik-
Prozedur »InitGraph« den mit der héchsten Aufldsung aus }
Grafikfehlercode := GraphResult; Funktion "GraphResult }
aus Unit GRAPH
Konstante "grOK" aus

——————

if Grafikfehlercode <> grOk then

o

begin { Unit GRAPH
WritelLn ('Grafik-Fehler: ', GraphErrorMsg (Grafikfehlercode));
Writeln ('Programmabbruch notwendig ...');
Halt;
end;
Xmax := GetMaxX; { liefert maximale X-Koordinate }
Ymax := GetMax¥Y; { liefert maximale Y-Koordinate }
Str (Xmax, XmaxStr) ; { Konvertierung in String }
Str (Ymax, YmaxStr) ;
Str (Grafiktreiber, GrafiktreiberStr);
Str (Grafikmodus, GrafikmodusStr) ;
{ —=——=——=——— Rechteck zeilchnen ——————————————————————————————————— }
x1l := 0; x2 := Xmax;
yl := 0; vy2 := Ymax;
RectAngle (x1, v1, x2, vy2);
| cormommmm=== Text an der Stelle (X, Y) ausgeben --——————-—-—--—-—--———- }
OutTextXY (10, 10, 'Xmax = ' + XmaxStr);
OutTextXY (10, 25, 'Ymax = ' + YmaxStr);
OutTextXY (120, 10, 'Grafiktreiber: ' + GrafiktreiberStr);
OutTextXY (120, 25, 'Grafikmodus: ' + GrafikmodusStr) ;
| cccecmcmo=== Linile zelchnen —ccccocccocococococoooooooooooooooomo= }
x1l := 0; x2 := Xmax;
vyl := 40; y2 := yl;
Line (x1, vyl1, x2, vy2);

{ cmemememoe== Linien zeichnen, Linientyp einstellen --—————-——————- }
MoveTo (0, 43);
SetLineStyle (DottedLn, 0, ThickWidth);
LineTo (Xmax, 43); { Bewegung vom Grafik-Cursor aus }

21-8 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

SetLineStyle (SolidLn, 0, NormWidth) ;
Line (0, 46, Xmax, 46);

| mommeommee=== gefillten Balken zeichnen, Fillmuster --—-————---—————- }
DeltaX := 20;
DeltaY := 20;
x1l := 30; x2 x1 + DeltaX;

yl := 100; vy2 yl + DeltayY;
RectAngle (x1 - 2, vl - 2,
X2 + 4*DeltaX + 2, y2 + 15*Delta¥Y + 2);
for Farbe := Black to White do { 16 Farben, von 0 bis 15 }
begin

Str (Farbe, FarbeStr):;
OutTextXY (x1 - 20, yl + Farbe*DeltaY + DeltaY div 2, FarbeStr);

SetFillStyle (SolidFill, Farbe);
Bar(x1l, yl + Farbe*Deltay,
X2, y2 + Farbe*DeltaY); { zeichnet gefiillten Balken }

SetFillStyle (CloseDotFill, Farbe)
Bar (x1 + DeltaX, yl + Farbe*Deltay,
x2 + DeltaX, y2 + Farbe*DeltaY);

SetFillStyle (XHatchFill, Farbe);
Bar (x1 + 2*DeltaX, yl + Farbe*Deltay,
x2 + 2*DeltaX, y2 + Farbe*DeltaY):;

SetFillStyle(SlashFill, Farbe);
Bar (x1 + 3*DeltaX, yl + Farbe*Deltay,
x2 + 3*DeltaX, y2 + Farbe*DeltaY):;

SetFillStyle (BkSlashFill, Farbe)
Bar (x1 + 4*DeltaX, yl + Farbe*Deltay,
x2 + 4*DeltaX, y2 + Farbe*DeltaY):;

end;
{ occmceceo=== Keels zelchn@n —=—c—cccccccccocosososososososososomo=s }

Radius := 100;
x1 := 250;
yl := 200;
while Radius > 0 do

begin

Circle (x1, yl, Radius);

Circle(x1 + Radius, yl, Radius);
Dec (Radius, 2);

end;
{ oommomeess==s PURRE® SELZEN —mooo—reoooooosoooooosoooooosoooooossss }
x1l := 150; x2 := 430;
yl := Ymax - 60;
Line(x1, vy1, x2, vyl);
Farbe := White; { »White« = 15 }
for x := x1 to x2 do
begin
y := vyl + Round(40*Sin (x/15));
PutPixel (x, y, Farbe); { Mit der Farbe »Black« = 0 wird
ein gesetzter Punkt geldscht }
end;
{ oommmmeess== Fenster setzen, mit/ohne Clipping --—-——-----"----—-—- }
x1l := 150; yl 310;
x2 := 430; y2 := vyl + 60;

RecﬁAngle(Pred(xl), Pred(yl), Succ(x2), Succ(y2)):;

SetViewPort (x1, yl, x2, y2, ClipON); { Fenster setzen }

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-9
{ SetViewPort selbst arbeitet immer mit absoluten Koordinaten. }
{ Ansonsten gelten alle anderen Grafikkoordinaten anschlielend }
{ relativ zur linken oberen Ecke des gesetzten Fensters. }
{ Konstante ClipON (= True) : mit Clipping }
{ Konstante ClipOFF (= False): ohne Clipping }

ClearViewPort; { Fenster 1ld6schen, hier nicht notwendig }
OutTextXY (105, 30, 'Clipping'):
for Radius := 2 to 40 do
begin
Circle (60, 30, Radius);
Radius := Radius + 2;
end;
SetViewPort (x1, yl, x2, y2, ClipOFF); { ohne Clipping }
for Radius := 2 to 40 do
begin
Circle (180 + 50, 30, Radius);
Radius := Radius + 2;
end;
SetViewPort (0, 0, Xmax, yMax, ClipON) ; { ganzer Bildschirm }

[mommemome=== Szl fEen ——rommmmrerorrrrreerrereomeereereeee e oo == }
{ Format fur "SetTextStyle": }
{ SetTextStyle (font, richtung, groesse) }
{ }
{ font Word-Ausdruck, 0..4, oder: }
{ DefaultFont (= 0, Pixelschrift) }
{ TriplexFont (= 1, Vektorschrift, Datei Trip.CHR }
{ SmallFont (= 2, VektorSchrift, Datei Litt.CHR }
{ SansSerifFont (= 3, Vektorschrift, Datei Sans.CHR }
{ GothicFont (= 4, Vektorschrift, Datei Goth.CHR }
{ Die Vektorschriften konnen nur benutzt werden, wenn }
{ die angegebenen Schrift-Dateien des BGI existieren. }
{ Sie werden bei der Installation von Turbo-Pascal auf }
{ einer Festplatte C im folgenden Verzeichnis abgelegt: }
{ "C:\BP\BGI" }
{ richtung: Word-Ausdruck, aber nur 0 oder 1, bzw.: }
{ HorizDir (= 0, horizontale Richtung) }
{ VertDir (= 1, vertikale Richtung) }
{ groesse: Word-Ausdruck, Skalierungsfaktor. Standardeinstellung }
{ beim DefaultFont 1, bei Vektorschriften 4. Skalierung }
{ ist nur sinnvoll bei Vektorschriften, da DefaultFont }
{ mit einer 8 * 8 - Pixeldarstellung arbeitet, die bei }
{ VergroRerung sehr rauh wirkt. }
x1 := 460; yl := 90;
for Schriftgroesse := 1 to 3 do

begin
SetTextStyle (TriplexFont, HorizDir, Schriftgroesse);
yl := yl + Schriftgroesse * 8;
OutTextXY (x1l, yl, 'Triplex');
end;
x1 := 460; yl1l := 180;
for Schriftgroesse := 5 to 8 do
begin
SetTextStyle (SmallFont, HorizDir, Schriftgroesse);
yl := yl + Schriftgroesse * 2;
OutTextXY (x1l, yl, 'SmallFont'):;
end;
x1 := 460; yl1 := 270;

21-10 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

for Schriftgroesse := 1 to 3 do
begin
SetTextStyle (SansSerifFont, HorizDir, Schriftgroesse);
yl := yl + Schriftgroesse * 8;
OutTextXY (x1, yl, 'SansSerif');
end;

x1l := 460; yl1 := 370;
for Schriftgroesse := 1 to 3 do
begin
SetTextStyle (GothicFont, HorizDir, Schriftgroesse);
yl := yl + Schriftgroesse * 8;
OutTextXY (x1, yl, 'Gothic');
end;

x1 := 540; y1 := 370;
for Schriftgroesse := 1 to 3 do
begin
SetTextStyle (DefaultFont, HorizDir, Schriftgroesse);
vyl := yl + Schriftgroesse * 8;
OutTextXY (x1l, yl, 'Default');
end;

{ - Schrifttyp und Schreibrichtung andern --------------- }
SetTextStyle (SmallFont, VertDir, 5);
OutTextXY (Xmax - 30, 50, 'Schreibrichtung waagrecht und senkrecht');

{ - Feierabend ----------------"-"-"-"-"-"-"-"-"-"—-"—"—"—\—"—\—"—\—"—\—"—"—"—\—"—— }
SetTextStyle (SmallFont, HorizDir, 5);
OutTextXY (30, 460, 'Ende mit beliebigem Tastendruck ... ');
repeat

until KeyPressed;
CloseGraph; { Umschalten in den Textmodus }

end.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-11

Die Ausgabe des Programms Pas21041.PAS:

4 ~
639 Grafiktreiber: 9
479 Grafiknodus: 2

Hmax
Yrax

Triplex
Triplex

Triplex

SmallFont
SmallFont
SmallFont

SmallFont

OoWw o N s W N e O

SansSerif_
SansSerif

SansSerif

Schreibrichtung waagrecht und senkrecht

Default

%glﬂ;;_ Defaul

Gothir De2fa

Ry
Ende mit beliebigem Tastendruck ...

e, o

21.5 Demo-Programm Moiré

Das folgende Programm erzeugt Moiré-ahnliche Grafiken, fast so schén wie Apfelmannchen. Der
Grundgedanke:

Man setze in eine nahezu willkirliche Funktion die Koordinaten xk und yk ein. Dann betrachte den
ganzzahligen Teil der Funktion: Ist dieser geradzahlig, dann setze man bei xk, yk einen Punkt, sonst nicht
(Rechnung modula 2). Damit kann man z.B. mit Monochrom-Karten bereits s/w-Graphiken erstellen. Bei
Farbkarten rechnet man nicht modulo 2, sondern z.B. modulo 16 (bei Standard-VGA). Die Funktion
normiere man zweckmafRigerweise so, dall der Wertebereich 0 bis 65535 abgedeckt wird, was dem
Pascal-Datentyp »Word« entspricht. Im vorliegenden Programm wird folgende Funktion benutzt:

F(x,y)=x"+y**

x und y sind normierte Koordinaten (x, y =0 ... 1), p ist ein frei wéhlbarer (positiver) Parameter, mit dem
hdchst unterschiedliche Graphiken dargestellt werden kénnen. Die Funktion liefert Werte zwischen 0 und
2, da jeder der beiden Terme Werte zwischen 0 und 1 liefert. Durch Multiplikation mit »MaxInt« (Pascal-
Konstante mit dem Wert 32767) wird die gewiinschte Normierung auf den Datentyp »Word« erreicht.

In Pascal ist bekanntlich die Potenzfunktion z”*n nicht implementiert. Man muf3 sie mit e*(n * In 2)
darstellen. In Pascal-Schreibweise: z*n = Exp(n * Ln(z))

21-12 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

program Pas21051; { Moiré, Turbo-Pascal, VGA 640 * 480, K. Haller }

uses
CRT, GRAPH;

const
xMin = 150; xMax = 500; { Zeichenfldche x-Richtung waagrecht }
yMin = 100; yMax = 360; { Zeichenfldche y-Richtung senkrecht }
Grafikpfad = 'C:\BP\BGI'; { In diesem Verzeichnis »Graph.TPU« }
FarbenMax = 16; { Bei VGA »16« Farben }
type
TReal = Extended;
var
xk, vk: Integer;
Farbe: Byte;
br X, Yy
yTerm,
Funktion: TReal;
Taste: Char;
Fehlercode: Integer;
pStr: string;

Grafikmodus,
Grafiktreiber: Integer;

begin
Grafiktreiber := Detect;

InitGraph (Grafiktreiber, Grafikmodus, Grafikpfad):;

repeat
RectAngle (xMin, yMin, xMax, yMax); { zeichnet Rechteck }

OutTextXY (xMin, 30, '-—---—---—-—- Programm MOIRE ------——--- 74
L 1 .

OutTextXY (xMin, 52, 'Geben Sie beliebige positive Zahl ein: ' +
A 1 .

OutTextXY (xMin, 67, 'Zum Beispiel: 0.001, 0.1, 0.5, 0, 2, ' +
'10 usw.');

OutTextXY (xMin, yMax + 8, 'kha ! +
! FHM'") ;

repeat

GotoXY (10 + 50, 4);
Readln (pStr) ;
Val (pStr, p, Fehlercode);
until (Fehlercode = 0) and (p >= 0.0);

for yk := yMin + 2 to yMax - 2 do
begin
% := (yk - yMin) / (yMax - yMin);
{ yv=0..1 }
yTerm := Exp (2*p*Ln(y))
{.. = vy (2*p) }
for xk := xMin + 2 to xMax - 2 do
begin
X := (xk - xMin) / (xMax - xMin);
{ x =0..1 }
Funktion := Exp(p*Ln(x)) + yTerm;
{ Funktion = 0..2 }
Funktion := MaxInt * Funktion;

{ F=0..65535 1}
Farbe := Round (Funktion) mod FarbenMax;

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-13

{ Farbe = 0..15 }
PutPixel (xk, vk, Farbe);
end;
end;

OutTextXY (xMin + 95, yMax + 40, 'Wiederholung (j/n): 3');
repeat

Taste := ReadKey;

if Taste = #13

then Taste := 'j';
until UpCase (Taste) in ['J', 'N'];
ClearDevice; { Loscht Grafik-Bildschirm }
until UpCase (Taste) = 'N';

CloseGraph;
end.

Eine Ausgabe des Programms Pas21051.PAS:

Progranm MOIRE

Geben 3ie beliebige positive Zahl ein: T
Zur Beispiel: 0.001, 0.1, 0.5, 0, 2, 10 usw.

kha FHH

Hiederholung (i n}»: 3j

21.6 Demo-Programm Fraktale 1 (B. Mandelbrot)

{$N+ Coprozessor benutzen }
program Pas21061; { Das Apfelmadnnchen der Mandelbrotmenge }
{ Turbo-Pascal, VGA-Graphik, K. Haller }
uses
CRT, GRAPH;

const
FarbenMax = 16; { In Turbo-Pascal max. 16 Farben }
XK Min = 100; XK Max = 540; { Bildschirm-Koordinaten }
YK Min = 30; YK Max = 440;

21-14 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

var

Ende: Boolean;

xMin, xMax,

yMin, yMax: Double;

Ch: Char;

Iterationstiefe: Word;

{ Zur ITteratlonStieia —eecrccccomsomeomeoreoeeooeoooom== }
Man teste auch mit: 0, 1, 2, 3, 4, ... 999,

Je hoher, desto besser die Aufldsung, dafir aber auch
ladngere Rechenzeiten. Mit "110" bei VGA, 16 Farben:
im Zentrum gelbe Farbe. Je kleiner der Auschnitt aus
dem Apfelmannchen, desto hoher sollte die Iterations-
tiefe gewdhlt werden. }

e e e SN
e

procedure Apfelmaennchen (XK Min, XK Max,
YK Min, YK Max: Integer;
xXMin, xMax,
yMin, yMax: Double;
Iterationstiefe,
FarbenMax: Word) ;

{ Benoit Mandelbrot: Amerikanischer Mathematiker.
Iterationsvorschrift flir Mandelbrotmenge: zNeu = z*z + c,
Komplexe Zahl z, komplexe Konstante c. Dabei ist ¢ die
Koordinate des aktuellen Punktes in der komplexen Zahlenebene.

Wobei: z = x + j * vy, x: Realteil, vy: Imagindrteil
@ =ex + J ¥ ey, cx: Realteil, <cy: Imaginarteil
mit: j = ~N(-1), Wurzel aus -1, imagindre Einheit

Die Rechnung ergibt mit Bericksichtigung von j*j = -1:

zNeu = (x*x - y*y + ¢cx) + J * (2*x*y + cy)

d.h: zNeuReal = xNeu = x*x - y*y + cx

zNeulmag = yNeu = 2*x*y + cy }
const

RadiusMax = 2.0; { Fir Apfelmdnnchen: 2.0, ansonsten spiele man }
var

X, Vs
CX, CY,
cxDelta,
cyDelta,
xAlt: Double;
XK, YK: 1Integer; { Pixelkoordinaten }
isg Word; { Iterationszadhler }
Ch: Char;
begin
cxDelta := (xMax - xMin) / (XK Max - XK Min);
cyDelta := (yMax - yMin) / (YK Max - YK Min);
cy := yMin;
for YK := YK Max downto YK Min do { senkrechte Pixel-Koordinaten
begin
cx := xMin;
for XK := XK Min to XK Max do { waagrechte Pixel-Koordinaten
begin
x := 0.0; { Man teste auch mit |[|x|, |yl 2.0 }
y = 0.0; { Fur Apfelmédnnchen: 0.0 und 0.0 }
i := 0; { Iterationszahler }
repeat
Inc (i) ;
xAlt := x; { xAlt auch fur yNeu }
X := Sqgr(x) - Sqgr(y) + cx; { xNeu }

\% 1= 2 * xAlt * y + @8 { yNeu }
until (Sgr (x) + Sgr(y) >= Sqgr (RadiusMax)) or

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-15

(1 = Iterationstiefe);
PutPixel (XK, YK, i mod FarbenMax) ;
cx := cx + cxDelta;
end; { Ende XK-for-Schleife }
cy := cy + cyDelta;
if KeyPressed then
begin
CloseGraph;
Exit;
end;
end; { Ende YK-for-Schleife }
end; { ****x*x* Ende Prozedur "Apfelmaennchen (...)" **x*xxdsxx }

procedure WriteXY (Spalte, Zeile: Byte; Meldung: string);
begin

GotoXY (Spalte, Zeile);

Write (Meldung) ;
end;

procedure Grafik Initialisieren;

const
Zugriffspfad = 'C:\BP\BGI'; { Gegebenenfalls anpassen }
var
Grafiktreiber,
Grafikmodus,
Fehlercode: Integer;
begin
Grafiktreiber := Detect;
InitGraph (Grafiktreiber, Grafikmodus, Zugriffspfad);
Fehlercode := GraphResult;
if FehlerCode <> GrOK then
begin
CleSerg
WriteXY (10, 10, 'Grafikfehler: '");
WritelLn (GraphErrorMsg (Fehlercode)) ;
WriteXY (10, 14, 'Programmabbruch notwendig. ' +
'Driicke beliebige Taste ... '");
repeat
until ReadKey <> '';
Halt (1) ; { >>>>>>555555555555555>>>>>)
end;
ClearDevice;
OutTextXY (135, 450, 'Apfelma@nnchen. ' +
'Abbruch mit beliebiger Taste ... '");
end;

procedure Menue (var xMin, xMax, yMin, yMax: Double;
var Iterationstiefe: Word;
var Ende: Boolean);

var
Ch: Char;
begin
ClrScr;
WriteXY (10, 6, 'Das Apfelmannchen der Mandelbrotmenge:'):;
WriteXY (10, 8, 'Eingabe Demo 1...3, (0 fir Ende): '");
while KeyPressed do
Ch := ReadKey;
repeat
Ch := ReadKey;
until Ch in ['0'..'3'];

Write (Ch) ;

21-16 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

Ende := False;
case Ch of
'0': Ende := True;
'l': begin
xMin := -2.5; yMin := -2.5;
xMax := +2.5; yMax := +2.5;
Iterationstiefe := 110;
end;
'2': begin
xMin := 0.36067; yMin := 0.58583;
xMax := 0.36068; yMax := 0.58584;
Iterationstiefe := 110;
end;
'3': begin
xMin := -0.7667805; yMin := 0.1000325;
xMax := -0.7667790; yMax := 0.1000340;
Iterationstiefe := 299; { Beil sehr kleinen Ausschnitten }
end; { groBe Iterationstiefe notwendig. Bei Beispiel 3 }
end; { mit Tiefe 299 schdnes Farbenspiel }
end;
begin { ----- Hauptprogramm ------- }
repeat

Menue (xMin, xMax, yMin, yMax, Iterationstiefe, Ende);
if not Ende then
begin
Grafik Initialisieren;
Apfelmaennchen (XK Min, XK Max,
YK Min, YK Max,
xMin, xMax,
yMin, yMax,
Iterationstiefe,
FarbenMax) ;
repeat
until ReadKey <> '';
CloseGraph;
end;
until Ende;
end.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-17

Apfelninnchen. Abbruch nit beliebiger Taste

Apfelminnchen (Mandelbrotmenge)

2. 500000

#*Min:
-2 .9500000000

=xMax:

2 . 500000000
- S00000
yMin:

-2 . 500000000

yMax:
=2 . 500000000

o

. S00000
Iterat.tiefe:

- 300000
= Feldwahl
= Koordina.

Imaginare Achse

- S00000

- S00000

A B C E F G H I J
-2 .9500000 -1.500000 -0.3500000 O.500000 1.500000 2.3500000
Reelle Achse x

Dr. K. Haller, 44290597 Fachhochschule Hiinchen, Druckereitechnik

21-18 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

Apfelmnannchen. Abbruch nit beliebiger Taste ...

21.7 Demo-Programm Fraktale 2 (B. Martin)

{$N+ Coprozessor benutzen }

program Pas21071; { Fraktale mit reellen Zahlen nach Barry Martin }
{ y - £(x) -——> x }
{ a - x -—> vy }
{ Mit f(x) = Sign(x) * Sqgrt (Abs(cl*x - c2) }
{ Modifikation nach: MC, 10/92, S. 88, H. Scheid }
{ Man teste auch mit anderen f (x) }

uses
CRT, GRAPH;

type
TReal = Extended;
const
FarbenNrMax = 16;
Esc = #27;
ChDummy = '?';
Multiplikator = 10; { Man teste auch mit anderen Werten }
FarbwechselModulo = 10000; { Man teste auch mit anderen Werten }
var
Grafiktreiber,

Grafikmodus,
xMin, xMax,
yMin, yMax,
MaxX Halbe,
MaxY Halbe: Integer;

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21-19

Strl, Str2: string;
Ch: Char;
Xy Yr fX,
a, cl, c2: TReal;
2P, WiPg Integer; { Pixelkoordinate }
FarbenNr: Byte;
Zaehler: LongInt;
function Signum(x: TReal): ShortInt;
begin
if x >= 0
then Signum := +1
else Signum := -1;
end;
IEEER | cocrmmcre s s s s e e e e e e e e S S S e
ClrScr;
Grafiktreiber := Detect;

InitGraph (Grafiktreiber, Grafikmodus, 'C:\BP\BGI'); { anpassen! }

20; xMax
25; yMax

GetMaxX - 20;
GetMaxY - 20;

xXMin
yMin

MaxX Halbe
MaxY Halbe

(xMax xMin) diwv 2;
(yMax - yMin) div 2;

Randomize;

repeat
SetViewport (0, 0, GetMaxX, GetMaxY, ClipON) ;
{ Zur vordefinierten Grafikkonstanten "ClipON" = True,

{ automatische Clipping-Kontrolle. Gegenstiick: "ClipOFF"
{ In der momentanen Situation "ClipON" nicht wesentlich

ClearViewport;

{ Zufallsparameter a, cl, c2 }

a = -250 + Random(2*250 + 1); a = a/l10;
cl := -30 + Random(2*30 + 1); el gs= el/10s
c2 := -10 + Random(2*10 + 1); c2 := c2/10;

{ Es folgt String-Ausgabe aller Parameter }

Str(a:4:1, Strl); Str2 := ' a =" + Strl;

Str(cl:4:1, Strl); Str2 := Str2 + ! cl = ' + Strl;

Str(c2:4:1, Strl); Str2 := Str2 + ! c2 =" + Strl;

Str (Multiplikator, Strl);

Str2 := Str2 + ' Multiplikator = ' + Strl;

OutTextXY (10, 470, Str2);

Str2 := " ESC = Ende P = Pause EIN/AUS '+
'Leertaste = nadchstes Bild';

OuttextXY (5, 0, Str2);

RectAngle (xMin - 1, yMin - 1, xMax + 1, yMax + 1);
SetViewPort (xMin, yMin, xMax, yMax, ClipON) ;
{ "ClipON" hier sinnvoll }

Ch = ChDummy;

X = 0.0;

v = 0.0;

FarbenNr := FarbenNrMax div 2;
Zaehler = 0;

repeat

Inc (Zaehler) ;

}
}
}

21-20 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

fx := Signum(x) * Sgrt(Abs(cl*x - c2)); { Man teste auch }
{ andere f(x), z.B: fx := Sin(x) + Cos(x); mit a := 1.0 }

fx =y - fx;

% = a - X;

X = fx;

xP := Round(x * Multiplikator) + MaxX Halbe;

yP := Round(y * Multiplikator) + MaxY Halbe;

if Zaehler mod FarbwechselModulo = 0
then FarbenNr := (FarbenNr + 1) mod FarbenNrMax;

PutPixel (xP, yP, FarbenNr);

if KeyPressed then

begin
Ch := UpCase (ReadKey) ;
if Ch = 'P' then
repeat { '"P' = Pause }
until UpCase (ReadKey) = 'P'; { nochmal 'P' }
end;
until Ch in [Esc, ' '];

until Ch = Esc;

CloseGraph;
end.

Eine Ausgabe des Programms Pas25071.PAS:

~

ESC = Ende P = Pause EIN/AUS Leertaste = nichstes Bild

a = -12.5 el = 2.0 c2 = 0.9 Multiplikator = 10

21.8 Demo-Programm Fourier-Reihe

Nach Fourier kann man jede beliebige periodische Funktion, die auch Unstetigkeiten
enthalten darf, durch eine trigonometrische Summe darstellen. Bei einer Summation bis
ins Unendliche wird die Funktion exakt, in anderen Fallen ndherungsweise dargestellt.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-21

Die Zerlegung eines beliebigen Signals f(t) in eine Fourier-Reihe ist Aufgabe der Fou-
rier-Transformation. Bei technischen Anwendungen (Schwingungsanalyse: eindimen-
sionale Transformation, Bildanalyse: zweidimensionale Transformation) beschrankt
man sich aus praktischen Grinden (Rechenzeit!) auf diskrete Punkte des Signals. Man
spricht dann von einer diskreten Fourier-Transformation (DFT). Nach dem Shannon-
schen Abtasttheorem &Rt sich f(t) exakt aus den Abtastwerten rekonstruieren, wenn die
Abtastfrequenz groRer ist als das Doppelte der hochsten in f(t) vorkommenden Fre-
quenz.

Mit der FFT (Fast Fourier Transformation) steht ein besonders schneller Algorithmus
flr die diskrete Fourier-Transformation zur Verfligung, der in vielen Fallen erst eine
sinnvolle technische Anwendung ermdglicht. Im Rechenzeitverhéltnis steht die "nor-
male" DFT zur FFT wie etwa MinimumSort zu QuickSort bei den Sortieralgorithmen.

Im nachfolgenden Demo-Programm wird die Fourier-Reihe fur drei einfache
periodische Funktionen gezeigt:

e Sigezahn y=x fur: —z<x<n
Fourier-Reihe: y:z(smx_sm2x+sm3x _j
1 2 3
e Rechteck y=1 fur: o<x<=x

y=-1 fir: z<x<2x
Fourier-Reihe: y 4(sinx sin3x sin5x+)

=— + +
z\ 1 3 5
e Dreieck y=x flir: —gsxsg
y=7n—X fur; i[SXSEﬁ
2 2
Fourier-Reihe: 4 (sinx sin3x sin5x
y:7 2 - 2 + 2 e
z\ 1 3 5

Im Programm werden die y-Werte zu eins normiert, damit die Grafikausgaben alle die
gleiche Hohe haben.

Man beachte das Uberschwingen beim Sagezahn und beim Rechteck an den Unstetig-
keitsstellen (Gibbsches Phanomen).

program Pas21081; { Fourier-Reihen, 34080897, K. Haller }

uses
CRT, GRAPH;

const
Pfad = 'C:\BP\BGI'; { Ggf. anpassen }
x0 = 70;
XKMin = x0; xKMax = x0 + 500;
yKMin = 100; yKMax = 400;
y0 = 220; dy = 110;

21-22 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

var
Kurve: (Saegezahn, Rechteck, Dreieck);
xK, vk,
k, Farbe: Integer;
Xy Y
yTemp,
Normierung: Real;
n, i: Word;
nStr,
PiStr,
Legende: string;
Ch: Char;
Grafiktreiber,
Grafikmodus: Integer;

procedure Rahmen;
begin
SetColor (Yellow) ;
SetTextStyle (DefaultFont, HorizDir, 2);
OutTextXY (40, 30, 'Fourier-Reihe fer ' + Legende);
SetTextStyle (DefaultFont, HorizDir, 1);
SetTextStyle (DefaultFont, HorizDir, 1)
Str (n, nStr);
OutTextXY (xKMin + 230, y0 - dy - 50, 'nm = ' + nStr);
SetColor (White) ;
RectAngle (xKmin, y0 - dy, xKMax, y0 + dy);
for k := -1 to 5 do
begin
Line (xKmin + (k + 1)* (xKMax - xKMin) div 6, y0 - dy,
xKmin + (k + 1)* (xKMax - xKMin) div 6, y0 + dy);

’

Moveto (xKmin + (k + 1)* (xKMax - xKMin) div 6 - 5, y0 + dy + 10);

Str(k, PiStr);
if PiStr = '1' then PiStr := '';
if PiStr = '-1' then PiStr := '-';
if PiStr <> '0'

then OutText (PiStr + 'm')

else OutText (PiStr);

end;

MoveTo (xKMin - 15, y0 - 3); OutText ('0")
MoveTo (xKMin - 18, y0 + dy - 3); OutText('-1"'
MoveTo (xKMin - 12, y0 - dy - 3); OutText('l'

SetLineStyle (0, 0, Thickwidth);
Line (xKmin + (xKMax - xKMin) div 6, y0 - dy - 15,
xKmin + (xKMax - xKMin) div 6, y0 + dy + 5);
Line (xKmin - 5, yO,
xKmin + 6* (xKMax - xKMin) div 6 + 15, yO0);

SetLineStyle (0, 0, NormWidth) ;

OutTextXY (55, 450, 'Zum Meni mit Taste "Esc", ' +
'weiter mit sonstiger beliebiger Taste ... ');
OutTextXY (55, 400, 'Fachhochschule Minchen, Studiengang ' +
'Druck- und Medientechnik, Dr. K. Haller');

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21-23

end;

begin
Grafiktreiber := Detect;
InitGraph (Grafiktreiber, Grafikmodus

repeat
ClearDevice;
SetColor (Yellow) ;

4

Pfad)

OutTextXY (250, 70, 'Fourier-Reihen');

SetColor (White) ;
OutTextXY (250, 100, '1 Sagezahn'
OutTextXY (250, 115, '2 Rechteck!'
OutTextXY (250, 130, '3 Dreieck '
OutTextXY (250, 145, 'O Ende U
OutTextXY (250, 160, '-——————————-

)
)
)
)
)

’

repeat
Ch := ReadKey;
until Ch in ['0'..'3', #27];
if (Ch = '0') or (Ch = #27)
then Halt;
case Ch of
'1': begin
Kurve := Saegezahn;
Legende := 'Sagezahn: Y = X/u';
Normierung := 2.0/Pi;
end;
'2': begin
Kurve := Rechteck;
Legende := 'Rechteck: Y = £1"';
Normierung := 4.0/Pi;
end;
'3': begin
Kurve := Dreieck;
Legende := 'Dreieck: Y = X*2/u';
Normierung := 8.0/Pi/Pi;
end;
end;
n := 0;
repeat
Inc(n);
ClearDevice;
SetColor (White) ;
Rahmen;
SetColor (Yellow) ;
for xK := xKMin to xKMax do
begin
x := ((xK - xKmin)/ (xKMax - xKmin) *
y := 0.0;

case Kurve of
Saegezahn: begin

6

1) *Pi;

21-24 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

for i := 1 to n do
begin
yTemp := Sin (i*x)/i;
if not 0dd (i)
then yTemp := -yTemp;
y =y + yTemp;
yK := y0 - Round (dy*yTemp*Normierung) ;
PutPixel (xK, yK, LightCyan);
end;
y := y*Normierung;
end;
Rechteck: begin
for i := 1 to n do
begin
yTemp := Sin((2*1 - 1)*x)/(2*1 - 1);
y =y + yTemp;
yK := y0 - Round (dy*yTemp*Normierung) ;
PutPixel (xK, yK, LightCyan);
end;
y := y*Normierung;
end;
Dreieck: begin
for i := 1 to n do
begin
yTemp := Sin((2*1 - 1)*x)/Sqr(2*1 - 1);
if not 0dd (i)
then yTemp := -yTemp;
y =y + yTemp;
yK := y0 - Round(dy*yTemp*Normierung) ;
PutPixel (xK, yK, LightCyan);
end;
y := y*Normierung;
end;
end;

yK := y0 - Round(dy*y);
SetLineStyle (SolidLn, 0, ThickWidth) ;
if xK = xKMin
then MoveTo (xK, vK)
else LineTo (xK, yK);
SetLineStyle (SolidLn, 0, NormWidth) ;
end;

repeat
until KeyPressed;

until ReadKey = #27;
until Ch = '0"';

CloseGraph;
end.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

Fourier-Reihe fur S3dgezahn: ¥ = X-

n=35

le Minchen, Studi itechnik, Dr. K. Haller

Zunm Menu nit Taste "Esc', weiter nit sonstigser belichiger Taste ...

Sagezahn: n=5

Fourier-Reihe fiir Rechteck: % = &1
n=s
~ ~ ~
AN AAN ANN

1 LT AR AT LAAST vy

_Aaan AAAA Anads
v LA VS ‘*
- " Y 3 " su
~ e
1o Munchen, Studi itachnik, Dr. K. Haller
Zun Mend mit Taste "Esc", ueiter mit sonstiser beliebiger Taste ...

Rechteck: n=5

21-25

Fourier—Reihe fiir ZFagezahn: ¥ = XK/

n =20

le Munchen, Studi itechnik, Dr. K. Haller

Zun Ment nit Taste “Esc", weiter nit sonstigser beliehiger Taste ...

Sagezahn: n=20

Fourier-Reihe fiir Rechteck: % = *1

n =20

f i | [et ™ P . .

le Minchen, i tachnik, Dr. K. Haller

Zum Menu mit Taste “Esc”, weiter mit sonstiger beliebiger Taste ...

Rechteck: n=20

Fouriar—Reihe fiir Dreieck: % = H*x2-/m

n=s

le Munchen, Studi itechnik, Dr. K. Haller

Zum Meni mit Taste “Esc'', weiter nit sonstiger beliebiger Taste ...

Dreieck: n=5

Fourier-Reihe fiir Dreieck: % = H¥2Z/m

n =10

le Minchen, S itachnik, Dr. K. Haller

Zum Menu nmit Taste "Esc', weiter nit sonstiger beliebiger Taste ...

Dreieck: n=10

21-26 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.8 Demo-Programm Lissajous-Figuren

program Pas21091; { "Pas21091.PAS", Dr. K. Haller, FHM }

Lissajous-Figuren entstehen durch Uberlagerung
von zweili Sinusschwingungen mit verschiedenen
Frequenzen, Phasenlagen und Amplituden.
Zusammengesetzte Teile von Lissajous-Figuren
kéonnten auch zur UmriBbeschreibung (Outline-
Codierung) von Schriftzeichen benutzt werden.
Siehe auch Kap. "Bézier-Funktionen".
Einfachstes Beispiel fiir Lissajous-Figur:

uses
CRT, GRAPH;

e e e e R T NPT S
e e e e e e e

X = sin(t), y = sin(m*t + Phi)
const
k = 150; { Fir Kantenlange 0...1 }
dt = 0.01; { "dt = Delta-t", steuert Aufldsung }
Pausel = 1.0; { Bei Pentium 90 MHz z.B. "1.0" }
var
Grafiktreiber,
Grafikmodus,
x0, yO: Integer;
Pause: Word;
t, m, Phi,
X, y: Real;
Ch: Char;
DemoNr: Byte;
DemoNrStr: string[3];
mStr, PhiStr: string[10];
begin
Grafiktreiber := Detect;

InitGraph (Grafiktreiber, Grafikmodus, 'C:\BP\BGI');

x0 := GetMaxX div 2;
y0 := GetMaxY div 2 + 20;
repeat

SetColor (White) ;

ClearViewport;

OutTextXY (230, 100, 'Demo Lissajous-Figuren'
OutTextXY (230, 110, 'Dr. K. Haller, FHM, DR'
OutTextXY (230, 120, '-—————————"""""---———— y
OutTextXY (230, 130, '1 Verzogerte Ausgabe'
OutTextXY (230, 140, '2 Schnelle Ausgabe '
OutTextXY (230, 150, 'Esc Beenden '
OutTextXY (230, 160, 'm—c—cceccmcccosssmcoco=s !
OutTextXY (230, 170, '1'");

repeat

Ch := ReadKey;

if Ch = #13 then Ch := '1';
until Ch in ['1'..'2', 4#27];
case Ch of
'l1': Pause := Round(Pausel); { langsam }
'2': Pause := 0; { schnell }
#27: Halt; { >>>>>>> Abbruch >>>>>>>>> }
end;

DemoNr := 0;

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-27

repeat
DemoNr := 1 + (DemoNr mod 11);
case DemoNr of
l: begin m := 1.0; Phi := 0.0; end;
2: begin m := 1.0; Phi := 0.4711; end;
3: begin m := 1.0; Phi := Pi/2; end;
4: begin m := 2.0; Phi := 0.0; end;
5: begin m := 0.5; Phi := 0.0; end;
6: begin m := 0.5; Phi := Pi/4; end;
7: begin m := 0.5; Phi := -Pi/4; end;
8: begin m := 2.0; Phi := Pi/4; end;
9: begin m := 1.5; Phi := 0.0; end;
10: begin m := Exp(0.4711); Phi := ILn(0.4711); end;
11: begin m -In(0.4711); Phi := Exp(0.4711l); end;
end;
SetColor (White) ;
ClearViewport;
OutTextXY (x0 - 65, y0 - k - 65, ' Lissajous-Figuren ');
OutTextXY (x0 - 65, y0 - k - 45, 'Einfachstes Beispiel:');
OutTextXY (x0 - 115, y0 - k - 30,
'x = sin(t), y = sin(m*t + Phi)"'");
OutTextXY (x0 - 190, y0 + k + 30,
'Zum Menil mit »Esc«, ' +
'weiter mit beliebiger Taste ... '");
Str (DemoNr, DemoNrStr);
OutTextXY (x0 + k + 15, yv0 - k, 'Demo-Nr ' + DemoNrStr) ;

Str(m:6:4, mStr);

OutTextXY (x0 + k + 15, y0 - k + 18, 'm = ' + mStr);
Str(Phi:6:4, PhiStr);
OutTextXY (x0 + k + 15, y0 - k + 30, 'F = ' + PhiStr);

MoveTo (x0 - k, y0 - k);

LineRel (0, 2*k); LineRel(2*k, 0);
LineRel (0, -2*k); LineRel (-2%*k, 0);

Moveto (x0O - k - 10, y0); LineRel (2*k + 20, 0);
Moveto (x0, y0 - k - 10); LineRel (0, 2*k + 20);

OutTextXY (x0 - 3, y0 - 3, '0');
OutTextXY (x0 + k + 2, y0 + 6, VLYY g
OutTextXY (x0 - 10, yO - k - 10, '1");

SetColor (Yellow) ;
Moveto (x0, y0 - Round(k*Sin (Phi))); { (x, y) bei "t = 0.0" }

t := 0.0;
repeat { Der Kern des Programms ... }
t = t + dt;
X := Sin(t);
y := Sin(m*t + Phi);
Lineto (x0 + Round(k*x), y0 - Round(k*y)):;
Delay (Pause) ; { Ggf. eine kleine Pause zum Betrachten }

until KeyPressed;
if DemoNr = 11 then Write (#7);
until ReadKey = #27;
until Ch = #27; { Schleife wird aber friher beendet }
end.

30190601 Dr. K. Haller

