Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-1

19 Dynamische Datenstrukturen, Zeiger
Eine Einfithrung

Gliederung

19.1 Zur Speicherbelegung eines Turbo-Pascal-Programms 2
19.2 Eigenschaften der dynamischen Variablen. Routinen........................ 3
19.3 Demo-Programm 1: Eigenschaften dynamischer Variablen............... 7
19.4 Demo-Programm 2: Anwendung bei groflen Arrays..........cccceeveeennee. 9
19.5 Demo-Programm 3: Anwendung bei verketteten Listen.................. 10

19.6 Demo-Programm 4: Einfiigen in verkettete Liste..........ccceceeueennenne. 13

19-2 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

19.1 Zur Speicherbelegung eines Turbo-Pascal-Programms

Bei allen bisherigen Beispielen waren die Variablen "statisch", d.h. sie hatten einen
festen und reservierten Speicherplatz wahrend des gesamten Programmlaufs. Variablen,
die z.B. nur einmal zu Beginn des Programmlaufs gebraucht wurden, haben somit
genauso Speicherplatz blockiert wie die Variablen, die im gesamten Programm benutzt
wurden. Es war nicht moglich, den Speicherplatz der nicht mehr benétigten Variablen
freizugeben und zu einem spéteren Zeitpunkt neue Variablen einzufiihren. Der gesamte
Speicherplatz der statischen Variablen betrdgt in Turbo-Pascal max. ca. 64 KByte. Die
Beschrankung ist aber durch die in PCs verwendeten Intel-Mikroprozessoren und dem
darauf abgestimmten Betriebssystem MS-DOS bestimmt (Datensegment max. 64
KByte).

Die folgende Graphik zeigt die Speicherbelegung eines Turbo-Pascal-Programms in
schematischer Form (nach Borland-Handbuch, geringfligig modifiziert):

Obergrenze des von DOS benut zten Spei chers

HeapEnd
Freier Speicher l
HeapPt r _--—-—-——-—-—-—-—t = - - - - — -
Der Heap wachst in Richtung
aufsteigender Speicheradressen
HeapBegi n OvrHeapEnd
Overlay—Puffer (nur bei Overlays)
OvrHeapBegin
Der Stack widchst in Richtung
absteigender Speicheradressen
(lokale Variablen)
SSeg: SPtr —| - - - - ————— 7 — — — — — — —
Freier Stack T
SSeg: 0000
Daten—Segment
(Globale Variablen und
Typisierte Konstanten)
DSeg: 0000
Code—Segment der System—Unit
Code—Segment der Unit "A"
Inhalt der
.EXE-Datei
uses
A B, C D E
Code—Segment der Unit "E"
Code—Segment des Programms
Programmsegment-Prafix (PSP) | 256 Byte, wvon DOS
Pref i xSeg

Unt ergrenze des von DOS benutzten Speichers

Das folgende Pr ogramm demonstriert die Beschrinkung des Speicherplatzes fiir sta-
tische Variablen.

program Pas19011; { Beschréankung des Spei cherbedarfs aller }
{ gl obalen statischen Variablen auf max. ca. 64 KByte. }
{ Techni sch bedi ngt durch Intel-M kroprozessor bzw. DCS. }
{ Die |okalen Variablen der Routinen werden auf den Stack }
{ gelegt. Die StackgroBe kann mt dem Conpil erbefehl $M oder }
{ mt dem Menupunkt Options/Menory sizes auf Werte zwi schen }

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-3

{ 1024 Byte und 65520 Byte eingestellt werden. Die Standard- }
{ einstellung betragt 16384 Byte. Beim Verl assen der Routine }

{ wird der Stackspeicher w eder frei. }
uses
CRT;
var
S: array[1l..253] of string; { 253 * 256 = 64 768 }
X, Yy: Real; { 2 * 6 = 12 }
b: array[1l..42] of Byte; { 42 * 1= 42 }
{ Sume: = 64 806 bei TP 7.0 }
{ Sume: = 64 822 bei TP-6.0 }
(* oder nur: { Summe: = 64 836 bei TP-5.0 }
b: array[1l..64822] of Byte;
*)
{ Bei Uberschreitung des Grenzwertes (i mvorliegenden Programm bei }
{ 64 806) wird die Konpilation mt der Fehlernel dung "Error 49: }
{ Data segnment too |arge" abgebrochen. Der Grenzwert hangt etwas }
{ von den verwendeten Units und von der Pascal - Versi on ab, betragt }
{ aber imer nax. 64 KByte. }
begi n
CrsScr;
Wite(' Tastendruck ... ');
r epeat
until KeyPressed;
end.

Dynamische Variablen (allgemeiner dynamische Datenstrukturen) kdnnen dagegen zu
jedem beliebigen Zeitpunkt des Programmlaufs eingefithrt werden. Der von ihnen
belegte Speicherplatz kann bei Bedarf auch wieder freigegeben werden. Dynamische
Datenstrukturen bestehen aus einem Zeiger (engl. Pointer), der im allgemeinen im
statischen Variablenspeicher abgespeichert wird und dem zugehdrigen Datenobjekt, das
im freien Speicher (Heapspeicher, Haufenspeicher) gespeichert wird. Bei komplexeren
Datenstrukturen (verkettete Listen, Ringe, Biume usw.) werden Zeiger auch im
Heapspeicher abgelegt. Der Zeiger enthélt lediglich die Speicheradresse des Daten-
objekts im Intel-Format Segment: Offset. Der sonst ungenutzte Heapspeicher, der hdufig
wesentlich grofer als 64 KByte ist, kann somit sinnvoll genutzt werden. Bestimmte
Datenstrukturen wie z.B. verkettete Listen sind nur mit Zeigern realisierbar.

19.2 Eigenschaften der dynamischen Variablen.
Standard-Prozeduren und -Funktionen
Zeiger sind 4-Byte-Speicheradressen im Intel-Format Segment: Offset (ss:00). Sie
werden mit wahlbaren Bezeichnern in der {iblichen Form gekennzeichnet, z.B. mit
X, s1, s2, i, p

und in der Variablendeklaration mit »zei ger bezei chner: ~dat ent yp«
deklariert.

19-4 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

Beispiel:

type
Str10 = string[10];
Ptr = "l nteger,;

var
X: "Real
sl: AStri0; { Nicht: s1: ~string[10]; }
s2: AStri0;
i Ptr; { indirekt }

In der Deklaration muf3 also der Datentyp eines Zeigers mit einem vorgesetzten Hoch-
pfeil gekennzeichnet werden.

Mit Poi nt er steht ein vordefinierter nichttypisierter Zeigertyp zur Verfiigung, der zu
allen Zeigertypen kompatibel ist. Anwendung z.B. bei den Prozeduren Mark und
Release.
Beispiel: var

p: Pointer;
Die Zeiger zeigen auf die zugehorigen Objekte, die mit dem Zeigerbezeichner und
einem nachgesetzten Hochpfeil gekennzeichnet werden, z.B.

XA, s1”, s2” und i M.

Die Objekte werden im freien Speicher (Heapspeicher, Haufenspeicher) abgelegt. Bei
Bedarf kann der durch die Objekte belegte Speicherbereich wieder freigegeben werden
(dynamische Speicherverwaltung). Die Objekte werden nicht deklariert.

Mit typkompatiblen Zeigern sind folgende Operationen moglich:

* Zuweisungen Beispiel: sl := s2;
* Vergleich »=« Beispiel: if s1 = s2 then ...;
* Vergleich »<>« Beispiel: if sl <> s2 then ...;

Eingaben und Ausgaben von Zeigern sind im Gegensatz zu den Objekten auf die sie
zeigen, nicht zuldssig.

Somit nicht zuléssig: ReadLn(sl1); oder WitelLn(sl);

Mit den Objekten sind dagegen alle typgerechten Operationen zulissig, z.B:

ReadLn(s1”); oder WitelLn(s1?);
y = xh; oder XN 1= Sin(y); (deklarierte Real-Variabley vorausgesetzt)

Das Objekt kann mit Ausnahme von »file« jeder beliebige Datentyp sein, also z.B. auch
strukturierte Typen wie Arrays, Strings, Sets oder Records.

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-5

Statischer Variablenspeicher Heapspeicher
max. 64 KByte, mit Zeigern mit den zugehorigen Objekten
ss:oo0 von s2
X S|s|Oo|©O
s2”|.
sl S|s|Oo|©O ~ SS:00 von X ~
XM .
s2 |[[s|s|ofo
ss:oo0 von sl
sl”].

Die Standard-Routinen:

Die Prozedur New(zei gervari abl e)

initialisiert den Zeiger und richtet Speicherplatz im Heap flir neue Objekte ein.
Damit wird ist zwar der Zeiger initialisiert, aber noch nicht das zugehdrige Objekt.
Der Zugriff iiber einen nichtinitialisierten Zeiger fiihrt zu schweren Programm-
fehlern, da der Zeiger zufillig auch auf einen Speicherbereich zeigen kann, der vom
Betriebssystem belegt ist. Der Zugriff auf das nichtinitialisierte Objekt eines initiali-
sierten Zeigers liefert lediglich nichtdefinierten Daten-Miill.

Die Prozedur Di spose(zei gervari abl e)

gibt den (Heap-) Speicherplatz der Objekte wieder frei. Der Zeiger ist danach nicht
mehr definiert und das Objekt ist nicht mehr zugénglich. Ein Zugriff stellt einen
Fehler dar.

Die spezielle Zeigerkonstante nil
(reserviertes Wort, steht flir not in list) zeigt "nirgendwo hin". Dieser Zeiger ist zu
allen Zeigertypen kompatibel. Anwendung siehe spitere Demo-Programme.

Die Prozedur Mar k(zei gervari abl e)

markiert die momentane Spitze des Heaps und speichert den Wert in der Zeiger-
variablen (die einen beliebigen Typ haben kann, z.B. auch "Pointer"). Die Mark-
Prozedur (markiere Heap-Spitze) wird fiir die Release-Prozedur benotigt.

Die Prozedur Rel ease(zei gervari abl e)

gibt den Bereich des Heap-Speichers zwischen der mit Mark markierten Stelle und
der momentanen Spitze wieder frei. Somit werden al/le dynamischen Variablen, die
seit Mark erzeugt wurden, geloscht. Achtung: Bei Verwendung der Unit GRAPH
werden der verwendete Graphiktreiber und die verwendeten Zeichensitze dyna-
misch, also im Heap, gespeichert. Ein versehentliches Freigeben der von ihnen
benutzten Speicherbereiche mit Mark/Release fiihrt zum Programm-Absturz.

19-6 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

Hinweis: Mark/Release diirfen nicht in Verbindung mit den Prozeduren GetMem
und FreeMem benutzt werden; sieche spiter.

* Die Funktion MenmAvai |
liefert die GroBe des gesamten freien Heap-Speichers mit dem Ergebnistyp LonglInt.

* Die Funktion MaxAvai |
liefert die GroBe des grofBiten freien zusammenhédngenden Blocks im Heap-Speichers
mit dem Ergebnistyp Longlnt.

* Die Funktion Si zeO (vari abl e)
Si zeOr (dat ent yp)
ist allgemein verwendbar und liefert die GroBe einer Variablen oder eines Daten-

typs.
Beispiel: Wite(Si zeO (s1));

In Verbindung mit dynamischen Variablen ist es wichtig zu wissen, dall ab Turbo-
Pascal Version 6.0 der belegte Speicher im Heap-Speicher immer auf volle 8-Byte-
Gruppen aufgefiillt wird. In der Regel wird also mehr Speicher reserviert, als
tatsdchlich bendtigt wird. Besteht z.B. ein dynamischer Rekord aus zwei Real-
Feldern (je 6 Byte), so liefert SizeOf 12, reserviert werden aber 16 Byte im Heap-
Speicher. Auf diesen Umstand ist bei der Ermittlung der maximalen Anzahl der
Daten im Heap durch eigene programmtechnische MalBlnahmen einzugehen, da
SizeOf alleine im allgemeinen ein falsches Ergebnis liefert. Nur im Sonderfall
"SizeOF (...) nbd 8 = 0" istdas Ergebnis richtig. Siehe spéteres Beispiel.

* Die Prozedur Get Mem(zei gervari abl e, groesse)
gr oesse: Word-Ausdruck
reserviert einen Bereich bestimmter Grof3e auf dem Heap-Speicher. Diese Prozedur
darf nicht in Verbindung mit Mark/Release benutzt werden.

* Die Prozedur FreeMen(zei gervari abl e, groesse)
gr oesse: Word-Ausdruck
gibt einen Bereich bestimmter GroBBe auf dem Heap-Speicher wieder frei. Diese
Prozedur darf nicht in Verbindung mit Mark/Release benutzt werden.

* In der Entwicklungsumgebung kann der akutelle Wert des Zeigers iiber das Dialog-
fenster »Auswerten und Andern« (Aufruf mit Strg+F4) nach Eingabe des Zeiger-
Bezeichners (z.B. »s/«) abgefragt werden. Die Speicheradresse erscheint dann im
Fenster »Ergebnis« in der Hex-Schreibweise »PTR($segment, $offset)«.

Beispiel: PTR($74F5, $8)
$74F5 Segment-Adresse in hex
$8 Offset-Adresse in hex

Ubliche Intel-Darstellung in hex: 74F5: 0008

Die physikalische Adresse des Objekts ist dann:
16 * (7 * 4096 + 4 * 256 + 15 * 16 + 5) + 8 = 479 064

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-7

19.3 Demo-Programm 1: Eigenschaften dynamischer
Variablen

program Pas19031; { Kap. 19: Dynani sche Dat enstrukturen }
{ Turbo-Pascal, kha
{ Deno: Eigenschaften der Zeiger (Pointer) }
uses
CRT,;

type
Strl10 = string[10];

var
X: "Real ; { x ist ein Zeiger auf ein bjekt vom Typ Real }
i "\ d; { i ist ein Zeiger auf ein Objekt vom Typ Wrd }
sl, s2: ~Str10; { s1 und s2 sind Zeiger auf Objekte vom Typ Str10 }

{ Nicht zul &ssig: sl1, s2: “string[10]; }

HeapSpei cher: Longl nt;

procedur e Wart eAuf Tast endr uck;

var
Ch: Char;
Sp, Ze: Byte;
begi n
Sp : = WereX
Ze := \WereY
Got oXY(10, 25); Wite('Witer mt Tastendruck ... ');

whi | e KeyPressed do
Ch : = ReadKey;
r epeat
until ReadKey <> '';
Got oXY(1, 25); drEol;
Got oXY(Sp, Ze);
end;

begi n
Text Background(Bl ue); Text Col or(Yellow); CrScr

{ Di e Standardprozedur »New« bel egt bei den fol genden drei Aufrufen
fir jedes (bjekt einen Bereich auf dem Heap- Spei cher entsprechend
dem Dat entyp des Cbj ektes, bei »x"« 6 Byte, bei »sl”« und »s2°«
je 11 Byte (10 Zeichen und das Langenbyte), und setzt die Zeiger
»X«, »Sl« und »s2« auf di e Anfangsadresse des jeweiligen
Ber ei ches

Der benttigte Speicherplatz des bjektes wird aber ab Turbo-
Pascal 6.0 i mer auf volle 8-Byte-G uppen aufgerundet (bei Arrays
ist fur die Aufrundung di e GesantgroBRe und nicht die G 6Re eines
El ement es malRgebend). I mvorliegenden Fall werden 48 Byte (und

ni cht 30 Byte) auf dem Heap- Spei cher bel egt.

Fur si”: 11 Byte ----- > 16 Byte
Far s2~: 11 Byte ----- > 16 Byte
Fur x7: 6 Byte ----- > 8 Byte
Far i~: 2 Byte ----- > 8 Byte

Sunme: 48 Byte auf Heap- Spei cher bel egt
}

HeapSpei cher := MemAvail; { Funktion »MemAvail « liefert }

19-8 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

{ die GesantgroRe des frei en Heap- Spei ches }
{ Datentyp Longlnt. }

WitelLn(' Der freie Heapspei cher vorher: ', HeapSpeicher);
WitelLn(' Der grofRte zusanmenhangende Bl ock: ', MaxAvail, ' vor');
War t eAuf Tast endr uck;

New(sl); { Zeiger sl1}
New(s2) ; { Zeiger s2}
New(X) ; { Zeiger x }
WitelLn(' Der grofte zusanmenhangende Bl ock: ', MaxAvail, ' nach');

WitelLn(' Durch sl1, s2 und x bel egt: '
HeapSpei cher - MemAvail);

Wi teLn;

s1n = "Julia'; { bj ekt si” bel egen }

s2n := "Konrad'; { Onojekt s2™ bel egen }

XA = 47.11; { bj ekt x~ belegen }

Witeln('01l: Objekt sl1r: ', sl1n); {}01: Objekt sin: Julia }
Witeln('02: Objekt s27: ', s27); {}02: Objekt s2~: Konrad }
Witeln('03: Objekt x* : ', x":5:2);{;03: Objekt x* : 47.11 }
if sl =s2

then Witeln('04: Zeiger sl = Zeiger s2')
el se Witeln('04: Zeiger sl <> Zeiger s2');
{104: Zeiger sl <> Zeiger s2 }
War t eAuf Tast endr uck;

sl := s2;

{ Der Zeiger sl wird mt dem Zeiger s2 belegt. Das alte hjekt
s1” ist nicht nehr erreichbar. Es steht aber als Mill noch im
Heap- Spei cher. }

Witeln('05: Objekt sl1r: ', sl1n); {} 05: Obj ekt sl1”: Konrad }
Witeln('06: Objekt s27: ', s2/); {}06: Ohjekt s2~: Konrad }
if sl =s2

then Witeln('07: Zeiger sl = Zeiger s2')
el se Witeln('07: Zeiger sl <> Zeiger s2');
{107: Zeiger sl = Zeiger s2 }

sl = "'Anton'

Witeln('08: Objekt si1n: ', sl1n); {108: Objekt sl1l”: Anton }
Witeln('09: Objekt s2~: ', s2/); {109: Objekt s2”: Anton }
s2™ = 'Huber';

Witeln('10: Objekt si1n: ', sl1n); {110: Obj ekt sl1”: Huber }
Witeln('11l: Objekt s2/: ', s2/); {}11: Obj ekt s2~: Huber }

if s1nr = s2n
then Witeln('12: Obj ekt sl = Objekt s2/')
el se Witeln('12: Objekt s1” <> bj ekt s27');
{}12: Obj ekt s1l™ = oj ekt s2n }
War t eAuf Tast endr uck;

Di spose(sl); { »Di spose« gibt den Speicherbereich frei, auf den
der Zeiger »sl« zeigt. »sl« ist nach »Di spose«

ni cht nmehr definiert. Das Obj ekt »sl”« ist nicht
mehr zugadnglich. Ein Zugriff darauf stellt einen
schweren Fehl er dar, der aber nicht geneldet wird.

Lt Yot Yo Yoo}
v " e e

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-9

WiteLn('13: Zeiger sl nit Dispose frei. Fehlerhafter Zugriff ',

"auf Obj ekt sl1n: ', sl1t);
War t eAuf Tast endr uck;
New(sl);
s1n 1= "Meier';
WiteLn('14: Objekt sl1t: ', sl1n); {} 14: Obj ekt sl1™: Meier }
New(sl);

{ Nachfol gend Mil |, da Objekt si1” nicht initialisiert }
WitelLn('15: Objekt sl1r: ', sl1n); {}15: Objekt sin: ... Ml .. }
WiteLn('16: "SizeO": G 6Be Zeiger s2 und Obj ekt s2n: ',

SizeOF (s2), ', ', SizeO(s2"));
{ G 06Re des Zeigers imer 4 Byte! }
{i16: "SizeO": 4, 11}

War t eAuf Tast endr uck;

Get Mem(i, 2); { Syntax: "GetMen{(zeigervariable, groesse)" }
{ Entspricht "New(i)"

inoo= 4711, { wobei "groesse" Wbrd- Ausdruck }
WiteLn('17: Objekt i”: ', i7M); {1 17: Objekt iin: 4711 }
FreeMem(i, 2); { Syntax: "FreeMen(zeigervariable, groesse)" }

{ wobei : "groesse" Wrd- Ausdruck }

Di spose(sl);
Di spose(s2);
Di spose(Xx);

War t eAuf Tast endr uck;
end.

19.4 Demo-Programm 2: Anwendung bei groflen Arrays

program Pas19041; { Kap. 19: Dynani sche Datenstrukturen }
{ Denp: Verwendung des Heap- Spei chers fur grofe Datennengen. }
{ Zwei Real -Arrays nit zusanmen 120 000 Byte.
uses
CRT;

const
i Max = 10000; { Array-G oRe }

type
Real Array = array[1l..iMux] of Real; { Datentyp Real: 6 Byte }
var
i Wor d;
Arrayl,
Array2: “Real Array;

Bei statischen Arrays kame di e Fehl er-

mel dung »Error 96: Too many vari abl es«,

da di e beiden Arrays zusamen 120 000 Byte
und das Dat ensegnent max. 64 KByte fur

gl obal e Variabl en und typisierte Konstanten
zur Verfigung stellt.

Lt Yot Yo Vo Voo Yo |
e e e e e)

begi n
Text Background(Bl ue); Text Col or(Yellow); CrScr;
Got oXY(15, 2); WitelLn(' Denonstration: Dynam sche Variabl en');
Text Col or (White);

19-10 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger
Got oXY(15, 4); WitelLn(' Der Heap- Speicher vorher: ', MmAvail:7);
New(Arrayl); { Reservieren des Speicher- }

New(Array?2); { platzes auf dem Heap }
Got oXY(15, 5); WitelLn(' Der Heap- Spei cher nachher: ', MemAvail:7);

Got 0XY(15, 7);

WiteLn('Initialisieren der beiden Real -Arrays bis ', iMx);
for i :=1to iMx do
begi n
Arraylr[i] = Sqrt(i); { Demp- 1.00 1.41 1.73 ... 100.00 }
Array2”[i] := -Sqrt(i); { Daten -1.00 -1.41 -1.73 ...-100.00 }
end;, { meeee meeee aa-ee o
{ Spater Summenberechnung: 0.00 0.00 0.00 ... 0.00 }
Got oXY(15, 12);
WiteLn('Es folgt Addition der Elenmente der beiden Arrays ... ');
for i :=1to iMux do
begi n
Arrayl”ri] = Arraylr[i] + Array2”[i];
Got oXY(15, 13);
WiteLn('i ="', i:5 ', Summe ="', Arrayl”[i]:12:9);
end;

Di spose(Arrayl);
Di spose(Array?2);

{ Am Progranmende }
{ nicht notwendig }

Got oXY(15, 15); Wite(' Fertig ... ');
r epeat
until KeyPressed;

end.

19.5 Demo-Programm 3: Anwendung bei verketteten Listen

program Pas19051;
{ Turbo- Pascal ,

{ I'n diesem Programm wi rd ei ne verkettete Liste denonstriert.

{ Kap. 19: Dynam sche Dat enstrukt uren }
Denon: Einfach verkettete Liste mt Reals }
Mt

i hm kann i m Rahnen des Heap- Spei cher gr 63e ei ne bel i ebi ge Anzahl

von Real -Daten verarbeitet werden.
wahl bare Anzahl

verkettete Li

Zur Denonstration wird eine
von zufélligen Real -Daten generiert und in die

ste geschrieben. Die Daten werden anschlieRend w eder

ausgel esen. Dabei wird (nur zur Denp) der Mttelwert dieser Daten
ber echnet .
Das Programm kann als Mdell fiur verkettete Listen anderer Daten-
typen di enen.
—— 1. Rekord —— —— 2. Rekord —— —— 3. Rekord ——
=
s|s|o|o s|s|o|o s|s|o|o| |.
[
I | |
| > 1 > 1 L > 1
Dat enf el d | Zeigerfeld mit Zeiger: 4 Byte. Zeigt auf den Beginn
Real x: 6 Byte | des nichsten Rekords. Beim letzten giiltigen Rekord
| muB "nil" in das Zeigerfeld geschrieben werden.
}

uses

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

19-11

CRT;
type
Zgr Typ = "Rekord; { Zeigt auf Records des Typs "Rekord". Vorwart
Rekord = record { bezug in diesem Fall bei Zeigern zul assi g.
Dat enFel d: Real ; { Real x: 6 Byte
Zei ger Fel d: Zgr Typ; { Zeiger: 4 Byte, Sume = 10 By
end; { Turbo-Pascal: 16 Byte Spei cherbedarf und
{ nicht 10, wegen Auffillen auf 8-Byte-G uppen
var
p1
pStart,
pLet zt
pNeu: Zgr Typ;
Zei ger: Pointer; { "Pointer": Vordefin. untypisierter Zeigert
i, n,
nvax1,
nivax2: Longl nt;
X1
xMttel: Real ;
Ch: Char ;
Bi | dschi rmanzei ge: Bool ean;
begi n
r epeat

Text BackG ound(Bl ue); Text Col or(Yellow); CrScr;

Witel n(' Denp: Einfach verkettete Liste mt ZzZufalls-' +
'Real - Zahl en i m Datenfel d', #13#10);

Text Col or (Wi te);

nMax1l := MenAvail div (8 * (SizeO(p?) div 8 + 1)) - 1;
{ nMax1l so fur TP ab 6.0, ".. auf Achtergruppen auffillen"
{ "SizeO(p")" selbst liefert den (Netto-) Wert 10

{ oder in Primtivformdurch "Abzahl en" so: }

nMax2 := MenAvail div 16 - 1; { zwar nur 10 Byte, aber Auf-
{ TP-6.0: ... div 16 - 1} { fiullen auf Achtergruppen ..
{ TP-5.0: ... div 10 - 1}
WitelLn(' Der Heap- Speicher: ', MemAvail,
', somt nMax1l ="', nMax1, ', bzw. nMax2 = ', nMax2);
Wite(' Ei ngabe Anzahl n, Ende mt 0: ');
ReadLn(n);
if n <=0 then EXIT, { >>>>>>>>>>>>>> }
Wite('Mt Bildschirmanzeige (j/n): j');
Got oXY(WhereX - 1, WWhereY);
r epeat
Ch : = ReadKey;
if Ch = #13
then Ch :="j";

until UpCase(Ch) in1['J', "N1J;
WiteLn(Ch); WitelLn;
if UpCase(Ch) ="J'
then Bil dschirmanzei ge :
el se Bil dschi rmanzei ge :

True
Fal se;

Mar k(Zei ger) ; { Hier: Heap-Anfang "narkieren"

S_

}
}
}
te }
}
}

yp }

}
}
}
}
}

19-12 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

New(p) ; { Erzeugt den ersten dynanmi schen Rekord }
pStart := p; { Zeiger pStart wird ebenfalls auf diesen }
{ Rekord gesetzt (Sichern des Startzeigers) }
WitelLn('--- Das Einlesen ----':31);
for i :=1to n do
begi n
x := Randomy { Fur Deno: Zufalls-Realzahlen 0.0 <= x < 1.0}
i f Bildschirnmanzeige { Bildschirnanzeige nur fir Denp }
then Witeln('i = "':14, i:2, x:15:6);
p”. Dat enFel d =X { I'n Datenfel d des Rekords p” den }
{ Real -Wert x schreiben }
pLet zt = p; { Zeiger sichern, danmit spater }
New(pNeu) ; { Neuen Rekord anl egen }
pr.ZeigerFeld := pNeu; { In Zeigerfeld des alten Rekords }
{ neuen Zei ger schreiben }
p := pNeu; { Aktuellen Zeiger p auf neuen Wert }
end;
pLet zt~. ZeigerFeld := nil; { I'n das Zeigerfeld des |etzten }
{ Rekords wird "nil" geschrieben }
WitelLn;
WitelLn('--- Das Auslesen ----':31);
p = pStart; { Zeiger p zurick auf den ersten Rekord }
xMttel := 0.0;
i 1= 0; { Die Anzahl braucht nicht bekannt zu sein ! }

while p <> nil do

begi n
Inc(i); { Der Zzahler }
i f Bildschirmanzei ge { Bildschirmanzei ge nur fir Deno }

then Witeln('i = "':14, i:2, p”. Datenfeld:15:6);

xMttel :=xMttel + p~.Datenfeld;
p := p~. ZeigerFel d; { nachster Record }

end;

xMttel := xMttel [/ i;
WitelLn;
WitelLn(' Anzahl der Daten: ', i, ' Mttelwert: ', xMttel:9:6);

Wite(#13#10, 'Weiter mt Tastendruck ... ');
whi | e KeyPressed do

Ch : = ReadKey;
Ch : = ReadKey;

Rel ease(Zei ger); { Heap ab markierter Stelle w eder }
{ freigeben. Hier: gesanten Heap. }
until n = 0;
end.

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-13

19.6 Demo-Programm 4: Einfiigen in verkettete Liste

program Pas19061; { Kap. 19: Dynani sche Datenstrukturen }
{ Turbo-Pascal, Denp: Einfilgen in einfach verkettete Liste }
{
—— 1. Rekord —— —— 2. Rekord —— —— 3. Rekord ——

.|l-|S[S|[O]|O el]-||S|S|O|OSSOOE
— |] —]

D —

Dat enfel d Zeigerfeld mt Zeiger: 4 Byte. Zeigt auf den Beginn
String s: des nachsten Rekords. Beimletzten giltigen Rekord
strlng[801 muf3 "nil" in das Zeigerfeld geschrieben werden
81 Byte
uses
CRT;
const
Dumy = ' Dumy”
type
Str80 = string[80];
Zgr Typ = "Rekord; { Zeigt auf Records des Typs »Rekord«. Vorwarts- }
Rekord = record { bezug in diesem Fall bei Zeigern zul assig. }
Dat enFel d: Str80; { String: 81 Byte }
Zei gerFel d: ZgrTyp; { Zeiger: 4 Byte, Summe = 85 Byte }
end; { Turbo-Pascal: 88 Byte Spei cherbedarf und }
{ nicht 10, wegen Auffillen auf 8-Byte-G uppen }
var
p,
pStart,
pLet zt,
pNeu: Zgr Typ;
Zei ger: Pointer; { "Pointer": Vordefin. untypisierter Zeigertyp }
i, n,
nvax1,
nvax2: Longl nt;
S: Str80;
Ch: Char ;

CGef unden: Bool ean;
Bi | dschi rmanzei ge: Bool ean;

procedur e Tast endr uck;

begi n
Text Col or (Yel | ow) ;
Wite(#13#10, 'Weiter mt Tastendruck ... ');

whi | e KeyPressed do
Ch : = ReadKey;
Ch : = ReadKey;
WitelLn;
Text Col or (White);
end;

begi n

19-14 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

r epeat
Text Background(Bl ue); Text Color(Yellow); CrScr;
Witeln(' Denpo: Einfach verkettete Liste mit Strings im' +
"Datenfeld , #13#10);
Text Col or (Wi te);

nMax1l := MenAvail div (8 * (SizeO(p?) div 8 + 1)) - 1;

{ nMax1 so fur TP 6.0, ".. auf Achtergruppen auffullen" }
{ "SizeO(p")" selbst liefert den (Netto-) Wert 10 }
{ oder in Primtivformdurch "Abzahl en" so: }
nvax2 := MemAvail div 88 - 1; { zwar nur 85 Byte, aber ab }
{ TP-6.0: ... div 8 - 1} { TP 6.0 auf Achtergruppen .}
{ TP-5.0: ... div 85 - 1}
WitelLn(' Der Heap- Speicher: ', MemAvail,
', somt nMax1l ="', nMax1, ', bzw. nMax2 = ', nMax2);
Wite(' Ei ngabe Anzahl n, Ende mt 0: ');
ReadLn(n);
if n <=0 then EXIT, { >>>>>>>>>>>>>> }
Wite('Mt Bildschirmanzeige (j/n): j');
Got oXY(WhereX - 1, WWhereY);
r epeat
Ch : = ReadKey;
if Ch = #13
then Ch :="j";
until UpCase(Ch) in ['J", '"NJ;
WiteLn(Ch); WitelLn;
if UpCase(Ch) ="J'
then Bil dschirmanzei ge := True
el se Bil dschi rmanzei ge : = Fal se;
Mar k(Zei ger) ; { Hier: Heap-Anfang "mnmarkieren" }
New(p) ; { Erzeugt den ersten dynani schen Rekord }
pStart := p; { Zeiger pStart wird ebenfalls auf diesen }
{ Rekord gesetzt (Sichern des Startzeigers) }
WitelLn('--- Das Einlesen ----':31);
for i :=1to n do
begi n
Str(i, s);
s := Dumy + ' ' + s; { Nur fur Deno: }
i f Bildschirmanzei ge { Bildschirmanzei ge nur fir Deno }
then Witeln('i =":14, i:6, ': ', s);
p~. Dat enFel d 1= s; { Den String s in das Datenfeld des }
{ Rekords p” schreiben }
pLet zt = p; { Zeiger sichern, danmit spater }
New(pNeu) ; { Neuen Rekord anl egen }
pr.ZeigerFeld := pNeu; { In Zeigerfeld des alten Rekords }
{ neuen Zei ger schreiben }
p := pNeu; { Aktuellen Zeiger p auf neuen Wert }
end;
pLet zt . ZeigerFeld : = nil; { I'n das Zeigerfeld des |etzten }
{ Rekords wird »nil « geschrieben }

Tast endr uck;

Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger 19-15

WitelLn('--- Das Auslesen ----':31);
p = pStart; { Zeiger p zurick auf den ersten Rekord }
i = 0; { Die Anzahl braucht nicht bekannt zu sein ! }
while p <> nil do
begi n
Inc(i); { Der Zzahler }
if Bildschirmanzeige { Bildschirmanzeige nur fir Deno }
then Witeln('i ="':14, i:6, ': ", p".Datenfeld);
p := p”. ZeigerFel d; { nachster Record }
end;

WitelLn(' Anzahl der Daten: ':28, i);
Tast endr uck;

WitelLn('--- Listenelenment einfligen ---':40);
p = pStart; { Zeiger p zurick auf den ersten Rekord }
Gef unden : = Fal se;
S = "bummy 3'; { Danach soll eingefligt werden }
while (p <> nil) and (not Gefunden) do
begi n
i f Bildschirmanzei ge { Bildschirmanzeige nur fir Denmo }

then Witel n(p”. Datenfel d: 33);
if pr. Datenfeld = s
then begin
CGef unden : = True;
New(pNeu) ;
pNeu”. Dat enf el d
pNeu”. Zei gerfel d :

' Ei nf lgezeil e';
p~. Zei gerfel d;

p~. Zei gerfeld pNeu;
end
el se p : = p”. Zei ger Fel d; { nachster Record }
end;
Tast endr uck;
WiteLn('--- Das Auslesen nach der Erweiterung ----':52);
p = pStart; { Zeiger p zurick auf den ersten Rekord }
i = 0; { Die Anzahl braucht nicht bekannt zu sein ! }
while p <> nil do
begi n
Inc(i); { Der Zzahler }
i f Bildschirmanzei ge { Bildschirmanzei ge nur fir Deno }
then WiteLn('i = "':14, i:6, ': ", p".Datenfeld);
p := p”. ZeigerFel d; { nachster Record }
end;

WitelLn(' Anzahl der Daten: ':28, i);
Tast endr uck;

Rel ease(Zei ger); { Heap ab markierter Stelle w eder }
{ freigeben. Hier: gesanten Heap. }
until n = 0;
end.

19-16 Dr. K. Haller Turbo-Pascal Kap. 19: Dynamische Datenstrukturen, Zeiger

80250404 Dr. K. Haller

