
Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-1

 21 Bildschirmgrafik

Gliederung

21.1 Allgemeines zur Bildschirmgrafik .. 2

21.2 Die Grafikprozedur PutPixel .. 3

21.3 Weitere Grafikprozeduren und -funktionen.. 4

21.4 Allgemeines Demo-Programm ... 6

21.5 Demo-Programm Moiré .. 11

21.6 Demo-Programm Fraktale 1 (B. Mandelbrot) 13

21.7 Demo-Programm Fraktale 2 (B. Martin) .. 18

21.8 Demo-Programm Fourier-Reihen ... 20

21.9 Demo-Programm Lissajous-Figuren .. 26

21-2 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.1 Allgemeines zur Bildschirmgrafik

Für die komfortable Erstellung von Bildschirmgrafiken steht in Turbo-Pascal die Unit

»GRAPH.TPU« zur Verfügung. Sie enthält eine Vielzahl von vordefinierten Grafikpro-

zeduren, -funktionen und -konstanten.

Wichtig: Im Menüpunkt Option/Verzeichnisse muß im Feld Unit-Verzeichnis ein Zu-

griffspfad zur Unit »GRAPH.TPU« eingetragen sein. Bei Standard-Installation auf einer

Festplatte: »C:\BP\UNITS«.

Außer dieser Unit benötigt man noch die Grafiktreiber für die Bildschirmkarte, z.B.

"EGAVGA.BGI" für VGA-Grafikkarten mit einer Aufläsung von 640 * 480 und bei

Verwendung von Vektorschriften die entsprechenden Schriftdateien, z.B. "Goth.CHR"

oder "Trip.CHR".

Die Grafiktreiber und auch die Schriften stehen bei Standardinstallation im Verzeichnis

"C:\BP\BGI". Der Zugriffspfad zum Grafiktreiber muß im Programm genannt werden.

»BGI« bedeutet Borland Graphic Interface.

Es können nur Strings auf den Grafikbildschirm geschrieben werden. Numerische Daten

sind deshalb vorher in Strings zu konvertieren.

Die Koordinaten des Grafik-Bildschirms:

•P(x, y)

0

0

y

x Xmax

Ymax

Bei einer Grafikkarte von z.B. 640 * 480 laufen die x-Koordinaten von 0..639 und die

y-Koordinaten von 0..479.

Zu Beginn eines Grafikprogramms muß die Grafik entsprechend der verwendeten

Grafikkarte initialisiert werden. Dabei ist besonders darauf zu achten, daß der

Zugriffspfad zum zutreffenden Grafiktreiber richtig gesetzt ist.

Das folgende kleine Programm zeigt die Initialisierung der Grafik, die Verwendung der

Grafikprozedur Circle und auch das Beenden der Grafik.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-3

program Pas21011; { Grafik }

uses
 CRT, GRAPH;

var
 Grafiktreiber,
 Grafikmodus: Integer;

begin
 Grafiktreiber := Detect;
 { Mit "Detect" automatische Erkennung des Grafiktreibers, }
 { nicht bei allen Grafikkarten, wohl aber z.B. bei VGA }

 InitGraph(Grafiktreiber, Grafikmodus, 'C:\BP\BGI');

 { Der Zugriffspfad ist ggf. anzupassen }
 { Wenn "Grafikmodus" nicht vorher spezifiziert, dann wird }

 { automatisch die höchste Auflösungsstufe eingestellt }

 Circle(200, 100, 80); { Kreis: xM = 200, yM = 100, r = 80 }

 repeat
 until ReadKey <> '';
 CloseGraph; { Zurück zum Textmodus }
end.

21.2 Die Grafikprozedur PutPixel

Die Prozedur »PutPixel« ist die wichtigste aller Grafikprozeduren und dient zum Setzen

eines Pixels (picture element) an der Position x/y. Durch Überschreiben mit der

Hintergrundfarbe kann das Pixel auch wieder "gelöscht" werden.

Format: PutPixel(x, y, farbe)

 x x-Koordinate. Integer-Ausdruck

y y-Koordinate. Integer-Ausdruck

farbe Pixelfarbe. Word-Ausdruck (Werte 0 bis 15)

 oder vordefinierte Konstanten nach folgender Auflistung:

Die vordefinierten Farbkonstanten:

0 Black 4 Red 8 Darkgray 12 Lightred

1 Blue 5 Magenta 9 Lightblue 13 Lightmagenta

2 Green 6 Brown 10 Lightgreen 14 Yellow

3 Cyan 7 Lightgray 11 Lightcyan 15 White

21-4 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.3 Weitere wichtige Grafikprozeduren, -funktionen und -

konstanten (Auswahl)

Abkürzungen:

K Konstante

P Prozedur

F Funktion

K Detect

 Zweck: Automatische Erkennung des Grafiktreibers.

 Die automatische Erkennung des VGA-Karten problemlos möglich.

P InitGraph(grafiktreiber, grafikmodus, pfad)

 Zweck: Initialisierung der Grafik.

 grafiktreiber Integervariable. Vorher initialisiert, z.B. mit Detect.

 grafikmodus Integervariable. Braucht mit Ausnahme der beiden genannten

Grafikkarten nicht initialisiert zu sein, wenn die höchste Auflö-

sungsstufe gewünscht wird.

 pfad Zugriffspfad zum Grafiktreiber, z.B. zum Treiber für die VGA

Karte "EGAVGA.BGI".

P CloseGraph

 Zweck: Beendet den Grafikmodus und wechselt zum Textmodus. Am Programm-

ende nicht notwendig.

P PutPixel(x, y, farbe)

 Zweck: Pixel setzen/löschen. Siehe 21.2.

P Line(x1, y1, x2, y2)

 Zweck: Linie vom Punkt P1(x1, y1) zum Punkt P2(x2, y2) ziehen.

 x1, y1, x2, y2 Integer-Ausdrücke

 Hinweis: Bei allen Linien-Operationen (Linien, Rechtecke, Kreise usw.) werden die

Linien mit dem Standardlinienart (SolidLn = durchgezogene Linie) und in der Stan-

darddicke (NormWidth = 1 Pixel) gezeichnet, wenn nicht mit der Grafikprozedur

"SetLineStyle" andere Linienarten oder -dicken vereinbart werden. Details siehe

späteres Demo-Programm und Handbuch.

P MoveTo(x, y)

 Zweck: Versetzt den (unsichtbaren) Grafikcursor zum Punkt P(x, y).

 x, y Integer-Ausdrücke

P LineTo(x, y)

 Zweck: Zeichnet Linie vom aktuellen Cursorpunkt zum Punkt P(x, y),

 x, y Integer-Ausdrücke

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-5

P RectAngle(x1, y1, x2, y2)

 Zweck: Zeichnet achsparalleles Rechteck mit der linken oberen Ecke P1(x1, y1)

und der rechten unteren Ecke P2(x2, y2).

 x1, y1, x2, y2 Integer-Ausdrücke

F GetMaxX

 Zweck: Liefert maximalen X-Wert (z.B. 639 bei VGA 640 * 480) im Ergebnis-

Datentyp Integer.

F GetMaxY

 Zweck: Liefert maximalen Y-Wert (z.B. 479 bei VGA 640 * 480) im Ergebnis-

Datentyp Integer.

P Circle(x, y, radius)

 Zweck: Zeichnet Kreis um Mittelpunkt M(x, y) mit radius.

 x, y Integer-Ausdrücke

 radius Word-Ausdruck

P Arc(x, y, winkelStart, winkelEnd, radius)

 Zweck: Zeichnet Kreisbogen um Mittelpunkt M(x, y) mit radius zwischen

Anfangswinkel winkelStart und Endwinkel winkelEnd.

 x, y Integer-Ausdrücke

 radius Word-Ausdruck

 winkelStart,

 winkelEnd Word-Ausdrücke. Winkel im Gradmaß, ansonsten aber Dreh-

richtung und Ausgangspunkt im mathematischen Sinne.

P OutText(s)

 Zweck: Gibt String s an der aktuellen Position des Grafikcursors aus. Numerische

Daten müssen in Strings gewandelt werden.

 s String-Ausdruck

P OutTextXY(x, y, s)

 Zweck: Gibt String s an der Position P(x, y) aus. Numerische Daten müssen in

Strings gewandelt werden.

 x, y Integer-Ausdrücke

 s String-Ausdruck

F GetPixel(x, y)

 Zweck: Liefert die farbe des Pixels P(x, y) mit Ergebnis-Datentyp Word. Werte

zwischen 0 (= Black) und 15 (= White). Zu farbe siehe 21.2.

 x, y Integer-Ausdrücke

Allgemeiner Hinweis: Es ist auch im Grafik-Modus möglich, mit »Read« bzw
»ReadLn« Daten von der Tastatur einzulesen. Die Benutzereingaben erscheinen am
aktuellen Punkt des Grafikcursors (wenn noch Cursor nicht bewegt wurde, dann in der
linken oberen Bildschirmecke) und können mit der Taste »Backstep« editiert werden.

21-6 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

Das folgende Demo-Programm enthält weitere Grafik-Prozeduren und Funktionen. Die

Erklärung ist aus der Programmumgebung zu entnehmen. Weitere Details siehe Online-

Hilfe.

21.4 Allgemeines Demo-Programm

program Pas21041; { Kapitel 21: Bildschirmgrafik }
 { Dieses Demo-Programm enthält z.T. fixe Koordinaten für die VGA-
 Farb-Grafikkarte in der Auflösung 640 * 480. Für andere Grafik-
 Karten wird im allgemeinen eine Anpassung der Koordinaten
 notwendig sein.
 Dieses Demo-Programm verwendet nur einen Teil der in der Unit
 »GRAPH.TPU« definierten Funktionen, Prozeduren und Konstanten
 und zwar:

 Bezeichner Bedeutung

 GetMaxX function
 GetMaxY function
 GraphResult function
 GraphErrorMsg function
 InitGraph procedure
 PutPixel procedure Die wichtigste Grafik-Prozedur
 RectAngle procedure
 OutTextXY procedure
 Line procedure
 MoveTo procedure
 SetLineStyle procedure
 Line procedure
 LineTo procedure
 Bar procedure
 Circle procedure
 CloseGraph procedure
 SetTextStyle procedure
 SetViewPort procedure
 ClearViewPort procedure
 ClipON const
 ClipOFF const
 grOk const
 Detect const
 Black const
 White const
 DottedLn const
 NormWidth const
 ThickWidth const
 SolidFill const
 CloseDotFill const
 XHatchFill const
 ShlashFill const
 BkSlashfill const
 GothikFont const
 HorizDir const
 VertDir const
 --
 }

uses
 CRT, GRAPH; { Die Turbo-Pascal-Unit »GRAPH.TPU« }

const
 Zugriffspfad = 'C:\BP\BGI'; { Zugriffspfad z. Treiber »EGAVGA.BGI« }
 { Ggf. anpassen }

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-7

var
 Grafiktreiber,
 Grafikmodus,
 Grafikfehlercode: Integer;

 Xmax: Integer;
 Ymax: Integer;
 Farbe,
 Schriftgroesse: Word;
 x, y,
 x1, y1,
 x2, y2,
 ye,
 DeltaX,
 DeltaY,
 Radius: Integer;
 XmaxStr,
 YmaxStr: string[3];
 GrafiktreiberStr,
 GrafikmodusStr,
 FarbeStr: string[3];

begin
 Grafiktreiber := Detect; { Konstante "Detect" aus Unit GRAPH }
 { Automatische Erkennung des installierten Grafiktreibers }

 InitGraph(Grafiktreiber, Grafikmodus, Zugriffspfad);
 { Wenn mehrere Grafik-Modi existieren, wählt die Grafik-
 Prozedur »InitGraph« den mit der höchsten Auflösung aus }

 Grafikfehlercode := GraphResult; { Funktion "GraphResult }
 { aus Unit GRAPH }
 if Grafikfehlercode <> grOk then { Konstante "grOK" aus }
 begin { Unit GRAPH }
 WriteLn('Grafik-Fehler: ', GraphErrorMsg(Grafikfehlercode));
 WriteLn('Programmabbruch notwendig ...');
 Halt;
 end;

 Xmax := GetMaxX; { liefert maximale X-Koordinate }
 Ymax := GetMaxY; { liefert maximale Y-Koordinate }

 Str(Xmax, XmaxStr); { Konvertierung in String }
 Str(Ymax, YmaxStr);
 Str(Grafiktreiber, GrafiktreiberStr);
 Str(Grafikmodus, GrafikmodusStr);

{ ------------ Rechteck zeichnen ----------------------------------- }
 x1 := 0; x2 := Xmax;
 y1 := 0; y2 := Ymax;
 RectAngle(x1, y1, x2, y2);

{ ------------ Text an der Stelle (X, Y) ausgeben ------------------ }
 OutTextXY(10, 10, 'Xmax = ' + XmaxStr);
 OutTextXY(10, 25, 'Ymax = ' + YmaxStr);
 OutTextXY(120, 10, 'Grafiktreiber: ' + GrafiktreiberStr);
 OutTextXY(120, 25, 'Grafikmodus: ' + GrafikmodusStr);

{ ------------ Linie zeichnen -------------------------------------- }
 x1 := 0; x2 := Xmax;
 y1 := 40; y2 := y1;
 Line(x1, y1, x2, y2);

{ ------------ Linien zeichnen, Linientyp einstellen --------------- }
 MoveTo(0, 43);
 SetLineStyle(DottedLn, 0, ThickWidth);
 LineTo(Xmax, 43); { Bewegung vom Grafik-Cursor aus }

21-8 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

 SetLineStyle(SolidLn, 0, NormWidth);
 Line(0, 46, Xmax, 46);

{ ------------ gefüllten Balken zeichnen, Füllmuster --------------- }
 DeltaX := 20;
 DeltaY := 20;
 x1 := 30; x2 := x1 + DeltaX;
 y1 := 100; y2 := y1 + DeltaY;

 RectAngle(x1 - 2, y1 - 2,
 x2 + 4*DeltaX + 2, y2 + 15*DeltaY + 2);

 for Farbe := Black to White do { 16 Farben, von 0 bis 15 }
 begin
 Str(Farbe, FarbeStr);
 OutTextXY(x1 - 20, y1 + Farbe*DeltaY + DeltaY div 2, FarbeStr);

 SetFillStyle(SolidFill, Farbe);
 Bar(x1, y1 + Farbe*DeltaY,
 x2, y2 + Farbe*DeltaY); { zeichnet gefüllten Balken }

 SetFillStyle(CloseDotFill, Farbe);
 Bar(x1 + DeltaX, y1 + Farbe*DeltaY,
 x2 + DeltaX, y2 + Farbe*DeltaY);

 SetFillStyle(XHatchFill, Farbe);
 Bar(x1 + 2*DeltaX, y1 + Farbe*DeltaY,
 x2 + 2*DeltaX, y2 + Farbe*DeltaY);

 SetFillStyle(SlashFill, Farbe);
 Bar(x1 + 3*DeltaX, y1 + Farbe*DeltaY,
 x2 + 3*DeltaX, y2 + Farbe*DeltaY);

 SetFillStyle(BkSlashFill, Farbe);
 Bar(x1 + 4*DeltaX, y1 + Farbe*DeltaY,
 x2 + 4*DeltaX, y2 + Farbe*DeltaY);
 end;

{ ------------ Kreis zeichnen -------------------------------------- }
 Radius := 100;
 x1 := 250;
 y1 := 200;
 while Radius > 0 do
 begin
 Circle(x1, y1, Radius);
 Circle(x1 + Radius, y1, Radius);
 Dec(Radius, 2);
 end;

{ ------------ Punkte setzen --------------------------------------- }
 x1 := 150; x2 := 430;
 y1 := Ymax - 60;
 Line(x1, y1, x2, y1);
 Farbe := White; { »White« = 15 }
 for x := x1 to x2 do
 begin
 y := y1 + Round(40*Sin(x/15));
 PutPixel(x, y, Farbe); { Mit der Farbe »Black« = 0 wird
 ein gesetzter Punkt gelöscht }
 end;

{ ------------ Fenster setzen, mit/ohne Clipping ------------------- }
 x1 := 150; y1 := 310;
 x2 := 430; y2 := y1 + 60;
 RectAngle(Pred(x1), Pred(y1), Succ(x2), Succ(y2));

 SetViewPort(x1, y1, x2, y2, ClipON); { Fenster setzen }

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-9

 { SetViewPort selbst arbeitet immer mit absoluten Koordinaten. }
 { Ansonsten gelten alle anderen Grafikkoordinaten anschließend }
 { relativ zur linken oberen Ecke des gesetzten Fensters. }

 { Konstante ClipON (= True): mit Clipping }
 { Konstante ClipOFF (= False): ohne Clipping }

 ClearViewPort; { Fenster löschen, hier nicht notwendig }

 OutTextXY(105, 30, 'Clipping');

 for Radius := 2 to 40 do
 begin
 Circle(60, 30, Radius);
 Radius := Radius + 2;
 end;

 SetViewPort(x1, y1, x2, y2, ClipOFF); { ohne Clipping }
 for Radius := 2 to 40 do
 begin
 Circle(180 + 50, 30, Radius);
 Radius := Radius + 2;
 end;

 SetViewPort(0, 0, Xmax, yMax, ClipON); { ganzer Bildschirm }

{ ------------ Schriften --- }
 { Format für "SetTextStyle": }
 { SetTextStyle(font, richtung, groesse) }
 { }
 { font: Word-Ausdruck, 0..4, oder: }
 { DefaultFont (= 0, Pixelschrift) }
 { TriplexFont (= 1, Vektorschrift, Datei Trip.CHR }
 { SmallFont (= 2, VektorSchrift, Datei Litt.CHR }
 { SansSerifFont (= 3, Vektorschrift, Datei Sans.CHR }
 { GothicFont (= 4, Vektorschrift, Datei Goth.CHR }
 { Die Vektorschriften können nur benutzt werden, wenn }
 { die angegebenen Schrift-Dateien des BGI existieren. }
 { Sie werden bei der Installation von Turbo-Pascal auf }
 { einer Festplatte C im folgenden Verzeichnis abgelegt: }
 { "C:\BP\BGI" }
 { richtung: Word-Ausdruck, aber nur 0 oder 1, bzw.: }
 { HorizDir (= 0, horizontale Richtung) }
 { VertDir (= 1, vertikale Richtung) }
 { groesse: Word-Ausdruck, Skalierungsfaktor. Standardeinstellung }
 { beim DefaultFont 1, bei Vektorschriften 4. Skalierung }
 { ist nur sinnvoll bei Vektorschriften, da DefaultFont }
 { mit einer 8 * 8 - Pixeldarstellung arbeitet, die bei }
 { Vergrößerung sehr rauh wirkt. }

 x1 := 460; y1 := 90;
 for Schriftgroesse := 1 to 3 do
 begin
 SetTextStyle(TriplexFont, HorizDir, Schriftgroesse);
 y1 := y1 + Schriftgroesse * 8;
 OutTextXY(x1, y1, 'Triplex');
 end;

 x1 := 460; y1 := 180;
 for Schriftgroesse := 5 to 8 do
 begin
 SetTextStyle(SmallFont, HorizDir, Schriftgroesse);
 y1 := y1 + Schriftgroesse * 2;
 OutTextXY(x1, y1, 'SmallFont');
 end;

 x1 := 460; y1 := 270;

21-10 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

 for Schriftgroesse := 1 to 3 do
 begin
 SetTextStyle(SansSerifFont, HorizDir, Schriftgroesse);
 y1 := y1 + Schriftgroesse * 8;
 OutTextXY(x1, y1, 'SansSerif');
 end;

 x1 := 460; y1 := 370;
 for Schriftgroesse := 1 to 3 do
 begin
 SetTextStyle(GothicFont, HorizDir, Schriftgroesse);
 y1 := y1 + Schriftgroesse * 8;
 OutTextXY(x1, y1, 'Gothic');
 end;

 x1 := 540; y1 := 370;
 for Schriftgroesse := 1 to 3 do
 begin
 SetTextStyle(DefaultFont, HorizDir, Schriftgroesse);
 y1 := y1 + Schriftgroesse * 8;
 OutTextXY(x1, y1, 'Default');
 end;

{ ------------ Schrifttyp und Schreibrichtung ändern --------------- }
 SetTextStyle(SmallFont, VertDir, 5);
 OutTextXY(Xmax - 30, 50, 'Schreibrichtung waagrecht und senkrecht');

{ ------------ Feierabend -- }
 SetTextStyle(SmallFont, HorizDir, 5);
 OutTextXY(30, 460, 'Ende mit beliebigem Tastendruck ... ');
 repeat
 until KeyPressed;

 CloseGraph; { Umschalten in den Textmodus }

end.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-11

Die Ausgabe des Programms Pas21041.PAS:

21.5 Demo-Programm Moiré

Das folgende Programm erzeugt Moiré-ähnliche Grafiken, fast so schön wie Apfelmännchen. Der
Grundgedanke:

Man setze in eine nahezu willkürliche Funktion die Koordinaten xk und yk ein. Dann betrachte den

ganzzahligen Teil der Funktion: Ist dieser geradzahlig, dann setze man bei xk, yk einen Punkt, sonst nicht

(Rechnung modula 2). Damit kann man z.B. mit Monochrom-Karten bereits s/w-Graphiken erstellen. Bei

Farbkarten rechnet man nicht modulo 2, sondern z.B. modulo 16 (bei Standard-VGA). Die Funktion

normiere man zweckmäßigerweise so, daß der Wertebereich 0 bis 65535 abgedeckt wird, was dem

Pascal-Datentyp »Word« entspricht. Im vorliegenden Programm wird folgende Funktion benutzt:

F x y x yp p(,) = + 2

x und y sind normierte Koordinaten (x, y = 0 ... 1), p ist ein frei wählbarer (positiver) Parameter, mit dem
höchst unterschiedliche Graphiken dargestellt werden können. Die Funktion liefert Werte zwischen 0 und
2, da jeder der beiden Terme Werte zwischen 0 und 1 liefert. Durch Multiplikation mit »MaxInt« (Pascal-
Konstante mit dem Wert 32767) wird die gewünschte Normierung auf den Datentyp »Word« erreicht.

In Pascal ist bekanntlich die Potenzfunktion z^n nicht implementiert. Man muß sie mit e^(n * ln z)
darstellen. In Pascal-Schreibweise: z^n = Exp(n * Ln(z))

21-12 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

program Pas21051; { Moiré, Turbo-Pascal, VGA 640 * 480, K. Haller }

uses
 CRT, GRAPH;

const
 xMin = 150; xMax = 500; { Zeichenfläche x-Richtung waagrecht }
 yMin = 100; yMax = 360; { Zeichenfläche y-Richtung senkrecht }
 Grafikpfad = 'C:\BP\BGI'; { In diesem Verzeichnis »Graph.TPU« }
 FarbenMax = 16; { Bei VGA »16« Farben }

type
 TReal = Extended;

var
 xk, yk: Integer;
 Farbe: Byte;
 p, x, y,
 yTerm,
 Funktion: TReal;
 Taste: Char;
 Fehlercode: Integer;
 pStr: string;
 Grafikmodus,
 Grafiktreiber: Integer;

begin
 Grafiktreiber := Detect;

 InitGraph(Grafiktreiber, Grafikmodus, Grafikpfad);

 repeat
 RectAngle(xMin, yMin, xMax, yMax); { zeichnet Rechteck }

 OutTextXY(xMin, 30, '------------- Programm MOIRÉ ----------' +
 '-----');
 OutTextXY(xMin, 52, 'Geben Sie beliebige positive Zahl ein: ' +
 ' ');
 OutTextXY(xMin, 67, 'Zum Beispiel: 0.001, 0.1, 0.5, 0, 2, ' +
 '10 usw.');
 OutTextXY(xMin, yMax + 8, 'kha ' +
 ' FHM');
 repeat
 GotoXY(10 + 50, 4);
 ReadLn(pStr);
 Val(pStr, p, Fehlercode);
 until (Fehlercode = 0) and (p >= 0.0);

 for yk := yMin + 2 to yMax - 2 do
 begin
 y := (yk - yMin) / (yMax - yMin);
 { y = 0..1 }
 yTerm := Exp(2*p*Ln(y));
 {.. = y^(2*p) }

 for xk := xMin + 2 to xMax - 2 do
 begin
 x := (xk - xMin) / (xMax - xMin);
 { x = 0..1 }
 Funktion := Exp(p*Ln(x)) + yTerm;
 { Funktion = 0..2 }
 Funktion := MaxInt * Funktion;
 { F = 0..65535 }
 Farbe := Round(Funktion) mod FarbenMax;

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-13

 { Farbe = 0..15 }
 PutPixel(xk, yk, Farbe);
 end;
 end;

 OutTextXY(xMin + 95, yMax + 40, 'Wiederholung (j/n): j');

 repeat
 Taste := ReadKey;
 if Taste = #13
 then Taste := 'j';
 until UpCase(Taste) in ['J', 'N'];

 ClearDevice; { Löscht Grafik-Bildschirm }

 until UpCase(Taste) = 'N';

 CloseGraph;
end.

Eine Ausgabe des Programms Pas21051.PAS:

21.6 Demo-Programm Fraktale 1 (B. Mandelbrot)

{$N+ Coprozessor benutzen }
program Pas21061; { Das Apfelmännchen der Mandelbrotmenge }
 { Turbo-Pascal, VGA-Graphik, K. Haller }

uses
 CRT, GRAPH;

const
 FarbenMax = 16; { In Turbo-Pascal max. 16 Farben }
 XK_Min = 100; XK_Max = 540; { Bildschirm-Koordinaten }

 YK_Min = 30; YK_Max = 440;

21-14 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

var
 Ende: Boolean;
 xMin, xMax,

 yMin, yMax: Double;
 Ch: Char;
 Iterationstiefe: Word;

 { Zur Iterationstiefe ---------------------------------- }
 { Man teste auch mit: 0, 1, 2, 3, 4, ... 999, }
 { Je höher, desto besser die Auflösung, dafür aber auch }

 { längere Rechenzeiten. Mit "110" bei VGA, 16 Farben: }
 { im Zentrum gelbe Farbe. Je kleiner der Auschnitt aus }
 { dem Apfelmännchen, desto höher sollte die Iterations- }

 { tiefe gewählt werden. }

procedure Apfelmaennchen(XK_Min, XK_Max,
 YK_Min, YK_Max: Integer;
 xMin, xMax,
 yMin, yMax: Double;

 Iterationstiefe,
 FarbenMax: Word);
 { Benoit Mandelbrot: Amerikanischer Mathematiker.

 Iterationsvorschrift für Mandelbrotmenge: zNeu = z*z + c,
 Komplexe Zahl z, komplexe Konstante c. Dabei ist c die
 Koordinate des aktuellen Punktes in der komplexen Zahlenebene.

 Wobei: z = x + j * y, x: Realteil, y: Imaginärteil
 c = cx + j * cy, cx: Realteil, cy: Imaginärteil
 mit: j = _√(-1), Wurzel aus –1, imaginäre Einheit

 Die Rechnung ergibt mit Berücksichtigung von j*j = -1:
 zNeu = (x*x - y*y + cx) + j * (2*x*y + cy)
 d.h: zNeuReal = xNeu = x*x - y*y + cx

 zNeuImag = yNeu = 2*x*y + cy }
const
 RadiusMax = 2.0; { Für Apfelmännchen: 2.0, ansonsten spiele man }

var
 x, y,
 cx, cy,

 cxDelta,
 cyDelta,
 xAlt: Double;

 XK, YK: Integer; { Pixelkoordinaten }
 i: Word; { Iterationszähler }
 Ch: Char;

begin
 cxDelta := (xMax - xMin) / (XK_Max - XK_Min);
 cyDelta := (yMax - yMin) / (YK_Max - YK_Min);

 cy := yMin;
 for YK := YK_Max downto YK_Min do { senkrechte Pixel-Koordinaten }
 begin
 cx := xMin;
 for XK := XK_Min to XK_Max do { waagrechte Pixel-Koordinaten }
 begin
 x := 0.0; { Man teste auch mit |x|, |y| _ 2.0 }
 y := 0.0; { Für Apfelmännchen: 0.0 und 0.0 }
 i := 0; { Iterationszähler }

 repeat
 Inc(i);
 xAlt := x; { xAlt auch für yNeu }

 x := Sqr(x) - Sqr(y) + cx; { xNeu }
 y := 2 * xAlt * y + cy; { yNeu }
 until (Sqr(x) + Sqr(y) >= Sqr(RadiusMax)) or

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-15

 (i = Iterationstiefe);

 PutPixel(XK, YK, i mod FarbenMax);
 cx := cx + cxDelta;
 end; { Ende XK-for-Schleife }
 cy := cy + cyDelta;
 if KeyPressed then
 begin
 CloseGraph;
 Exit;
 end;
 end; { Ende YK-for-Schleife }
end; { ****** Ende Prozedur "Apfelmaennchen(...)" ********* }

procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);
begin
 GotoXY(Spalte, Zeile);

 Write(Meldung);
end;

procedure Grafik_Initialisieren;
const
 Zugriffspfad = 'C:\BP\BGI'; { Gegebenenfalls anpassen }

var
 Grafiktreiber,
 Grafikmodus,

 Fehlercode: Integer;
begin
 Grafiktreiber := Detect;

 InitGraph(Grafiktreiber, Grafikmodus, Zugriffspfad);
 Fehlercode := GraphResult;
 if FehlerCode <> GrOK then
 begin
 ClrScr;
 WriteXY(10, 10, 'Grafikfehler: ');

 WriteLn(GraphErrorMsg(Fehlercode));
 WriteXY(10, 14, 'Programmabbruch notwendig. ' +
 'Drücke beliebige Taste ... ');

 repeat
 until ReadKey <> '';
 Halt(1); { >>>>>>>>>>>>>>>>>>>>>>>>>> }

 end;
 ClearDevice;
 OutTextXY(135, 450, 'Apfelmännchen. ' +

 'Abbruch mit beliebiger Taste ... ');
end;

procedure Menue(var xMin, xMax, yMin, yMax: Double;
 var Iterationstiefe: Word;
 var Ende: Boolean);
var
 Ch: Char;
begin
 ClrScr;
 WriteXY(10, 6, 'Das Apfelmännchen der Mandelbrotmenge:');
 WriteXY(10, 8, 'Eingabe Demo 1...3, (0 für Ende): ');

 while KeyPressed do
 Ch := ReadKey;
 repeat
 Ch := ReadKey;
 until Ch in ['0'..'3'];
 Write(Ch);

21-16 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

 Ende := False;
 case Ch of
 '0': Ende := True;

 '1': begin
 xMin := -2.5; yMin := -2.5;
 xMax := +2.5; yMax := +2.5;

 Iterationstiefe := 110;
 end;
 '2': begin
 xMin := 0.36067; yMin := 0.58583;
 xMax := 0.36068; yMax := 0.58584;
 Iterationstiefe := 110;

 end;
 '3': begin
 xMin := -0.7667805; yMin := 0.1000325;

 xMax := -0.7667790; yMax := 0.1000340;
 Iterationstiefe := 299; { Bei sehr kleinen Ausschnitten }
 end; { große Iterationstiefe notwendig. Bei Beispiel 3 }
 end; { mit Tiefe 299 schönes Farbenspiel }
end;

begin { ----- Hauptprogramm ------- }
 repeat
 Menue(xMin, xMax, yMin, yMax, Iterationstiefe, Ende);

 if not Ende then
 begin
 Grafik_Initialisieren;

 Apfelmaennchen(XK_Min, XK_Max,
 YK_Min, YK_Max,
 xMin, xMax,

 yMin, yMax,
 Iterationstiefe,
 FarbenMax);

 repeat
 until ReadKey <> '';
 CloseGraph;

 end;
 until Ende;
end.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-17

21-18 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.7 Demo-Programm Fraktale 2 (B. Martin)

{$N+ Coprozessor benutzen }
program Pas21071; { Fraktale mit reellen Zahlen nach Barry Martin }
 { y - f(x) --> x }
 { a - x --> y }
 { Mit f(x) = Sign(x) * Sqrt(Abs(c1*x - c2) }
 { Modifikation nach: MC, 10/92, S. 88, H. Scheid }
 { Man teste auch mit anderen f(x) }
uses
 CRT, GRAPH;

type
 TReal = Extended;

const
 FarbenNrMax = 16;
 Esc = #27;
 ChDummy = '?';
 Multiplikator = 10; { Man teste auch mit anderen Werten }
 FarbwechselModulo = 10000; { Man teste auch mit anderen Werten }

var
 Grafiktreiber,
 Grafikmodus,
 xMin, xMax,
 yMin, yMax,
 MaxX_Halbe,
 MaxY_Halbe: Integer;

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-19

 Str1, Str2: string;
 Ch: Char;
 x, y, fx,
 a, c1, c2: TReal;
 xP, yP: Integer; { Pixelkoordinate }
 FarbenNr: Byte;
 Zaehler: LongInt;

function Signum(x: TReal): ShortInt;
begin
 if x >= 0
 then Signum := +1
 else Signum := -1;
end;

begin { --- }
 ClrScr;

 Grafiktreiber := Detect;
 InitGraph(Grafiktreiber, Grafikmodus, 'C:\BP\BGI'); { anpassen! }

 xMin := 20; xMax := GetMaxX - 20;
 yMin := 25; yMax := GetMaxY - 20;

 MaxX_Halbe := (xMax - xMin) div 2;
 MaxY_Halbe := (yMax - yMin) div 2;

 Randomize;

 repeat
 SetViewport(0, 0, GetMaxX, GetMaxY, ClipON);
 { Zur vordefinierten Grafikkonstanten "ClipON" = True, }
 { automatische Clipping-Kontrolle. Gegenstück: "ClipOFF" }
 { In der momentanen Situation "ClipON" nicht wesentlich }
 ClearViewport;

 { Zufallsparameter a, c1, c2 }
 a := -250 + Random(2*250 + 1); a := a/10;
 c1 := -30 + Random(2*30 + 1); c1 := c1/10;
 c2 := -10 + Random(2*10 + 1); c2 := c2/10;

 { Es folgt String-Ausgabe aller Parameter }
 Str(a:4:1, Str1); Str2 := ' a = ' + Str1;
 Str(c1:4:1, Str1); Str2 := Str2 + ' c1 = ' + Str1;
 Str(c2:4:1, Str1); Str2 := Str2 + ' c2 = ' + Str1;
 Str(Multiplikator, Str1);
 Str2 := Str2 + ' Multiplikator = ' + Str1;
 OutTextXY(10, 470, Str2);
 Str2 := ' ESC = Ende P = Pause EIN/AUS ' +
 'Leertaste = nächstes Bild';
 OuttextXY(5, 0, Str2);

 RectAngle(xMin - 1, yMin - 1, xMax + 1, yMax + 1);
 SetViewPort(xMin, yMin, xMax, yMax, ClipON);
 { "ClipON" hier sinnvoll }
 Ch := ChDummy;
 x := 0.0;
 y := 0.0;
 FarbenNr := FarbenNrMax div 2;
 Zaehler := 0;

 repeat
 Inc(Zaehler);

21-20 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

 fx := Signum(x) * Sqrt(Abs(c1*x - c2)); { Man teste auch }
 { andere f(x), z.B: fx := Sin(x) + Cos(x); mit a := 1.0 }

 fx := y - fx;
 y := a - x;
 x := fx;

 xP := Round(x * Multiplikator) + MaxX_Halbe;
 yP := Round(y * Multiplikator) + MaxY_Halbe;

 if Zaehler mod FarbwechselModulo = 0
 then FarbenNr := (FarbenNr + 1) mod FarbenNrMax;

 PutPixel(xP, yP, FarbenNr);

 if KeyPressed then
 begin
 Ch := UpCase(ReadKey);
 if Ch = 'P' then
 repeat { 'P' = Pause }
 until UpCase(ReadKey) = 'P'; { nochmal 'P' }
 end;
 until Ch in [Esc, ' '];

 until Ch = Esc;

 CloseGraph;
end.

Eine Ausgabe des Programms Pas25071.PAS:

21.8 Demo-Programm Fourier-Reihe

Nach Fourier kann man jede beliebige periodische Funktion, die auch Unstetigkeiten

enthalten darf, durch eine trigonometrische Summe darstellen. Bei einer Summation bis

ins Unendliche wird die Funktion exakt, in anderen Fällen näherungsweise dargestellt.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-21

Die Zerlegung eines beliebigen Signals f t() in eine Fourier-Reihe ist Aufgabe der Fou-

rier-Transformation. Bei technischen Anwendungen (Schwingungsanalyse: eindimen-

sionale Transformation, Bildanalyse: zweidimensionale Transformation) beschränkt

man sich aus praktischen Gründen (Rechenzeit!) auf diskrete Punkte des Signals. Man

spricht dann von einer diskreten Fourier-Transformation (DFT). Nach dem Shannon-

schen Abtasttheorem läßt sich f t() exakt aus den Abtastwerten rekonstruieren, wenn die

Abtastfrequenz größer ist als das Doppelte der höchsten in f t() vorkommenden Fre-

quenz.

Mit der FFT (Fast Fourier Transformation) steht ein besonders schneller Algorithmus

für die diskrete Fourier-Transformation zur Verfügung, der in vielen Fällen erst eine

sinnvolle technische Anwendung ermöglicht. Im Rechenzeitverhältnis steht die "nor-

male" DFT zur FFT wie etwa MinimumSort zu QuickSort bei den Sortieralgorithmen.

Im nachfolgenden Demo-Programm wird die Fourier-Reihe für drei einfache

periodische Funktionen gezeigt:

• Sägezahn y x= für: −   x

 Fourier-Reihe:
y

x x x
= − + −









2

1

2

2

3

3

sin sin sin
.....

• Rechteck y =1 für: 0  x 

 y = −1 für:   x 2

 Fourier-Reihe:
y

x x x
= + + +











4

1

3

3

5

5

sin sin sin
.....

• Dreieck y x= für: −  
 

2 2
x

 y x= − für:



2

3

2
 x

 Fourier-Reihe:
y

x x x
= − + −











4

1

3

3

5

52 2 2

sin sin sin
.....

Im Programm werden die y-Werte zu eins normiert, damit die Grafikausgaben alle die

gleiche Höhe haben.

Man beachte das Überschwingen beim Sägezahn und beim Rechteck an den Unstetig-

keitsstellen (Gibbsches Phänomen).

program Pas21081; { Fourier-Reihen, 34080897, K. Haller }

uses

 CRT, GRAPH;

const

 Pfad = 'C:\BP\BGI'; { Ggf. anpassen }

 x0 = 70;

 xKMin = x0; xKMax = x0 + 500;

 yKMin = 100; yKMax = 400;

 y0 = 220; dy = 110;

21-22 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

var

 Kurve: (Saegezahn, Rechteck, Dreieck);

 xK, yK,

 k, Farbe: Integer;

 x, y,

 yTemp,

 Normierung: Real;

 n, i: Word;

 nStr,

 PiStr,

 Legende: string;

 Ch: Char;

 Grafiktreiber,

 Grafikmodus: Integer;

procedure Rahmen;

begin

 SetColor(Yellow);

 SetTextStyle(DefaultFont, HorizDir, 2);

 OutTextXY(40, 30, 'Fourier-Reihe f•r ' + Legende);

 SetTextStyle(DefaultFont, HorizDir, 1);

 SetTextStyle(DefaultFont, HorizDir, 1);

 Str(n, nStr);

 OutTextXY(xKMin + 230, y0 - dy - 50, 'n = ' + nStr);

 SetColor(White);

 RectAngle(xKmin, y0 - dy, xKMax, y0 + dy);

 for k := -1 to 5 do

 begin

 Line(xKmin + (k + 1)*(xKMax - xKMin) div 6, y0 - dy,

 xKmin + (k + 1)*(xKMax - xKMin) div 6, y0 + dy);

 Moveto(xKmin + (k + 1)*(xKMax - xKMin) div 6 - 5, y0 + dy + 10);

 Str(k, PiStr);

 if PiStr = '1' then PiStr := '';

 if PiStr = '-1' then PiStr := '-';

 if PiStr <> '0'

 then OutText(PiStr + 'π')

 else OutText(PiStr);

 end;

 MoveTo(xKMin - 15, y0 - 3); OutText('0');

 MoveTo(xKMin - 18, y0 + dy - 3); OutText('-1');

 MoveTo(xKMin - 12, y0 - dy - 3); OutText('1');

 SetLineStyle(0, 0, Thickwidth);

 Line(xKmin + (xKMax - xKMin) div 6, y0 - dy - 15,

 xKmin + (xKMax - xKMin) div 6, y0 + dy + 5);

 Line(xKmin - 5, y0,

 xKmin + 6*(xKMax - xKMin) div 6 + 15, y0);

 SetLineStyle(0, 0, NormWidth);

 OutTextXY(55, 450, 'Zum Menü mit Taste "Esc", ' +

 'weiter mit sonstiger beliebiger Taste ... ');

 OutTextXY(55, 400, 'Fachhochschule München, Studiengang ' +

 'Druck- und Medientechnik, Dr. K. Haller');

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-23

end;

begin

 Grafiktreiber := Detect;

 InitGraph(Grafiktreiber, Grafikmodus, Pfad);

 repeat

 ClearDevice;

 SetColor(Yellow);

 OutTextXY(250, 70, 'Fourier-Reihen');

 SetColor(White);

 OutTextXY(250, 100, '1 Sägezahn');

 OutTextXY(250, 115, '2 Rechteck');

 OutTextXY(250, 130, '3 Dreieck ');

 OutTextXY(250, 145, '0 Ende ');

 OutTextXY(250, 160, '------------');

 repeat

 Ch := ReadKey;

 until Ch in ['0'..'3', #27];

 if (Ch = '0') or (Ch = #27)

 then Halt;

 case Ch of

 '1': begin

 Kurve := Saegezahn;

 Legende := 'Sägezahn: Y = X/π';

 Normierung := 2.0/Pi;

 end;

 '2': begin

 Kurve := Rechteck;

 Legende := 'Rechteck: Y = ±1';

 Normierung := 4.0/Pi;

 end;

 '3': begin

 Kurve := Dreieck;

 Legende := 'Dreieck: Y = X*2/π';

 Normierung := 8.0/Pi/Pi;

 end;

 end;

 n := 0;

 repeat

 Inc(n);

 ClearDevice;

 SetColor(White);

 Rahmen;

 SetColor(Yellow);

 for xK := xKMin to xKMax do

 begin

 x := ((xK - xKmin)/(xKMax - xKmin) * 6 - 1)*Pi;

 y := 0.0;

 case Kurve of

 Saegezahn: begin

21-24 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

 for i := 1 to n do

 begin

 yTemp := Sin(i*x)/i;

 if not Odd(i)

 then yTemp := -yTemp;

 y := y + yTemp;

 yK := y0 - Round(dy*yTemp*Normierung);

 PutPixel(xK, yK, LightCyan);

 end;

 y := y*Normierung;

 end;

 Rechteck: begin

 for i := 1 to n do

 begin

 yTemp := Sin((2*i - 1)*x)/(2*i - 1);

 y := y + yTemp;

 yK := y0 - Round(dy*yTemp*Normierung);

 PutPixel(xK, yK, LightCyan);

 end;

 y := y*Normierung;

 end;

 Dreieck: begin

 for i := 1 to n do

 begin

 yTemp := Sin((2*i - 1)*x)/Sqr(2*i - 1);

 if not Odd(i)

 then yTemp := -yTemp;

 y := y + yTemp;

 yK := y0 - Round(dy*yTemp*Normierung);

 PutPixel(xK, yK, LightCyan);

 end;

 y := y*Normierung;

 end;

 end;

 yK := y0 - Round(dy*y);

 SetLineStyle(SolidLn, 0, ThickWidth);

 if xK = xKMin

 then MoveTo(xK, yK)

 else LineTo(xK, yK);

 SetLineStyle(SolidLn, 0, NormWidth);

 end;

 repeat

 until KeyPressed;

 until ReadKey = #27;

 until Ch = '0';

 CloseGraph;

end.

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-25

Sägezahn: n = 5 Sägezahn: n = 20

Rechteck: n = 5 Rechteck: n = 20

Dreieck: n = 5 Dreieck: n = 10

21-26 Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik

21.8 Demo-Programm Lissajous-Figuren

program Pas21091; { "Pas21091.PAS", Dr. K. Haller, FHM }

uses { Lissajous-Figuren entstehen durch Überlagerung }
 CRT, GRAPH; { von zwei Sinusschwingungen mit verschiedenen }

 { Frequenzen, Phasenlagen und Amplituden. }
 { Zusammengesetzte Teile von Lissajous-Figuren }
 { könnten auch zur Umrißbeschreibung (Outline- }

 { Codierung) von Schriftzeichen benutzt werden. }
 { Siehe auch Kap. "Bézier-Funktionen". }
 { Einfachstes Beispiel für Lissajous-Figur: }

 { x = sin(t), y = sin(m*t + Phi) }

const
 k = 150; { Für Kantenlänge 0...1 }
 dt = 0.01; { "dt = Delta-t", steuert Auflösung }
 Pause1 = 1.0; { Bei Pentium 90 MHz z.B. "1.0" }

var
 Grafiktreiber,

 Grafikmodus,
 x0, y0: Integer;
 Pause: Word;

 t, m, Phi,
 x, y: Real;
 Ch: Char;

 DemoNr: Byte;
 DemoNrStr: string[3];
 mStr, PhiStr: string[10];

begin
 Grafiktreiber := Detect;

 InitGraph(Grafiktreiber, Grafikmodus, 'C:\BP\BGI');

 x0 := GetMaxX div 2;
 y0 := GetMaxY div 2 + 20;

 repeat
 SetColor(White);
 ClearViewport;
 OutTextXY(230, 100, 'Demo Lissajous-Figuren');

 OutTextXY(230, 110, 'Dr. K. Haller, FHM, DR');
 OutTextXY(230, 120, '----------------------');
 OutTextXY(230, 130, '1 Verzögerte Ausgabe');

 OutTextXY(230, 140, '2 Schnelle Ausgabe ');
 OutTextXY(230, 150, 'Esc Beenden ');
 OutTextXY(230, 160, '----------------------');

 OutTextXY(230, 170, '1');
 repeat
 Ch := ReadKey;

 if Ch = #13 then Ch := '1';
 until Ch in ['1'..'2', #27];
 case Ch of
 '1': Pause := Round(Pause1); { langsam }
 '2': Pause := 0; { schnell }
 #27: Halt; { >>>>>>> Abbruch >>>>>>>>> }

 end;

 DemoNr := 0;

Dr. K. Haller Turbo-Pascal Kap. 21: Bildschirmgrafik 21-27

 repeat
 DemoNr := 1 + (DemoNr mod 11);
 case DemoNr of
 1: begin m := 1.0; Phi := 0.0; end;
 2: begin m := 1.0; Phi := 0.4711; end;
 3: begin m := 1.0; Phi := Pi/2; end;
 4: begin m := 2.0; Phi := 0.0; end;
 5: begin m := 0.5; Phi := 0.0; end;
 6: begin m := 0.5; Phi := Pi/4; end;
 7: begin m := 0.5; Phi := -Pi/4; end;
 8: begin m := 2.0; Phi := Pi/4; end;
 9: begin m := 1.5; Phi := 0.0; end;
 10: begin m := Exp(0.4711); Phi := Ln(0.4711); end;
 11: begin m := -Ln(0.4711); Phi := Exp(0.4711); end;
 end;

 SetColor(White);
 ClearViewport;
 OutTextXY(x0 - 65, y0 - k - 65, ' Lissajous-Figuren ');

 OutTextXY(x0 - 65, y0 - k - 45, 'Einfachstes Beispiel:');
 OutTextXY(x0 - 115, y0 - k - 30,
 'x = sin(t), y = sin(m*t + Phi)');

 OutTextXY(x0 - 190, y0 + k + 30,
 'Zum Menü mit »Esc«, ' +
 'weiter mit beliebiger Taste ... ');

 Str(DemoNr, DemoNrStr);
 OutTextXY(x0 + k + 15, y0 - k, 'Demo-Nr ' + DemoNrStr);
 Str(m:6:4, mStr);

 OutTextXY(x0 + k + 15, y0 - k + 18, 'm = ' + mStr);
 Str(Phi:6:4, PhiStr);
 OutTextXY(x0 + k + 15, y0 - k + 30, 'F = ' + PhiStr);

 MoveTo(x0 - k, y0 - k);
 LineRel(0, 2*k); LineRel(2*k, 0);
 LineRel(0, -2*k); LineRel(-2*k, 0);

 Moveto(x0 - k - 10, y0); LineRel(2*k + 20, 0);
 Moveto(x0, y0 - k - 10); LineRel(0, 2*k + 20);
 OutTextXY(x0 - 3, y0 - 3, '0');

 OutTextXY(x0 + k + 2, y0 + 6, '1');
 OutTextXY(x0 - 10, y0 - k - 10, '1');
 SetColor(Yellow);

 Moveto(x0, y0 - Round(k*Sin(Phi))); { (x, y) bei "t = 0.0" }
 t := 0.0;
 repeat { Der Kern des Programms ... }
 t := t + dt;
 x := Sin(t);
 y := Sin(m*t + Phi);

 Lineto(x0 + Round(k*x), y0 - Round(k*y));
 Delay(Pause); { Ggf. eine kleine Pause zum Betrachten }
 until KeyPressed;
 if DemoNr = 11 then Write(#7);
 until ReadKey = #27;
 until Ch = #27; { Schleife wird aber früher beendet }
end.

30190601 Dr. K. Haller

