
Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-1

19 Dynamische Datenstrukturen, Zeiger
Eine Einführung

Gliederung

19.1 Zur Speicherbelegung eines Turbo-Pascal-Programms .....................2

19.2 Eigenschaften der dynamischen Variablen. Routinen........................3

19.3 Demo-Programm 1: Eigenschaften dynamischer Variablen ..............7

19.4 Demo-Programm 2: Anwendung bei großen Arrays..........................9

19.5 Demo-Programm 3: Anwendung bei verketteten Listen..................10

19.6 Demo-Programm 4: Einfügen in verkettete Liste.............................13



19-2 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

19.1  Zur Speicherbelegung eines Turbo-Pascal-Programms

Bei allen bisherigen Beispielen waren die Variablen "statisch", d.h. sie hatten einen
festen und reservierten Speicherplatz während des gesamten Programmlaufs. Variablen,
die z.B. nur einmal zu Beginn des Programmlaufs gebraucht wurden, haben somit
genauso Speicherplatz blockiert wie die Variablen, die im gesamten Programm benutzt
wurden. Es war nicht möglich, den Speicherplatz der nicht mehr benötigten Variablen
freizugeben und zu einem späteren Zeitpunkt neue Variablen einzuführen. Der gesamte
Speicherplatz der statischen Variablen beträgt in Turbo-Pascal max. ca. 64 KByte. Die
Beschränkung ist aber durch die in PCs verwendeten Intel-Mikroprozessoren und dem
darauf abgestimmten Betriebssystem MS-DOS bestimmt (Datensegment max. 64
KByte).

Die folgende Graphik zeigt die Speicherbelegung eines Turbo-Pascal-Programms in
schematischer Form (nach Borland-Handbuch, geringfügig modifiziert):
                      Obergrenze des von DOS benutzten Speichers

HeapEnd    ────╔══════════════════════════════════╗
               ║ Freier Speicher   │              ║
HeapPtr    ────║ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┴ ─ ─ ─ ─ ─ ─ ─║
               ║ Der Heap wächst in Richtung      ║
               ║ aufsteigender Speicheradressen   ║
HeapBegin  ────╠══════════════════════════════════╣──── OvrHeapEnd
               ║ Overlay─Puffer (nur bei Overlays)║
               ╠══════════════════════════════════╣──── OvrHeapBegin
               ║ Der Stack wächst in Richtung     ║
               ║ absteigender Speicheradressen    ║
               ║       (lokale Variablen)         ║
SSeg:SPtr  ────║ ─ ─ ─ ─ ─ ─ ─ ─ ─ ┬ ─ ─ ─ ─ ─ ─ ─║
               ║ Freier Stack      │              ║
SSeg:0000  ────╠══════════════════════════════════╣────┐
               ║ Daten─Segment                    ║    │
               ║ (Globale Variablen und           ║    │
               ║ Typisierte Konstanten)           ║    │
DSeg:0000  ────╚══════════════════════════════════╝    │
               │ Code─Segment der System─Unit     │    │
          ┌────┼──────────────────────────────────┤    │
          │    │ Code─Segment der Unit "A"        │
          │    ├──────────────────────────────────┤    Inhalt der
          │    │                                  │    .EXE─Datei
uses      │     ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
A,B,C,D,E;│
          │    │~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~│    │
          │    ├──────────────────────────────────┤    │
          │    │ Code─Segment der Unit "E"        │    │
          └────┼──────────────────────────────────┤    │
               │ Code─Segment des Programms       │    │
               ╞══════════════════════════════════┴────┘
               │ Programmsegment-Präfix (PSP)     │ 256 Byte, von DOS
PrefixSeg  ────└──────────────────────────────────┘

                      Untergrenze des von DOS benutzten Speichers

Das folgende Programm demonstriert die Beschränkung des Speicherplatzes für sta-
tische Variablen.

program Pas19011;           { Beschränkung des Speicherbedarfs aller }
        { globalen statischen Variablen auf max. ca. 64 KByte.       }
        { Technisch bedingt durch Intel-Mikroprozessor bzw. DOS.     }
        { Die lokalen Variablen der Routinen werden auf den Stack    }
        { gelegt. Die Stackgröße kann mit dem Compilerbefehl $M oder }
        { mit dem Menüpunkt Options/Memory_sizes auf Werte zwischen  }



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-3

        { 1024 Byte und 65520 Byte eingestellt werden. Die Standard- }
        { einstellung beträgt 16384 Byte. Beim Verlassen der Routine }
        { wird der Stackspeicher wieder frei.                        }
uses
  CRT;

var
  s:    array[1..253] of string;   { 253 * 256 = 64 768 }
  x, y: Real;                      {   2 *   6 =     12 }
  b:    array[1..42]  of Byte;     {  42 *   1 =     42 }
                                   { Summe:    = 64 806 bei TP 7.0 }
                                   { Summe:    = 64 822 bei TP-6.0 }
  (*  oder nur:                    { Summe:    = 64 836 bei TP-5.0 }
  b:  array[1..64822] of Byte;
  *)
  { Bei Überschreitung des Grenzwertes (im vorliegenden Programm bei }
  { 64 806) wird die Kompilation mit der Fehlermeldung "Error 49:    }
  { Data segment too large" abgebrochen. Der Grenzwert hängt etwas   }
  { von den verwendeten Units und von der Pascal-Version ab, beträgt }
  { aber immer max. 64 KByte. }
begin
  ClrScr;
  Write('Tastendruck ... ');
  repeat
  until KeyPressed;
end.

Dynamische Variablen (allgemeiner dynamische Datenstrukturen) können dagegen zu
jedem beliebigen Zeitpunkt des Programmlaufs eingeführt werden. Der von ihnen
belegte Speicherplatz kann bei Bedarf auch wieder freigegeben werden. Dynamische
Datenstrukturen bestehen aus einem Zeiger (engl. Pointer), der im allgemeinen im
statischen Variablenspeicher abgespeichert wird und dem zugehörigen Datenobjekt, das
im freien Speicher (Heapspeicher, Haufenspeicher) gespeichert wird.  Bei komplexeren
Datenstrukturen (verkettete Listen, Ringe, Bäume usw.) werden Zeiger auch im
Heapspeicher abgelegt. Der Zeiger enthält lediglich die Speicheradresse des Daten-
objekts im Intel-Format Segment:Offset. Der sonst ungenutzte Heapspeicher, der häufig
wesentlich größer als 64 KByte ist, kann somit sinnvoll genutzt werden. Bestimmte
Datenstrukturen wie z.B. verkettete Listen sind nur mit Zeigern realisierbar.

19.2 Eigenschaften der dynamischen Variablen.
Standard-Prozeduren und -Funktionen

Zeiger sind 4-Byte-Speicheradressen im Intel-Format Segment:Offset (ss:oo). Sie
werden mit wählbaren Bezeichnern in der üblichen Form gekennzeichnet, z.B. mit

x, s1, s2, i, p

und in der Variablendeklaration mit   »zeigerbezeichner: ^datentyp«
deklariert.



19-4 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

Beispiel:

type
  Str10 = string[10];
  Ptr   = ^Integer;
var
  x:   ^Real;
  s1:  ^Str10;   { Nicht:  s1: ^string[10]; }
  s2:  ^Str10;
  i:   Ptr;      { indirekt }

In der Deklaration muß also der Datentyp eines Zeigers mit einem vorgesetzten Hoch-
pfeil gekennzeichnet werden.

Mit Pointer steht ein vordefinierter nichttypisierter Zeigertyp zur Verfügung, der zu
allen Zeigertypen kompatibel ist. Anwendung z.B. bei den Prozeduren Mark und
Release.

Beispiel: var
  p: Pointer;

Die Zeiger zeigen auf die zugehörigen Objekte, die mit dem Zeigerbezeichner und
einem nachgesetzten Hochpfeil gekennzeichnet werden, z.B.

x^,  s1^, s2^ und i^.

Die Objekte werden im freien Speicher (Heapspeicher, Haufenspeicher) abgelegt. Bei
Bedarf kann der durch die Objekte belegte Speicherbereich wieder freigegeben werden
(dynamische Speicherverwaltung). Die Objekte werden nicht deklariert.

Mit typkompatiblen Zeigern sind folgende Operationen möglich:

•  Zuweisungen Beispiel:  s1 := s2;
•  Vergleich  »=« Beispiel:  if s1 =  s2 then ...;
•  Vergleich  »<>« Beispiel:  if s1 <> s2 then ...;

Eingaben und Ausgaben von Zeigern sind im Gegensatz zu den Objekten auf die sie
zeigen, nicht zulässig.

Somit nicht zulässig: ReadLn(s1);   oder WriteLn(s1);

Mit den Objekten sind dagegen alle typgerechten Operationen zulässig, z.B:

ReadLn(s1^); oder WriteLn(s1^);
y := x^; oder x^ := Sin(y); (deklarierte Real-Variable y vorausgesetzt)

Das Objekt kann mit Ausnahme von »file« jeder beliebige Datentyp sein, also z.B. auch
strukturierte Typen wie Arrays, Strings, Sets oder Records.



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-5

Statischer Variablenspeicher Heapspeicher
max. 64 KByte, mit Zeigern mit den zugehörigen Objekten
┌───────────────────────────┐     ┌────────────────────────────────┐
│              ╔═╤═╦═╤═╗    │     │     ss:oo von s2               │
│            x ║s│s║o│o║    │     │     ├─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐    │
│              ╚═╧═╩═╧═╝    │     │  s2^│.│.│.│.│.│.│.│.│.│.│.│    │
│                           │     │     └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘    │
│     ╔═╤═╦═╤═╗             │     ~                                ~
│  s1 ║s│s║o│o║             │     ~                  ss:oo von x   ~
│     ╚═╧═╩═╧═╝             │     │                  ├─┬─┬─┬─┬─┬─┐ │
│                           │     │                x^│.│.│.│.│.│.│ │
│                ╔═╤═╦═╤═╗  │     │                  └─┴─┴─┴─┴─┴─┘ │
│             s2 ║s│s║o│o║  │     │                                │
│                ╚═╧═╩═╧═╝  │     │        ss:oo von s1            │
└───────────────────────────┘     │        ├─┬─┬─┬─┬─┬─┬─┬─┬─┬─┬─┐ │
                                  │     s1^│.│.│.│.│.│.│.│.│.│.│.│ │
                                  │        └─┴─┴─┴─┴─┴─┴─┴─┴─┴─┴─┘ │
                                  └────────────────────────────────┘

Die Standard-Routinen:

• Die Prozedur New(zeigervariable)
initialisiert den Zeiger und richtet Speicherplatz im Heap für neue Objekte ein.
Damit wird ist zwar der Zeiger initialisiert, aber noch nicht das zugehörige Objekt.
Der Zugriff über einen nichtinitialisierten Zeiger führt zu schweren Programm-
fehlern, da der Zeiger zufällig auch auf einen Speicherbereich zeigen kann, der vom
Betriebssystem belegt ist. Der Zugriff auf das nichtinitialisierte Objekt eines initiali-
sierten Zeigers liefert lediglich nichtdefinierten Daten-Müll.

• Die Prozedur Dispose(zeigervariable)
gibt den (Heap-) Speicherplatz der Objekte wieder frei. Der Zeiger ist danach nicht
mehr definiert und das Objekt ist nicht mehr zugänglich. Ein Zugriff stellt einen
Fehler dar.

• Die spezielle Zeigerkonstante  nil 
(reserviertes Wort, steht für not in list) zeigt "nirgendwo hin". Dieser Zeiger  ist zu
allen Zeigertypen kompatibel. Anwendung siehe spätere Demo-Programme.

• Die Prozedur Mark(zeigervariable)
markiert die momentane Spitze des Heaps und speichert den Wert in der Zeiger-
variablen (die einen beliebigen Typ haben kann, z.B. auch "Pointer"). Die Mark-
Prozedur (markiere Heap-Spitze) wird für die Release-Prozedur benötigt.

• Die Prozedur Release(zeigervariable)
gibt den Bereich des Heap-Speichers zwischen der mit Mark markierten Stelle und
der momentanen Spitze wieder frei. Somit werden alle dynamischen Variablen, die
seit Mark erzeugt wurden, gelöscht. Achtung: Bei Verwendung der Unit GRAPH
werden der verwendete Graphiktreiber und die verwendeten Zeichensätze dyna-
misch, also im Heap, gespeichert. Ein versehentliches Freigeben der von ihnen
benutzten Speicherbereiche mit Mark/Release führt zum Programm-Absturz.



19-6 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

Hinweis: Mark/Release dürfen nicht in Verbindung mit den Prozeduren GetMem
und FreeMem benutzt werden; siehe später.

• Die Funktion MemAvail
liefert die Größe des gesamten freien Heap-Speichers mit dem Ergebnistyp LongInt.

• Die Funktion MaxAvail
liefert die Größe des größten freien zusammenhängenden Blocks im Heap-Speichers
mit dem Ergebnistyp LongInt.

• Die Funktion SizeOf(variable)
SizeOf(datentyp)

ist allgemein verwendbar und liefert die Größe einer Variablen oder eines Daten-
typs.

Beispiel:  Write(SizeOf(s1^));

In Verbindung mit dynamischen Variablen ist es wichtig zu wissen, daß ab Turbo-
Pascal Version 6.0 der belegte Speicher im Heap-Speicher immer auf volle 8-Byte-
Gruppen aufgefüllt wird. In der Regel wird also mehr Speicher reserviert, als
tatsächlich benötigt wird. Besteht z.B. ein dynamischer Rekord aus zwei Real-
Feldern (je 6 Byte), so liefert SizeOf 12, reserviert werden aber 16 Byte im Heap-
Speicher. Auf diesen Umstand ist bei der Ermittlung der maximalen Anzahl der
Daten im Heap durch eigene programmtechnische Maßnahmen einzugehen, da
SizeOf alleine im allgemeinen ein falsches Ergebnis liefert. Nur im Sonderfall
"SizeOf(...) mod 8 = 0" ist das Ergebnis richtig. Siehe späteres Beispiel.

• Die Prozedur GetMem(zeigervariable, groesse)
groesse:  Word-Ausdruck

reserviert einen Bereich bestimmter Größe auf dem Heap-Speicher. Diese Prozedur
darf nicht in Verbindung mit Mark/Release benutzt werden.

• Die Prozedur FreeMem(zeigervariable, groesse)
groesse:  Word-Ausdruck

gibt einen Bereich bestimmter Größe auf dem Heap-Speicher wieder frei. Diese
Prozedur darf nicht in Verbindung mit Mark/Release benutzt werden.

• In der Entwicklungsumgebung kann der akutelle Wert des Zeigers über das Dialog-
fenster »Auswerten und Ändern« (Aufruf mit Strg+F4) nach Eingabe des Zeiger-
Bezeichners (z.B. »s1«) abgefragt werden. Die Speicheradresse erscheint dann im
Fenster »Ergebnis« in der Hex-Schreibweise »PTR($segment, $offset)«.

Beispiel: PTR($74F5,$8)
$74F5 Segment-Adresse in hex
$8 Offset-Adresse  in hex
Übliche Intel-Darstellung in hex:  74F5:0008
Die physikalische Adresse des Objekts ist dann:
16 * (7 * 4096 + 4 * 256 + 15 * 16 + 5) + 8 = 479 064



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-7

19.3 Demo-Programm 1: Eigenschaften dynamischer
Variablen

program Pas19031; { Kap. 19: Dynamische Datenstrukturen      }
                  { Turbo-Pascal, kha                        }
                  { Demo: Eigenschaften der Zeiger (Pointer) }
uses
  CRT;

type
  Str10 = string[10];

var
  x:      ^Real;   { x ist ein Zeiger auf ein  Objekt  vom Typ Real  }
  i:      ^Word;   { i ist ein Zeiger auf ein  Objekt  vom Typ Word  }
  s1, s2: ^Str10;  { s1 und s2 sind Zeiger auf Objekte vom Typ Str10 }
                   { Nicht zulässig: s1, s2: ^string[10];            }
  HeapSpeicher: LongInt;

procedure WarteAufTastendruck;
var
  Ch: Char;
  Sp, Ze: Byte;
begin
  Sp := WhereX;
  Ze := WhereY;
  GotoXY(10, 25); Write('Weiter mit Tastendruck ... ');
  while KeyPressed do
    Ch := ReadKey;
  repeat
  until ReadKey <> '';
  GotoXY(1, 25); ClrEol;
  GotoXY(Sp, Ze);
end;

begin
  TextBackground(Blue); TextColor(Yellow); ClrScr;

  { Die Standardprozedur »New« belegt bei den folgenden drei Aufrufen
    für jedes Objekt einen Bereich auf dem Heap-Speicher entsprechend
    dem Datentyp des Objektes, bei »x^« 6 Byte, bei »s1^« und »s2^«
    je 11 Byte (10 Zeichen und das Längenbyte), und setzt die Zeiger
    »x«, »s1« und »s2« auf die Anfangsadresse des jeweiligen
    Bereiches.

    Der benötigte Speicherplatz des Objektes wird aber ab Turbo-
    Pascal 6.0 immer auf volle 8-Byte-Gruppen aufgerundet (bei Arrays
    ist für die Aufrundung die Gesamtgröße und nicht die Größe eines
    Elementes maßgebend). Im vorliegenden Fall werden 48 Byte (und
    nicht 30 Byte) auf dem Heap-Speicher belegt.

    Für s1^: 11 Byte -----> 16 Byte
    Für s2^: 11 Byte -----> 16 Byte
    Für x^:   6 Byte ----->  8 Byte
    Für i^:   2 Byte ----->  8 Byte
                     Summe: 48 Byte auf Heap-Speicher belegt
  }

  HeapSpeicher := MemAvail;  { Funktion »MemAvail« liefert   }



19-8 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

                  { die Gesamtgröße des freien Heap-Speiches }
                  { Datentyp LongInt.                        }

  WriteLn('Der freie Heapspeicher vorher:     ', HeapSpeicher);

  WriteLn('Der größte zusammenhängende Block: ', MaxAvail, ' vor');

  WarteAufTastendruck;

  New(s1);          { Zeiger s1 }
  New(s2);          { Zeiger s2 }
  New(x);           { Zeiger x  }

  WriteLn('Der größte zusammenhängende Block: ', MaxAvail, ' nach');

  WriteLn('Durch s1, s2 und x belegt:     ',
           HeapSpeicher - MemAvail);
  WriteLn;

  s1^ := 'Julia';   { Objekt s1^ belegen }
  s2^ := 'Konrad';  { Objekt s2^ belegen }
  x^  := 47.11;     { Objekt x^  belegen }

  Writeln('01: Objekt s1^: ', s1^);   {¦01: Objekt s1^: Julia       }
  Writeln('02: Objekt s2^: ', s2^);   {¦02: Objekt s2^: Konrad      }
  Writeln('03: Objekt x^ : ', x^:5:2);{¦03: Objekt x^ : 47.11       }

  if s1 = s2
     then Writeln('04: Zeiger s1 =  Zeiger s2')
     else Writeln('04: Zeiger s1 <> Zeiger s2');
                                      {¦04: Zeiger s1 <> Zeiger s2  }
  WarteAufTastendruck;

  s1 := s2;
  { Der Zeiger s1 wird mit dem Zeiger s2 belegt. Das alte Objekt
    s1^ ist nicht mehr erreichbar. Es steht aber als Müll noch im
    Heap-Speicher. }
  Writeln('05: Objekt s1^: ', s1^);   {¦05: Objekt s1^: Konrad      }
  Writeln('06: Objekt s2^: ', s2^);   {¦06: Objekt s2^: Konrad      }

  if s1 = s2
     then Writeln('07: Zeiger s1 =  Zeiger s2')
     else Writeln('07: Zeiger s1 <> Zeiger s2');
                                      {¦07: Zeiger s1 = Zeiger s2   }
  s1^ := 'Anton';
  Writeln('08: Objekt s1^: ', s1^);   {¦08: Objekt s1^: Anton       }
  Writeln('09: Objekt s2^: ', s2^);   {¦09: Objekt s2^: Anton       }

  s2^ := 'Huber';
  Writeln('10: Objekt s1^: ', s1^);   {¦10: Objekt s1^: Huber       }
  Writeln('11: Objekt s2^: ', s2^);   {¦11: Objekt s2^: Huber       }

  if s1^ = s2^
     then Writeln('12: Objekt s1^ =  Objekt s2^')
     else Writeln('12: Objekt s1^ <> Objekt s2^');
                                      {¦12: Objekt s1^ = Objekt s2^ }
  WarteAufTastendruck;

  Dispose(s1); { »Dispose« gibt den Speicherbereich frei, auf den   }
               { der Zeiger »s1« zeigt. »s1« ist nach »Dispose«     }
               { nicht mehr definiert. Das Objekt »s1^« ist nicht   }
               { mehr zugänglich. Ein Zugriff darauf stellt einen   }
               { schweren Fehler dar, der aber nicht gemeldet wird. }



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-9

  WriteLn('13: Zeiger s1 mit Dispose frei. Fehlerhafter Zugriff ',
          'auf Objekt s1^: ', s1^);
  WarteAufTastendruck;

  New(s1);

  s1^ := 'Meier';
  WriteLn('14: Objekt s1^: ', s1^);   {¦14: Objekt s1^: Meier       }

  New(s1);
              { Nachfolgend Müll, da Objekt s1^ nicht initialisiert }
  WriteLn('15: Objekt s1^: ', s1^);   {¦15: Objekt s1^: ... Müll .. }

  WriteLn('16: "SizeOf": Größe Zeiger s2 und Objekt s2^: ',
                SizeOf(s2), ', ', SizeOf(s2^));
                { Größe des Zeigers immer 4 Byte! }
                                      {¦16: "SizeOf": ..... : 4, 11 }
  WarteAufTastendruck;

  GetMem(i, 2);  { Syntax: "GetMem(zeigervariable, groesse)" }
                 {          Entspricht "New(i)"              }
  i^ := 4711;    {          wobei "groesse" Word-Ausdruck    }
  WriteLn('17: Objekt i^:  ', i^);    {¦17: Objekt  i^:  4711       }

  FreeMem(i, 2); { Syntax: "FreeMem(zeigervariable, groesse)" }
                 {          wobei: "groesse" Word-Ausdruck    }

  Dispose(s1);
  Dispose(s2);
  Dispose(x);

  WarteAufTastendruck;
end.

19.4  Demo-Programm 2:  Anwendung bei großen Arrays

program Pas19041; { Kap. 19: Dynamische Datenstrukturen              }
        { Demo: Verwendung des Heap-Speichers für große Datenmengen. }
        { Zwei Real-Arrays mit zusammen 120 000 Byte.                }
uses
  CRT;

const
  iMax = 10000;  { Array-Größe }

type
  RealArray = array[1..iMax] of Real;        { Datentyp Real: 6 Byte }

var
  i:       Word;
  Array1,              { Bei statischen Arrays käme die Fehler-      }
  Array2:  ^RealArray; { meldung »Error 96: Too many variables«,     }
                       { da die beiden Arrays zusammen 120 000 Byte  }
                       { und das Datensegment max. 64 KByte für      }
                       { globale Variablen und typisierte Konstanten }
                       { zur Verfügung stellt.                       }
begin
  TextBackground(Blue); TextColor(Yellow); ClrScr;
  GotoXY(15, 2); WriteLn('Demonstration: Dynamische Variablen');
  TextColor(White);



19-10 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

  GotoXY(15, 4); WriteLn('Der Heap-Speicher vorher:  ', MemAvail:7);

  New(Array1);    { Reservieren des Speicher- }
  New(Array2);    { platzes auf dem Heap      }

  GotoXY(15, 5); WriteLn('Der Heap-Speicher nachher: ', MemAvail:7);
  GotoXY(15, 7);
  WriteLn('Initialisieren der beiden Real-Arrays bis ', iMax);

  for i := 1 to iMax do
    begin
      Array1^[i] :=  Sqrt(i);   { Demo-  1.00  1.41  1.73 ... 100.00 }
      Array2^[i] := -Sqrt(i);   { Daten -1.00 -1.41 -1.73 ...-100.00 }
    end;                        {        ----- ----- -----     ----- }
             { Später Summenberechnung:  0.00  0.00  0.00 ...   0.00 }
  GotoXY(15, 12);
  WriteLn('Es folgt Addition der Elemente der beiden Arrays ... ');

  for i := 1 to iMax do
    begin
      Array1^[i]  :=  Array1^[i] + Array2^[i];
      GotoXY(15, 13);
      WriteLn('i = ', i:5, ',  Summe = ', Array1^[i]:12:9);
    end;
  Dispose(Array1);  { Am Programmende }
  Dispose(Array2);  { nicht notwendig }

  GotoXY(15, 15); Write('Fertig ... ');
  repeat
  until KeyPressed;
end.

19.5  Demo-Programm 3: Anwendung bei verketteten Listen

program Pas19051;  { Kap. 19: Dynamische Datenstrukturen      }
  { Turbo-Pascal,    Demo: Einfach verkettete Liste mit Reals }
  { In diesem Programm wird eine verkettete Liste demonstriert. Mit
    ihm kann im Rahmen des Heap-Speichergröße eine beliebige Anzahl
    von Real-Daten verarbeitet werden. Zur Demonstration wird eine
    wählbare Anzahl von zufälligen Real-Daten generiert und in die
    verkettete Liste geschrieben. Die Daten werden anschließend wieder
    ausgelesen. Dabei wird (nur zur Demo) der Mittelwert dieser Daten
    berechnet.

    Das Programm kann als Modell für verkettete Listen anderer Daten-
    typen dienen.
   ┌─── 1. Rekord ───┐   ┌─── 2. Rekord ───┐   ┌─── 3. Rekord ───┐
  ╔═╤═╤═╤═╤═╤═╦═╤═╤═╤═╗ ╔═╤═╤═╤═╤═╤═╦═╤═╤═╤═╗ ╔═╤═╤═╤═╤═╤═╦═╤═╤═╤═╗ ╔═
  ║.│.│.│.│.│.║s│s│o│o║ ║.│.│.│.│.│.║s│s│o│o║ ║.│.│.│.│.│.║s│s│o│o║ ║.
  ╚═╧═╧═╧═╧═╧═╩═╧═╧═╧═╝ ╚═╧═╧═╧═╧═╧═╩═╧═╧═╧═╝ ╚═╧═╧═╧═╧═╧═╩═╧═╧═╧═╝ ╚═
   └────┬─────┘└──┬──┘   │           └──┬──┘   │           └──┬──┘   │
        │         └──>───┘              └──>───┘              └──>───┘
  Datenfeld      │ Zeigerfeld mit Zeiger: 4 Byte. Zeigt auf den Beginn
  Real x: 6 Byte │ des nächsten Rekords. Beim letzten gültigen Rekord
                 │ muß "nil"  in das Zeigerfeld geschrieben werden.
  }
uses



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-11

  CRT;

type
  ZgrTyp = ^Rekord; { Zeigt auf Records des Typs "Rekord". Vorwärts- }
  Rekord = record   { bezug in diesem Fall bei Zeigern zulässig.     }
             DatenFeld:  Real;     { Real x: 6 Byte                  }
             ZeigerFeld: ZgrTyp;   { Zeiger: 4 Byte, Summe = 10 Byte }
           end;     { Turbo-Pascal: 16 Byte Speicherbedarf und       }
                    { nicht 10, wegen Auffüllen auf 8-Byte-Gruppen   }
var
  p,
  pStart,
  pLetzt,
  pNeu:      ZgrTyp;
  Zeiger:    Pointer; { "Pointer": Vordefin. untypisierter Zeigertyp }
  i, n,
  nMax1,
  nMax2:     LongInt;
  x,
  xMittel:   Real;
  Ch:        Char;
  Bildschirmanzeige: Boolean;

begin
  repeat
    TextBackGround(Blue); TextColor(Yellow); ClrScr;
    Writeln('Demo: Einfach verkettete Liste mit Zufalls-' +
            'Real-Zahlen im Datenfeld', #13#10);
    TextColor(White);

    nMax1 := MemAvail div (8 * (SizeOf(p^) div 8 +  1)) - 1;
        { nMax1 so für TP ab 6.0, ".. auf Achtergruppen auffüllen"   }
        { "SizeOf(p^)" selbst liefert den (Netto-) Wert 10           }

        { oder in Primitivform durch "Abzählen" so: }
    nMax2 := MemAvail div 16 - 1;   { zwar nur 10 Byte, aber Auf- }
        { TP-6.0: ... div 16 - 1 }  { füllen auf Achtergruppen .. }
        { TP-5.0: ... div 10 - 1 }

    WriteLn('Der Heap-Speicher: ', MemAvail,
            ', somit nMax1 = ', nMax1, ', bzw. nMax2 = ', nMax2);

    Write('Eingabe Anzahl n, Ende mit 0: ');
    ReadLn(n);

    if n <= 0 then EXIT;   { >>>>>>>>>>>>>> }

    Write('Mit Bildschirmanzeige (j/n):  j');
    GotoXY(WhereX - 1, WhereY);
    repeat
      Ch := ReadKey;
      if Ch = #13
         then Ch := 'j';
    until UpCase(Ch) in ['J', 'N'];
    WriteLn(Ch); WriteLn;

    if UpCase(Ch) = 'J'
       then Bildschirmanzeige := True
       else Bildschirmanzeige := False;

    Mark(Zeiger);     { Hier: Heap-Anfang "markieren"             }



19-12 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

    New(p);           { Erzeugt den ersten dynamischen Rekord     }
    pStart := p;      { Zeiger pStart wird ebenfalls auf diesen   }
                      { Rekord gesetzt (Sichern des Startzeigers) }

    WriteLn('--- Das Einlesen ----':31);

    for i := 1 to n do
      begin
        x := Random;  { Für Demo: Zufalls-Realzahlen  0.0 <= x < 1.0 }

        if Bildschirmanzeige     { Bildschirmanzeige nur für Demo    }
           then Writeln('i = ':14, i:2, x:15:6);

        p^.DatenFeld   := x;     { In Datenfeld des Rekords p^ den   }
                                 { Real-Wert x schreiben             }

        pLetzt         := p;     { Zeiger sichern, damit später ...  }

        New(pNeu);               { Neuen Rekord anlegen              }

        p^.ZeigerFeld  := pNeu;  { In Zeigerfeld des alten Rekords   }
                                 { neuen Zeiger schreiben            }

        p              := pNeu;  { Aktuellen Zeiger p auf neuen Wert }
      end;

    pLetzt^.ZeigerFeld := nil;   { In das Zeigerfeld des letzten     }
                                 { Rekords wird "nil" geschrieben    }

    WriteLn;

    WriteLn('--- Das Auslesen ----':31);

    p       := pStart;  { Zeiger p zurück auf den ersten Rekord      }
    xMittel := 0.0;
    i       := 0;       { Die Anzahl braucht nicht bekannt zu sein ! }

    while p <> nil do
      begin
        Inc(i);         { Der Zähler }
        if Bildschirmanzeige     { Bildschirmanzeige nur für Demo    }
           then Writeln('i = ':14, i:2, p^.Datenfeld:15:6);
        xMittel  := xMittel + p^.Datenfeld;
        p := p^.ZeigerFeld;   { nächster Record }
      end;

    xMittel := xMittel / i;
    WriteLn;
    WriteLn('Anzahl der Daten: ', i, '   Mittelwert: ', xMittel:9:6);

    Write(#13#10, 'Weiter mit Tastendruck ... ');
    while KeyPressed do
      Ch := ReadKey;
    Ch := ReadKey;

    Release(Zeiger);      { Heap ab markierter Stelle wieder }
                          { freigeben. Hier: gesamten Heap.  }
  until n = 0;
end.



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-13

19.6  Demo-Programm 4: Einfügen in verkettete Liste

program Pas19061;  { Kap. 19: Dynamische Datenstrukturen     }
  { Turbo-Pascal, Demo: Einfügen in einfach verkettete Liste }
  {
   ┌─── 1. Rekord ───┐   ┌─── 2. Rekord ───┐   ┌─── 3. Rekord ───┐
  ╔═╤═╤═╤ ╤═╤═╦═╤═╤═╤═╗ ╔═╤═╤═╤ ╤═╤═╦═╤═╤═╤═╗ ╔═╤═╤═╤ ╤═╤═╦═╤═╤═╤═╗ ╔═
  ║.│.│.│ │.│.║s│s│o│o║ ║.│.│.│.│.│.║s│s│o│o║ ║.│.│.│.│.│.║s│s│o│o║ ║.
  ╚═╧═╧═╧ ╧═╧═╩═╧═╧═╧═╝ ╚═╧═╧═╧ ╧═╧═╩═╧═╧═╧═╝ ╚═╧═╧═╧ ╧═╧═╩═╧═╧═╧═╝ ╚═
   └────┬─────┘└──┬──┘   │           └──┬──┘   │           └──┬──┘   │
        │         └──>───┘              └──>───┘              └──>───┘
  Datenfeld      │ Zeigerfeld mit Zeiger: 4 Byte. Zeigt auf den Beginn
  String s:      │ des nächsten Rekords. Beim letzten gültigen Rekord
  string[80]     │ muß "nil"  in das Zeigerfeld geschrieben werden.
  81 Byte  }

uses
  CRT;

const
  Dummy = 'Dummy';

type
  Str80  = string[80];
  ZgrTyp = ^Rekord; { Zeigt auf Records des Typs »Rekord«. Vorwärts- }
  Rekord = record   { bezug in diesem Fall bei Zeigern zulässig.     }
             DatenFeld:  Str80;   { String: 81 Byte                  }
             ZeigerFeld: ZgrTyp;  { Zeiger:  4 Byte, Summe = 85 Byte }
           end;     { Turbo-Pascal: 88 Byte Speicherbedarf und       }
                    { nicht 10, wegen Auffüllen auf 8-Byte-Gruppen   }
var
  p,
  pStart,
  pLetzt,
  pNeu:      ZgrTyp;
  Zeiger:    Pointer; { "Pointer": Vordefin. untypisierter Zeigertyp }
  i, n,
  nMax1,
  nMax2:     LongInt;
  s:         Str80;
  Ch:        Char;
  Gefunden:  Boolean;
  Bildschirmanzeige: Boolean;

procedure Tastendruck;
begin
  TextColor(Yellow);
  Write(#13#10, 'Weiter mit Tastendruck ... ');
  while KeyPressed do
    Ch := ReadKey;
  Ch := ReadKey;
  WriteLn;
  TextColor(White);
end;

begin



19-14 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

  repeat
    TextBackground(Blue); TextColor(Yellow); ClrScr;
    Writeln('Demo: Einfach verkettete Liste mit Strings im ' +
            'Datenfeld', #13#10);
    TextColor(White);

    nMax1 := MemAvail div (8 * (SizeOf(p^) div 8 +  1)) - 1;
        { nMax1 so für TP 6.0, ".. auf Achtergruppen auffüllen"      }
        { "SizeOf(p^)" selbst liefert den (Netto-) Wert 10           }

        { oder in Primitivform durch "Abzählen" so: }
    nMax2 := MemAvail div 88 - 1;   { zwar nur 85 Byte, aber ab }
        { TP-6.0: ... div 88 - 1 }  { TP 6.0 auf Achtergruppen .}
        { TP-5.0: ... div 85 - 1 }

    WriteLn('Der Heap-Speicher: ', MemAvail,
            ', somit nMax1 = ', nMax1, ', bzw. nMax2 = ', nMax2);

    Write('Eingabe Anzahl n, Ende mit 0: ');
    ReadLn(n);

    if n <= 0 then EXIT;   { >>>>>>>>>>>>>> }

    Write('Mit Bildschirmanzeige (j/n):  j');
    GotoXY(WhereX - 1, WhereY);
    repeat
      Ch := ReadKey;
      if Ch = #13
         then Ch := 'j';
    until UpCase(Ch) in ['J', 'N'];
    WriteLn(Ch); WriteLn;

    if UpCase(Ch) = 'J'
       then Bildschirmanzeige := True
       else Bildschirmanzeige := False;

    Mark(Zeiger);     { Hier: Heap-Anfang "markieren"             }

    New(p);           { Erzeugt den ersten dynamischen Rekord     }
    pStart := p;      { Zeiger pStart wird ebenfalls auf diesen   }
                      { Rekord gesetzt (Sichern des Startzeigers) }

    WriteLn('--- Das Einlesen ----':31);

    for i := 1 to n do
      begin
        Str(i, s);
        s := Dummy + ' ' + s;    { Nur für Demo:  }
        if Bildschirmanzeige     { Bildschirmanzeige nur für Demo    }
           then Writeln('i = ':14, i:6, ':     ', s);
        p^.DatenFeld   := s;     { Den String s in das Datenfeld des }
                                 { Rekords p^ schreiben              }
        pLetzt         := p;     { Zeiger sichern, damit später ...  }
        New(pNeu);               { Neuen Rekord anlegen              }
        p^.ZeigerFeld  := pNeu;  { In Zeigerfeld des alten Rekords   }
                                 { neuen Zeiger schreiben            }
        p              := pNeu;  { Aktuellen Zeiger p auf neuen Wert }
      end;

    pLetzt^.ZeigerFeld := nil;   { In das Zeigerfeld des letzten     }
                                 { Rekords wird »nil« geschrieben    }

    Tastendruck;



Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger 19-15

    WriteLn('--- Das Auslesen ----':31);

    p  := pStart;  { Zeiger p zurück auf den ersten Rekord      }
    i  := 0;       { Die Anzahl braucht nicht bekannt zu sein ! }

    while p <> nil do
      begin
        Inc(i);                { Der Zähler }
        if Bildschirmanzeige   { Bildschirmanzeige nur für Demo      }
           then Writeln('i = ':14, i:6, ':     ', p^.Datenfeld);
        p := p^.ZeigerFeld;    { nächster Record }
      end;

    WriteLn('Anzahl der Daten: ':28, i);

    Tastendruck;

    WriteLn('--- Listenelement einfügen ---':40);

    p        := pStart;  { Zeiger p zurück auf den ersten Rekord     }
    Gefunden := False;

    s        := 'Dummy 3';  { Danach soll eingefügt werden }

    while (p <> nil) and (not Gefunden) do
      begin
        if Bildschirmanzeige     { Bildschirmanzeige nur für Demo   }
           then Writeln(p^.Datenfeld:33);
        if p^.Datenfeld = s
           then begin
                  Gefunden := True;
                  New(pNeu);
                  pNeu^.Datenfeld  := 'Einfügezeile';
                  pNeu^.Zeigerfeld := p^.Zeigerfeld;
                  p^.Zeigerfeld    := pNeu;
                end
           else p := p^.ZeigerFeld;   { nächster Record }
      end;

    Tastendruck;

    WriteLn('--- Das Auslesen nach der Erweiterung ----':52);
    p       := pStart;  { Zeiger p zurück auf den ersten Rekord      }
    i       := 0;       { Die Anzahl braucht nicht bekannt zu sein ! }

    while p <> nil do
      begin
        Inc(i);                  { Der Zähler }
        if Bildschirmanzeige     { Bildschirmanzeige nur für Demo    }
           then WriteLn('i = ':14, i:6, ':     ', p^.Datenfeld);
        p := p^.ZeigerFeld;      { nächster Record }
      end;
    WriteLn('Anzahl der Daten: ':28, i);

    Tastendruck;

    Release(Zeiger);      { Heap ab markierter Stelle wieder }
                          { freigeben. Hier: gesamten Heap.  }
  until n = 0;
end.



19-16 Dr. K. Haller    Turbo-Pascal    Kap. 19: Dynamische Datenstrukturen, Zeiger

80250404  Dr. K. Haller


