Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

18-1

18 Strukturierter Datentyp »file« (Dateien)

Gliederung

18.1 Vorbemerkungen, Dateitypen..........ccccceeevvieeciiieniieerieeeiie e
18.2 Einleitende Beispiele fiir typisierte Datei und Textdatei
18.3 Standardprozeduren und -funktionen fiir Dateien.......................
18.4 Weitere Demos fiir typisierte Dateienccccceeevevireeiiieeenennnne
18.5 Sonderfall: Gerédte als Textdateiencocceeveevvieeniienieenieenenn.
18.6 Demo untypisierte Datel........cceeecveeereiieeeiiieeeiee e

18.7 Ausgewihlte Datei-Routinen aus der Unit DOS

Inhaltsverzeichnis und Datei-Attribute unter Turbo-Pascal anzeigen

18-2 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

18.1 Vorbemerkungen, Dateitypen

Unter Datei (engl. file) versteht man eine Sammlung von Daten, die letztlich auf einen
Datentrager (Diskette, Platte) geschrieben (gespeichert) werden oder von diesem Daten-
trager gelesen werden.

Die Datei hat auf dem Datentriger einen Namen nach Konvention des Betriebssystems;
iibliche Extensionen sind z.B. » DAT« oder »TXT«, letztere vorzugsweise fiir Text-
dateien.

Programmintern erhilt die Datei einen frei wahlbaren Dateibezeichner (Dateivariable),
nach Pascal-Konvention; hiufig wihlt man nur kurz »F«. Vor dem ersten Offnen der
Datei ist mit der Prozedur »Assign« (Details sieche spéter) eine Zuordnung von DOS-
Dateiname zu programminternen Dateibezeichner notwendig.

Vor dem Zugriff auf die Datei ist diese zu "0ffnen". Dazu dienen die Prozeduren
»Reset« oder »Rewrite«. Wenn die Datei im Programm nicht mehr weiter angesprochen
wird, ist sie mit der Prozedur »Close« zu "schlieBen". Das Schlieen ist sehr wichtig, da
der Dateizugriff "gepuffert" erfolgt. Wird ein Programm bei einer noch gedftneten Datei
beendet oder abgebrochen, was z.B. auch durch einen Laufzeitfehler oder durch einen
Stromausfall geschehen kann, dann ist ein Datenverlust die Folge.

Innerhalb eines Programms kann die gleiche Datei beliebig oft gedffnet und geschlossen
werden.

Es konnen auch mehrere Dateien gleichzeitig gedftnet sein. Die Anzahl der gleichzeitig
gedffneten Dateien wird durch das Betriebssystem bestimmt und betrégt in der Stan-
dardeinstellung 8. Fiir eine groBere Anzahl ist der Parameter »files« in der MS-DOS-
Konfigurationsdatei CONFIG.SYS auf den gewiinschten Wert zu setzen, z.B. mit »files
= 15«, siche Kap. 29. Der Hochstwert: »files = 20«.

Fiir das Lesen eines Datensatzes dienen die Prozeduren »Read« oder »ReadLn«, zum
Schreiben entsprechend »Write oder »WriteLn«. Bei diesen Prozeduren ist gegeniiber
den bisher behandelten Anwendungen ein weiterer Parameter — der programminterne
Dateibezeichner - anzugeben und zwar als erster Parameter. Besonderheit bei "untypi-
sierten" Dateien siche spéter.

Die Dateitypen in Turbo-Pascal
Turbo-Pascal kennt drei Dateitypen:

1) Typisierte Datei mit Datensétzen fester Lénge als Komponenten.

2) Textdatei: Datei mit Textzeilen variabler Linge als Komponenten. Sonderfall:
Externe Gerite (Bildschirm, Tastatur, Drucker, serielle Schnittstelle) als Textdatei.
Dieser Dateityp ist eigentlich auch typisiert, aber anders zu handhaben als 1).

3) Untypisierte Datei. Sonderanwendungen.

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-3

Datei typ Dekl ar ati on:
var
Typisierte Datei bezeichner: file of konponententyp
1) mit Datensédtzen)
fester Linge als Beispiel 1: F1: file of Integer;
Komponenten 2: F2: file of Real;
3: F3: file of record
end,
Textdatei mit Text—
2) zeilen variabler var
Lange als dateibezeichner: Text;
Komponenten { In Delphi-Pascal "TextFile" statt "Text" }
Untypisierte Datei.
Keine Annahme iber
3) Typ u. Organisation var
der Daten. Nur fir dateibezeichner: fil e;

Sonderanwendungen.

1) Bei typisierten Dateien sind alle Datensétze gleich lang; somit kann auf jeden Daten-

satz wahlfrei direkt zugegriffen werden, und zwar sowohl schreibend oder auch
lesend. Typisierte Dateien werden mit »Write« geschrieben und mit »Read« gelesen.
Der Zugriff erfolgt liber die Datensatznummer (Positionszeiger); die interne Zahlung
beginnt mit 0. Mit der Prozedur »Seek« kann die gewiinschte Position eingestellt
werden. Bei jedem Schreib- oder Lesevorgang wird der Positionszeiger automatisch
um eins erhoht. Numerische Daten werden in typisierten Dateien bindr gespeichert.
Andere Bezeichnungen fiir »typisierte Datei« mit festen Datensatzldngen: Direkt-
zugriffsdatei, Random-Access-Datei.

Schematische Darstellung einer typisierten Datei:

1 2 3 4 5 n Dat ensat z- Nr
()

()
0 1 2 3 4 n-1 Posi ti ons- Nr

Direkter Zugriff (Iesend/schreibend beliebig) auf jeden beliebigen Datensatz.

2) Bei Textdateien sind dagegen die Datensidtze unterschiedlich lang. Um auf einen

bestimmten Datensatz zugreifen zu konnen, miissen alle Datensdtze vom Dateianfang
an durchgegangen werden (sequentieller Zugriff). Quelltextdateien von Programmen
sind z.B. immer Textdateien.

Im Gegensatz zu typisierten Dateien kann bei Textdateien die Positionsnummer nicht
gewihlt werden; dagegen wird der Positionzeiger bei jedem Schreib- und Lese-
vorgang wie bei typisierten Dateien um eins erhoht. Eine (gedffnete) Textdatei kann
entweder nur beschrieben (mit »WriteLn«) oder nur gelesen werden (mit »ReadLn«).

18-4 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

Beim Schreiben wird bei jedem Datensatz der Textdatei an das Ende des Datensatzes
automatisch ein CR (Carriage Return) als Zeilentrenner geschrieben (genauer: CR +
LF, Carriage Return und Line Feed, #13 und #10); beim Lesen wird bis zu diesen
Trennzeichen gelesen.

Schematische Darstellung einer Textdatei:

1 2 3 4 5 n Dat ensat z- Nr
()

()
0 1 2 3 4 n - 1 Positions-Nr

Nur sequentieller Zugriff. Nur lesend oder schreibend.

Nicht dargestellt sind die Steuerzeichen CR und LF (#13 und #10) am Ende jedes
Datensatzes. Manche Texteditoren (so auch der Turbo-Pascal-Editor) erzeugen am
Ende der Textdatei noch ein weiteres Steuerzeichen (Zeichen #26, Strg+Z, Ctrl+Z7),
das auch als Kennung fiir Dateiende (End of File) interpretiert wird.

3) Bei untypisierten Dateien werden keine Annahmen iiber die Art und Organisation der
Daten gemacht. Damit kann man Dateien mit beliebigen Strukturen bearbeiten,
allerdings immer nur ganze Blocke schreiben (Prozedur »BlockWrite«) oder lesen
(Prozedur »BlockRead«). Die Blockgrof3e betrdgt standardméaflig 128 Byte, kann aber
zwischen 1 Byte und 64 KByte gewihlt werden. Weitere Details sieche Unterpunkt
18.6.

Vorab die wichtigsten Dateiprozeduren und Dateifunktionen
Vollstdndige Darstellung Kap. 18.3

In den Beispielen wird als Bezeichner fiir die Dateivariable schlicht »F« verwendet. Mit
»a« sei ein beliebiger Ausdruck und mit »« eine Variable bezeichnet.

* Prozedur »Assign« Zuordnung der Dateivariablen zum DOS-Dateinamen.
Beispiel: Assign(F, 'B:Huber. TXT');
Der Pfad ist ein String-Ausdruck

* Prozedur »Reset« Eine existierende Datei 6ffhen.
Beispiel: Reset (F);

* Prozedur »Rewrite« Eine neue Datei anlegen.
Beispiel: Rewrite(F);

* Prozedur »Close« Datei schliefBen.
Beispiel: A ose(F);

* Prozedur »Write« In typisierte Datei schreiben

Beispiel: Wite(F, v); { v = Variable }
* Prozedur »WriteLn« In Textdatei schreiben.

Beispiel: WiteLn(F, a); { a = Ausdruck }

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-5

* Prozedur »Read« Liest einen Wert aus einer typisierten Datei und weist ihn
auf eine Variable zu.
Beispiel: Read(F, v);

* Prozedur »ReadLn« Liest eine Zeile aus einer Textdatei weist sie auf eine
Variable zu, in der Regel eine Stringvariable.
Beispiel: ReadLn(F, v);

Prozedur »Seek« Setzen des Datei-Positionszeigers bei typisierten Dateien.
Beispiel: Seek(F, a); { a = Longl nt-Ausdruck }

Funktion »EoF« End of File. Ergebnistyp ist Boolean
Beispiel: EoF(F)

Funktion »FileSize« Liefert die Anzahl der Komponenten (Datensétze) einer
typisierter (oder untypisierten) Datei. Nicht flir Text-
dateien. Ergebnistyp ist LonglInt.

Beispiel: Fil eSi ze(F)
Zur biniren Speicherung von numerischen Daten in typisierten Dateien

Es sei eine Integerdatei mit folgenden sechs Integerdaten angenommen:
4711 -4711 4712 4711 4712 4711

Die Datei als Char-Dump: gtOghtgthigt
Der Datei als Hex-Dump: 67 12 99 ED 68 12 67 12 68 12 67 12

Die einzelnen Speicherdaten in hex und dez, mit Umrechnung in Integerdaten:

gr 67 12 103 018 018 * 256 + 103 = 4711
Oz 99 ED 153 237 (237 - 256)* 256 + 153 = -4711
h: 68 12 104 018 018 * 256 + 104 = 4712
gr 67 12 103 018 018 * 256 + 103 = 4711
h: 68 12 104 018 018 * 256 + 104 = 4712
gr 67 12 103 018 018 * 256 + 103 = 4711

Es wird zuerst das niederwertige Byte und dann erst das hoherwertige Byte abgespei-
chert. Bei Integerdaten enthilt das Bit-Nr 7 (Wertigkeit 27 = 128) das Vorzeichen; die
Korrektur ist bei allen hoherwertigen Bytes >= 128 in der gezeigten Weise vorzuneh-
men.

Wird die gleiche Integerdatei (vielleicht versehentlich) als Realdatei eingelesen, dann
werden die zwolf Bytes als zwei Reals — ein Real belegt in Turbo-Pascal sechs Byte —
interpretiert und zwar wie folgt:

1. 7044352770E- 08
1. 7043508660E- 08

18-6 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

18.2 Einleitende Beispiele

18.2.1 Einleitendes Beispiel fiir typisierte Datei

program Pas18021; { Kap. 18.2: Einleitendes Beispiel }
{ far "Typisierte Datei" }

uses
CRT;
const
DCS Dat ei name = ' C:\ St udent\ Pas18021. DAT' ;
var
F: file of Integer; { Dateibezeichner, hier kurz "F", }
{ ansonsten beliebiger (freier) }
{ Bezei chner nach Pascal - Konventi on }
Fr file of Real;
F _b: file of Byte;
F c: file of Char;
F Bool: file of Bool ean;
i, j: I nt eger;
r: Real ;
b: Byt e;
Ch: Char ;
Bool : Bool ean;
begin

Text Background(Bl ue); CrScr;

Assi gn(F, DOs_Datei nane); { Mt "Assign" Zuordnung DOS- Datei nane }
{ auf Dateivariable, hier kurz "F", 1

Text Col or (Yel | ow) ;

WitelLn(' Denb "Pasl18021. PAS': Typisierte Datei ');
Text Col or (Wi te);

{ ----- 1. Neue Datei anlegen und nit Werten beschreiben --------- }
Rewrite(F); { Mt "Rewite" neue Datei anlegen. }
{ Evtl. vorhandene wird gel éscht. }
{ Positionszeiger wird auf Anfang = 0 }
{ gesetzt. }
i o= 0; Wite(F, i); { Nur Vari abl en in typi- }
j = 1111; Wite(F, j); { sierte Datei schreiben. Ausdricke }
{ nur bei Textdateien. In typisierte }
{ Dateien nur mt "Wite" schreiben; bei Textdateien }
{ dagegen auch mt "WiteLn". Nunerische Werte werden }
{ typisierten Dateien binar gespeichert, bei Text- }
{ dateien dagegen als Textzei chen. }
i 1= 2222;
j = -4711;
Wite(F, i, j); { Paraneterliste mt nehreren Variablen }
Cl ose(F); { Datei schlieBen }
{ ----- 2. Datei wi eder 6ffnen und Daten lesen ------------------- }
Reset (F) ; { Mt "Reset" vorhandene Datei 6ffnen und }

{ Positionszeiger auf Anfang = 0 setzen }

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-7

Read(F, i); Wite(i, ' "); { Nur in Var i abl eneinlesen }
Read(F, i); Wite(i, ' "); { (bei allen Dateitypen) }
Read(F, i); Wite(i, ' "); { Bei typisierten Dateien nur "Read", }
Read(F, i); Wite(i, " "); { bei Textdateien nur "ReadLn" }
WitelLn; WitelLn;
Cl ose(F);
----- 3.1 An beliebiger Position lesen ------------------------- 1}
Reset (F) ;
Seek(F, 2); { Mt "Seek" Positionszeiger setzen. }
{ Hyer Position 2 = Datensatz 2 + 1 =3 }
{ Positionszeiger: Longlnt-Ausdruck }
Read(F, i, j);
WiteLn(i, " ', j);
Wi telLn;
----- 3.2 An beliebiger Position schreiben/lesen ---------------1}
Seek(F, 3);
j = 3333;
Wite(F, j); { Aten Wert uberschreiben }
Seek(F, 3);
Read(F, i); WiteLn(i);
Wi telLn;
----- 3.3 Alle Daten | esen und Anzahl feststellen --------------1}
Wite('Alle Daten der Datei: ');
Seek(F, 0); { Positionszeiger auf Anfang = 0 setzen }
j 1= 0;
whi |l e not EoF(F) do { Solange Dateiende ni c ht erreicht.. }
begi n { Bool ean- Funktion EoF = End of File }
Read(F, i);
Wite(i, " ');
Inc(j);
end;
Wi telLn;
WiteLn(' Die Anzahl der Daten: ', j); {4V 4}
WitelLn(' Die Anzahl der Daten mit der Funktion "FileSize(F)": ',
FileSize(F)), WiteLn; (v: 4}
Close(F); { Datei schlieRen }

{ ----- 4. Datei beliebig beschreiben und lesen ------------------ }

Reset (F) ; { Mt "Reset" vorhandene Datei 6ffnen und }
{ Positionszeiger auf Anfang = 0 setzen }

j 5555;

i 1= 5;

Seek(F, i);

Wite(F, j);

WitelLn(' Auf die Position ', i, ' wurde der Wert "', j,

"" geschrieben');

Seek(F, 4);

Read(F, j);

WiteLn(' Wert auf Position 4 noch undefiniert, ',
"hier zuféallig: ', j);

j = 4444,

Seek(F, 4);

Wite(F, j);

WitelLn(' Auf die Position 4 wurde der Wert "', j, '" geschrieben');

18-8 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

WitelLn;

{ Der Lesezugriff auf eine Position hinter der bisherigen
héchst en Schrei bpositi on wirde zum Abbruch fidhren mt

{ der Fehl ermeldung "Error 100: Disk read error”

{ Seek(F, 9);

{ Read(F, j);

Wite('Jetzt alle Daten der erweiterten Datei: ');
Seek(F, 0);
whi |l e not EoF(F) do
begi n
Read(F, i);
Wite(i, " ');
end;
WitelLn; WitelLn;

Cl ose(F);

----- 5.1 Integerdatei als Real datei behandeln -----------------
{ Nicht enpfehlenswert, hier nur zur Denp. Die Anzahl der I|nteger-
{ daten nmuRR fur dieses Experinent durch 3 teil bar sein, sonst

{ Diskfehler, wenn alle Daten eingel esen werden sol | en.

{ Zur FErinnerung: Fur Integer 2 Byte Speicher, fiur Real 6 Byte

Assi gn(F_r, DOS Datei nane);
Wite('6 Integer auf 2 Real einlesen: ');
Reset (F_r);
whil e not EoF(F_r) do
begi n
Read(F_r, r);
Wite(r);
end;
Cl ose(F_r);
Wi telLn;

{ ----- 5.2 Integerdatei als Bytedatei behandeln ----------------- }
{ Nicht enpfehlenswert, hier nur zur Denp. Die 6 |ntegerdaten }
{ ergeben 12 Byt edat en. }

Assi gn(F_b, DOS Dat ei nane) ;
Reset (F_b);
Wite('6 Integer auf 12 Byte einlesen: ');
whi |l e not EoF(F_b) do
begi n
Read(F_b, b);
Wite(b, " ');
end;
Wi telLn;
Cl ose(F_b);

{ ----- 5.3 Integerdatei als Bool ean-Datei behandeln ------------- }
{ Nicht enpfehlenswert, hier nur zur Denp. Die 6 |ntegerdaten }
{ ergeben 12 Bool ean }

Assi gn(F_Bool , DOS Dat ei nane) ;
Reset (F_Bool) ;

" " e o

~
e " e o

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-9

Wite('6 Integer auf 12 Bool einlesen: ');
whi | e not EoF(F_Bool) do
begi n
Read(F_Bool , Bool);
i f Bool
then Wite('T ")
else Wite('F ');

end;
Wi telLn;
Cl ose(F_Bool);

----- 5.4 Integerdatei als Char-Datei behandeln ----------------1}
{ Nicht enpfehlenswert, hier nur zur Denp. Die 6 |ntegerdaten }
{ ergeben 12 Char }
Assi gn(F_c, DOS Datei nane);
Reset (F_c);

Wite('6 Integer auf 12 Char einlesen: ');
whil e not EoF(F_c) do
begi n
Read(F_c, Ch)
Wite(Ch, '
end;
Wi telLn;
{ Di e Zeichenfolge des Beispiels enthalt auch Chr(13);
damit wird ein CR ausgel 6st und der Zeil enanfang Uberschrieben }
Cl ose(F_c);

r epeat
until KeyPressed;
end.

)

-~ ~
Demo "Pas18821.PAS": Typisierte Datei

8 1111 2222 -4711

2222 -4711

3333

Alle Daten der Datei: 8 1111 2222 3333

Die Anzahl der Daten: 4

Die Anzahl der Daten mit der Funktion »FileSize(F)«: 4
Auf die Position 5 wurde der UWert '5555" geschrieben

Wert auf Position 4 noch undefiniert, hier zufallig: 29295
Auf die Position 4 wurde der Uert ''4444" geschrieben

Jetzt alle Daten der erueiterten Datei: 8 1111 2222 3333 4444 5555

Integer auf Real einlesen: 0.00000060000E+80 5.4990905417E-38

Integer auf Byte einlesen: @ B8 87 4 174 8 5 13 92 17 179 21
Integer auf Bool einlesen: FFTTTTTTTTTT
N\ 4| § uf Char einlesen: We o«
N e

18.2.2 Einleitendes Beispiel fiir Textdatei

program Pas18022; { Kap. 18.2: Einleitendes Beispiel fir "Textdatei" }

uses
CRT;

18-10 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

var
F. Text; { Standard-Datei datentyp "Text" }
s, { Nicht "file of Text"
s1,
s2: string;
i: Integer;

procedure Ueberschrift(s: string);
begin

Text Col or (Yel | ow) ;

WitelLn(s);

Text Col or (Wi te);
end;

begi n
Text Col or (Bl ue); CrScr;

Assign(F, 'C\Student\Pas18022. TXT");

{ Mt "Assign" Zuordnung DOS-Datei hame }
{ auf Dateivariable, hier kurz "F", }
L N G R e e }
Ueberschrift('Nr. 1. Neue Textdatei anlegen');
Rewrite(F); { "Rewrite": Neue Textdatei zum Schreiben }
{ anl egen. Wenn Datei bereits vorhanden, }
{ dann wird sie Uberschrieben (gel 6scht). }
s := 'Anton Huber, Minchen ';
i = 4711,
WiteLn(F, s); { Mt "WiteLn" in Textdatei schreiben; }
{ "Wite" imPrinzip auch noglich, aber }
{ auf jeden Fall Abschlu mt "WiteLn". }
WiteLn(F, i); { Bei typisierten Dateien dagegen nur mt }
WiteLn(F, "FHM ' + s); { "Wite". In die Textdatei konnen }
WiteLn(F, s, i + 10); { beliebige Ausdricke geschrieben werden; }
{ bei typisierten Dateien dagegen nur }
{ Variablen. Nach jeder Zeile einer Text- }
{ datei wird ein "Return" gespeichert, }
{ genauer ein CR + LF, #13 + #10. }
Cl ose(F); { Datei schlielRen }
I B e }
Ueberschrift('Nr. 2: Textdatei |esen');
Reset (F) ; { Textdatei zum Lesen of fnen. | m Gegen- }
satz zu typisierten Dateien kénnen }
Text dat ei en entweder nur zum Schrei ben }
oder nur zum Lesen geof fnet werden. }

whi |l e not Eof (F) do
begi n
ReadLn(F, s);

Sol ange nicht am Dateiende ... }

{
{
{
{
{ Aus Textdatei nur nmit "ReadLn" |esen; }
{ I'n der Regel auf Stringvariable. Bei }
{ typisierten Dateien dagegen nit "Read" }
{
{
{
{
{

WitelLn(s); Di e Bil dschi rmausgabe: }
i Ant on Huber, Minchen }
14711 }
i FHM Ant on Huber, Minchen }
| Ant on Huber, Minchen 4721 }

end;

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-11

Cl ose(F); { Datei schlieRen }

I B e e i T }
Ueberschrift('Nr. 3: Neue Textdatei anlegen. Nunerikdaten');

Rewrite(F); { Neue Datei zum Schrei ben 6ffnen. }
for i :=11 to 12 do { I'm Gegensatz zu typisierten Dateien }
WiteLn(F, i); { werden nunerische Werte in Textdateien }
{ nicht binar, sondern als Textzeichen }
{ gespeichert und kénnen sonit beim Aus- }
{ lesen auch auf String-Variabl en zuge- }
{ wi esen werden. }
Cl ose(F); { Datei schlielRen }
e N B e }
Ueberschrift('Nr. 4: Textdatei |esen. Nunerik auf String');
Reset (F) ; { Datei zu Lesen 6ffnen }
whi |l e not Eof (F) do
begi n 111} { Numerische Daten k 6 n n e n}
ReadLn(F, s); {112 } { bei Textdateien auch auf }
WitelLn(s); { Strings eingel esen werden. }
end;
Cl ose(F); { Datei schlielRen }
I T - e e T }
Ueberschrift('Nr. 5: Textdatei |esen. Numerik auf Nunerik');
Reset (F) ; { Datei zu Lesen 6ffnen }
whil e not EoF(F) do
begi n 111 } { H er Einlesen von nunerischen }
ReadLn(F, i); { 112 } { Daten einer Textdatei auf }
Witeln(i); { I nt egervari abl e. }
end;
Cl ose(F); { Datei schlielRen }
I S - i }
Ueberschrift('Nr. 6: Textdatei am Ende fortsetzen');
Append(F); { (Text-) Datei am Ende fortschreiben }

WiteLn(F, 'Fortsetzungszeile 1');
WiteLn(F, 'Fortsetzungszeile 2');
Cl ose(F);

I S A e }
Ueberschrift('Nr. 7: Erweiterte Textdatei |esen');
Reset (F) ; { Erweiterte Datei konplett |lesen }
whi |l e not EoF(F) do
begi n
ReadLn(F, s);
WitelLn(s);
end;
Cl ose(F);

r epeat
until KeyPressed;
end.

18.3 Standardprozeduren und -funktionen fiir Dateien

Die Auflistung verwendet folgende Abkiirzungen:

18-12 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

Prozedur
Funktion
Byte-Variable aus der Standard-Unit SYSTEM

Dateibezeichner, Dateivariable
Ausdruck
Variable

< aq <M

Die Auflistung enthélt auch einige Prozeduren und Funktionen, die zwar nicht direkt mit
Dateien zu tun haben, sondern mit dem Datentréger, wie z.B. die Funktion "DiskFree"
und somit doch hdufig in Verbindung mit Dateien gebraucht werden.

Art Bezeichner =~ Bemerkungen, Beispiele

P Append Offnet vorhandene Textdatei fiir Schreiben weiterer Daten am
Dateiende.
Beispiel: Append(F)

P Assign Zuordnung der Dateivariablen zum DOS-Dateinamen.

Beispiel: Assi gn(F, 'B:Huber.TXT")

P AssignCRT Unit CRT. Zuordnung Bildschirm zu Textdatei fiir schnellere Bild-
schirm-Ausgabe als iiber DOS.
Beispiel: Assi gnCRT(F)

P BlockRead Liest Record(s) aus untypisierter Datei in Puffervariable. Siehe
Demo-Programm.

P BlockWrite Schreibt Record(s) aus Puffervariablen in untypisierte Datei. Siehe
Demo-Programm.

P ChDir Wechselt Standardverzeichnis, dhnlich DOS-Befehl CD
Beispiel: ChDir (" A:\ Ordner2')
P Close Datei schlieBen
Beispiel: Cl ose(F)
F DiskFree Unit DOS. Liefert Grof3e des freien Speichers auf dem angebenen

Laufwerk. Ergebnistyp LonglInt.

Beispiel: Di skFree(0) { O = aktuell. Laufwerk }
Beispiel: Di skFree(1) { 1 = Laufwerk A}
Beispiel: Di skFree(2) { 2 = Laufwerk B}

Beispiel: Di skFree(3) { 3

F DiskSize Unit DOS. Liefert die Gesamtkapazitit des angebenen Laufwerks
in Byte. Ergebnistyp LonglInt.
Beispiel: Di skSize(1) {0, 1, 2, 3 wie bei }
{ Funktion "D skFree" }

Laufwerk C usw. }

F EoF End of File. Priifung, ob Dateiende erreicht. Ergebnistyp Boolean.

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-13

F EoLn

P Erase

F FExpand
V FileMode
F FilePos

F FileSize

P FindFirst

P FindNext
P Flush
F FSearch

Beispiel: EOF(F)

End of Line. Priifung, ob Position innerhalb einer Textdatei auf
Zeilenende steht. Ergebnistyp Boolean.
Beispiel: EoLn(F)

Loscht Datei, die aber nicht gedffnet sein darf.
Beispiel: Erase(F)

Unit DOS. File Expand. Erweitert den DOS-Dateinamen um den
dazugehorigen Pfad.

Beispiel: FExpand(' Li G ei ch. PAS');

Das Ergebnis kdnnte z.B. sein: C:\ STUDENT\ LI GLEI CH. PAS

In der Standard-Unit SYSTEM deklariert. Legt fest, in welchem

Modus typisierte und untypisierte Dateien durch Reset gedffnet
werden.

Beispiel: Fi | eMbde : = 2; { Standard. Fur Lesen }
{ und Schrei ben }
Beispiel: Fi | eMbde : = 0; { &fnen von untypisierten }
{ Dateien nur zum Lesen }
Beispiel: Fi | eMbde : = 1; {Nur fir Schreiben }

Liefert die momentane Position innerhalb der typisierten oder
untypisierten Datei. Zahlung ab 0. Ergebnisdatentyp LongInt. Siehe
auch Prozedur »Seek«. Fiir die Byte-Position muf3 das Ergebnis
noch mit Grofle der Komponente multipliziert werden, bei Integer
z.B. mit dem Faktor 2.

Beispiel: Fi | ePos(F)

Liefert die Anzahl der Komponenten (Datensétze) in der typisierten
oder untypisierten Datei. Ergebnistyp LongInt. Wenn die Datei leer
ist, dann wird das Ergebnis 0 geliefert.

Beispiel: Fil eSi ze(F)

Unit DOS. Sucht ein Verzeichnis nach dem ersten Vorkommen
eines Dateinamens ab. Details siche Kap. 18.7 und Online-Hilfe.

Unit DOS. Setzt die mit FindFirst begonnene Suche nach einem
Dateinamen fort; siche dort.

Erzwingt das Schreiben des Puffers in die Textdatei.
Beispiel: Fl ush(F)

Unit DOS. File Search. Sucht eine Liste von Verzeichnissen nach
einem DOS-Dateinamen ab. Details siche Online-Hilfe.

18-14

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

P FSplit

P GetDir

P GetFAttr
F IOResult
P MkDir

P Read

P ReadLn

P Rename

P Reset

P Rewrite

P RmDir

Unit DOS. File Split. Zerlegt einen vollstaindigen DOS-Dateinamen
in seine Komponenten: Zugriffspfad, Dateiname und Extension.
Details siehe Online-Hilfe.

Unit DOS. Ermittelt das aktuelle Verzeichnis eines Laufwerks (0 =
aktuelles Laufwerk, 1 = A: 2 =B, 3 = C usw.) und legt es unter der
Stringvariablen v ab.

Beispiel: GetDir(0, v) { 0 = aktuelles Laufwerk }

Unit DOS. Get File Attribut. Liefert die File-Attribute (ReadOnly,
Hidden, SysFile usw.) einer Datei unter der Word-Variablen v
zuriick. Durch anschlieBende Bit-Operationen konnen die einzel-

nen Attribute bestimmt werden. Details sieche Online-Hilfe.
Beispiel: CGet FAttr(F, v)

Liefert den Fehlerstatus der letzten Ein-/Ausgabeoperation zuriick.
Ergebnistyp Word. Bei fehlerfreier Ausfiihrung hat IOResult den
Wert 0. Siehe Demo-Programm und Kapitel 25.

Beispiel: if IOResult <> 0 then

Make Direktory. Legt ein neues Unterverzeichnis an, wie DOS-
Befehl MD.
Beispiel: MkDir (' C:\ Student\Li deich')

Liest Wert(e) aus typisierter Datei in die Variable(n).
Beispiel: Read(F, v)
Beispiel: Read(F, v1, v2, v3)

Liest Zeile aus einer Textdatei und weist sie auf Variable(n) zu.
Beispiel: ReadLn(F, v)

Andern des DOS-Dateinames #hnlich wie DOS-Befehl REN. Der
in der Assign-Prozedur genannte alte DOS-Name wird tliber die
Dateivariable F durch einen neuen (Stringausdruck) ersetzt, wobei
im Gegensatz zu REN auch der Pfad gewechselt werden kann. Die
Prozedur darf nicht bei ge6ffneten Dateien angewendet werden.
Beispiel: Renane(F, DOS neu);

Existierende Datei 6ffnen.
Beispiel: Reset (F)

Neue Datei anlegen. Eine eventuell existierende Datei wird iiber-
schrieben.
Beispiel: Rewrite(F)

Loscht ein Verzeichnis, das aber leer sein mull. Wirkung wie der
entsprechende DOS-Befehl.
Beispiel: RnDir (' C:\ Ordner 1\ Ordner 11') ;

Dr. K.

Haller Turbo-Pascal Kap. 18: Dateien 18-15

Seek

SeekEoF

SeekEoLn

SetFAttr

SetTextBuf

Truncate

Write

WriteLn

Setzt Positionszeiger einer typisierten oder untypisierten Datei auf
die angegebene Komponente n, die einen LongInt-Ausdruck dar-
stellt.

Beispiel: Seek(F, n)

Priift bei einer Textdatei, ob sich zwischen der momentanen Posi-
tion und dem Dateiende noch "echte" Zeichen befinden, wobei
Leerzeichen, Tabulatoren und Zeilenvorschub = (CR + LF) nicht
betrachtet werden. Ergebnistyp Boolean.

Beispiel: SeekEoF(F)

Priift bei einer Textdatei, ob sich zwischen der momentanen Posi-
tion und dem néchsten Zeilenvorschub = (CR + LF) noch "echte"
Zeichen befinden; siehe auch »SeekEoF«. Ergebnistyp Boolean. Im
Gegensatz zur Funktion EolLn wird bei SeekEoLn der Positions-

zeiger versetzt.
Beispiel: SeekEoLn(F)

Unit DOS. Setzt die Attribute der Datei, die mit der Assign-Proze-
dur mit der Dateivariablen f verbunden ist. Das Attribut ist ein
Byte-Ausdruck, wobei auch die in der Unit DOS deklarierten
Konstanten (ReadOnly, Hidden usw) benutzt werden konnen.
Details siehe Online-Hilfe. Die Datei darf nicht gedffnet sein.
Beispiel: Set FAttr(F, ReadOnly);

Mit dieser Prozedur kann die GroBe des Puffers einer Textdatei,
die standardmifBig 128 Byte betrdgt, auf einen beliebige Word-
Ausdruck gesetzt werden. Details siche Online-Hilfe.

Schneidet eine typisierte oder untypisierte Datei an der momen-
tanen Position ab; d.h. die restlichen Daten werden geldscht.
Beispiel: Truncate(F);

Wert(e) in typisierte Date schreiben

Beispiel: Wite(F, v); | v, vi1, v2, v3:
Beispiel: Wite(F, vl1, v2, v3); | Variablen
Zeile in Textdatei schreiben und Abschluf3 mit Return

Beispiel: WitelLn(F, a) | a al, a2, a3:
Beispiel: WitelLn(F, al, a2, a3) | Ausdriicke

18.4 Weitere Demos fiir typisierte Dateien

program Pas18041; { Kap. 18.4: Deno typisierte Datei }

uses

18-16 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

CRT;
const
DOS Dat ei name = ' C\ Student\ Pas18041. DAT'; { &gf. Pfad &andern }
M n = -4711; { Spater Zzufallsdaten aus diesem}
Max = -Mn; { Bereich in Datei schreiben. }
Anzahl = b5; { Fur Deno nur weni ge Daten. }
var
F: file of Integer; { Somt fir jeden Wert 2 Byte. }
Wert: | nt eger;
i VWor d;
Ch

Zuériff: Char ;

begi n
Text BackG ound(Bl ue); Text Col or(Yellow); CrScr;

GotoXY(2, 1); Wite(' Denpnstration: Typisierte Datei');
Text Col or (White);

Assi gn(F, DOCS Dateinane); { Zuweisung des DOS-Datei nanens auf "F" }

{ +------- A: Neue Datei anlegen, in Datei schreiben ------------- + }
Got oXY(2, 3);
Text Col or(Yellow); WitelLn('A: Schreiben '); TextColor(Wite);
ReWite(F); { Legt neue Datei an und setzt auch Positionszeiger }
{ auf Null. Sonmit "Seek" nicht notwendi g, wenn Datei }
{ - wie hier - von Anfang an geschri eben (oder }
{ gelesen) wird. }
for i := 1 to Anzahl do
begi n
Wert := Mn + Random(Max + 1 - Mn); { Fir Demp Zufallswerte }
Seek(F, i - 1); { "Seek" in dieser Situation nicht notwendig }
Wite(F, Wrt); { Mt "Wite" (bei typisierten Dateien nicht }
{ "WitelLn") Schreiben der Vari abl en}
{ "Wert" in die Datei. }
CGot oXY(2, WereY);
WiteLn(i, ': In Datei: ', Wert:6);
end;
Cl ose(F);
Fo-em - Lesen | (Alle Daten, bei bekannter Anzahl) ---------- + }
Got oXY(28, 3);
TextCol or(Yellow); WiteLn('B: Lesen | '); TextColor(Wite);
Reset (F); { Ofifnet Datei und setzt Positionszeiger auf Null. }
{ Somt "Seek" nicht notwendig, wenn Datei - wie hier - }
{ von Anfang an gel esen (oder geschrieben) wi rd. }

for i :=1 to Anzahl do
begi n

Seek(F, i - 1);

Read(F, Wert);

{ "Seek" in dieser Situation nicht notwendig }
{ Einlesen auf Var i abl e "Wrt" }
{ Bei typisierten Dateien Einlesen nit }
{ "Read", nicht mt "ReadLn". }
Got oXY(28, WereY);

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-17

WitelLn(' Aus Datei: ', Wert:6);
end;
Cl ose(F);
+--- Lesen Il (Alle Daten bis EoF, bei unbekannter Anzahl) ----+}
Got oXY(51, 3);
Text Col or(Yellow); WiteLn('C Lesen Il '"); TextCol or(Wite);
Reset (F); { Ofifnet Datei und setzt Positionszeiger auf Null. }
{ Somt "Seek" nicht notwendig, wenn Datei - wie hier - }
{ von Anfang an gel esen (oder geschrieben) wi rd. }
whi |l e not Eof (F) do { "BEoF" End of File }
begi n

Read(F, Wert);
CGot oXY(51, WereY);

WitelLn(' Aus Datei: ', Wert:6);
end;
Cl ose(F);
{ +------- D: Wahlfrei Schreiben und Lesen --------------------- + }

{ Nur bei typisierten Dateien mbglich }
Reset (F); { Oifnet Datei und setzt Positionszeiger auf Null. }
{ "Seek" spater notwendig, da wahlfrei schreibend }
{ oder lesend zugegriffen wird. }
r epeat
Got oXY(2, 10);
Text Col or (Yel | ow) ;
Wite('D: Wahlfreier Zugriff. ',
'"S" Schreiben, "L" Lesen, "E' Ende: ');
Text Col or (White); drEoL;
r epeat
Zugriff := UpCase(ReadKey);
until Zzugriff in['S, 'L, "E];
WitebLn(Zugriff);
if not (Zugriff ="E) then

r epeat
Got oXY(2, 11); drEoL;
Wite(' Datensatz Nr (1..', Anzahl, "): ');

Ch : = ReadKey;

i :=0Od(Ch) - Od('0");

until i in [1..Anzahl]; { Der Positionszeiger zahlt }
{ aber von 0 bis (Anzahl - 1) }

case Zugriff of

'"S': begin
Got oXY(29, 11); Wite(' Eingabe Integer-Wert: ');
ReadLn(Wert);
Seek(F, i - 1); { Wahlfreier Zugriff, des- }
Wite(F, Wert); { halb hier "Seek" notwendig }
end;
"L': begin
Seek(F, i - 1); { Wahlfreier Zugriff, des- }
Read(F, Wert); { halb hier "Seek" notwendig }
CGot oXY(29, 11); Wite(' Aus Datei: ', Wert:6);
end;
end;

until UpCase(Zugriff) ="FE;

18-18 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

Cl ose(F);
Fo-em - E: Lesen Il -----mmmmm e + }
Got oXY(2, 13);
TextColor(Yellow); WiteLn('E: Lesen IIl"); TextColor(Wite),
Reset (F); { O fnet Datei und setzt Positionszeiger auf Null. }
{ Somt "Seek" nicht notwendig, wenn Datei - wie hier - }
{ von Anfang an gel esen (oder geschrieben) wi rd. }
i = 0;
whi |l e not Eof (F) do
begi n
Read(F, Wert);
Inc(i);
Got oXY(2, WereY);
WitelLn(i, ': Aus Datei: ', Wert:6);
end;

Got oXY(2, WereY + 1);
WitelLn(' Die Anzahl der Datensatze: ', i);
Cl ose(F);

r epeat

until KeyPressed;

{ Di e Ausgabe unter der Annahne, dall bei Punkt D: der Datensatz
Nr. 4 mt "S" auf "9999" Uberschrieben wrde:

o o e e o e m m e e e e e e e e = =
i Denonstration: Typisierte Datei
I
1
i A: Schreiben B: Lesen | C. Lesen ||
i 1: In Datei: -4711 Aus Datei: -4711 Aus Datei: -4711
i 2. In Datei: - 2655 Aus Datei: -2655 Aus Datei: -2655
i 3: In Datei: 4603 Aus Datei: 4603 Aus Datei: 4603
i 4. In Datei: - 858 Aus Dat ei : - 858 Aus Dat ei : - 858
i 5: In Datei: 3752 Aus Datei: 3752 Aus Datei : 3752
I
i D: Wahlfreier Zugriff. "S" Schreiben, "L" Lesen, "E' Ende:
| Datensatz Nr (1..5): 4 Ei ngabe I nteger-Wert: 9999
I
i E: Lesen |11
i 1. Aus Datei: -4711
i 2. Aus Datei: -2655
i 3: Aus Datei: 4603
i 4. Aus Datei: 9999
i 5 Aus Datei: 3752
I
i Di e Anzahl der Datensatze: 5
I
e e e e

}
end.

program Pas18042; { Kap. 18.4: Denp typisierte Datei }
Es wird der schrei bende und | esende Datei zugriff denonstriert.
Dabei werden fol gende Datei-Prozeduren "P" und -Funktionen "F"
ei ngeset zt :

" Assi gn" P Zuwei sung physi sche Datei an Dateivariabl e

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-19

"Rewrite" P Neue Datei o6ffnen und anl egen
"Cl ose" P Datei schlielen
"Reset " P Vorhandene Datei 0ffnen
" EoF" F Ende der Datei. Ergebnistyp: Bool ean
" Seek" P Positionszeiger setzen
"Fi | ePos" F Posi ti onszei ger anzei gen
"FileSize" F Anzahl der Datensatze anzei gen
}
uses
CRT,;
const

Anzahl Dat ensaet ze = 7;
Aw = 10; { fir spatere ZzZufallsdaten }

Ew = 60;
var
I 1
Zahl ,
Nunmmer: Byte;
Dat ei : file of Byte; { Reserviertes Wort "file", strukturierter }
{ Typ. Allgenein: "file of Datentyp" }
{ Bei Textdateien wegen der variabl en }
{ Zeil enl angen dagegen: "Datei: Text" }
begi n
CrScr;

Assign(Datei, 'C\Student\Dateil. DAT');
{ Zuwei sung ei nes physi schen (DOS-) Datei namens, hier
{ "C\Student\Datei 1. DAT*" an di e (| ogische) Dateivariable,
{ hier "Datei". Der physische Dateinane ist ein String-
{ Ausdruck nach Ms-DOS- Konventi on

e " e

Rewite(Datei); { Eine neue Datei wird mt "Rewite" eingerichtet,
eine evtl. vorhandene wird zerstort. Vorsicht!
Der Positionszeiger wird auf das erste El enent

geset zt; di e Zahl ung begi nnt aber mt O. }
Wite(' Test 1: ');
for i := 1 to Anzahl Dat ensaetze do
begi n
Zahl := Aw + Random(Ew + 1 - Aw); { ZzZufallszahl }
Wite(zahl, ' "); { | Test 1: 10 26 33 26 46 14 36 }
Wite(Datei, Zahl); { Variable in typ. Datei schreiben. }
{ Nur Variable, kein Ausdruck! }
end;
Wi telLn;

Close(Datei); { SchlieRBen mt "Cl ose". Dateien nur so |ange offen }
{ halten wi e unbedi ngt notwendi g. Datenverlust bei }
{ Stromausfall und bei Rechnerabsturz mnbglich! }

T LR EREEEE }
Reset (Datei); { O fnen einer existierenden Datei mt "Reset" }
Wite(' Test 2: ');
whil e not EoF(Datei) do { Standardfunktion "EoF", End of File }

begi n
Read(Datei, Zzahl); { Von Datei |esen und auf Variable zuweisen }

18-20 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

Wite(zahl, " "); { |Test 2: 10 26 33 26 46 14 36 }
end;
Wi telLn;
L b i e b R
Numrer := 3; { Der 3. "Datensatz" soll uberschrieben werden }

Seek(Datei, Numer - 1);
{ Der Positionszeiger wird hier nmttels "Seek" auf "Numer - 1" }

{ gesetzt, da die interne Zahlung mt O begi nnt }
Zahl := 99;
Wite(Datei, Zahl); { Das 3. Elenment w rd Uberschrieben }
Seek(Datei, 0); { Positionszeiger wird auf den Anfang gesetzt }

Wite(' Test 3: ');
whi |l e not Eof (Datei) do

begi n
Read(Datei, Zahl);
Wite(zahl, ' "); { ' Test 3: 10 26 99 26 46 14 36 }
end;
WitelLn;
| oo }
Numrer : = 4;

Seek(Datei, Numer - 1);

Wite(' Test 4: ');
whil e not EoF(Datei) do

begi n
Read(Datei, Zahl);
Wite(zahl, ' "); { | Test 4: 26 46 14 36 }
end;
Wi telLn;
L RO }
Numrer : = 5;
Seek(Datei, Numer - 1);
Witeln(' Test 5a: Der Positionszeiger: ', FilePos(Datei));{ |...: 4}

Wite(' Test 5b: ');
Read(Datei, Zahl);

WitelLn(Zahl); { | Test 5b: 46 }
WitelLn(' Test 5c: Der Positionszeiger: ', FilePos(Datei));{ |. 5}
WitelLn(' Test 5d: Anzahl Datenséat ze: ', FileSize(Datei));{:. 7}
T e OO L CEE T CEE PR EECEEE TR }
Cl ose(Datei); { SchlieBen mt "C ose", siehe oben }
r epeat
until KeyPressed;

end.

Das folgende Programm behandelt den Compilerschalter "$I" (automatische 10-Kon-
trolle und die Standardfunktion IOResult am Beispiel einer typisierten Datei. Die Aus-
fithrungen treffen aber fiir alle Dateitypen zu.

program Pas18043; { Kap. 18.4: Denp typisierte Datei }
{ Weitere Datei-Prozeduren "P" und -Funktionen "F":
" (Dat ei nane) " P: Loscht eine Datei, wi e DOS

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-21

"Renane(Dat ei nanel, Datei nane2)" P: Unbennen einer Datei, w e DOS
"l OResul t" F: Liefert Fehl erstatus der

| et zten Ei n-/ Ausgabeoperation mt Datentyp Wird. Di e Funktion
liefert den Wert O, wenn kein Fehler aufgetreten ist, sonst
ei nen Fehl er code.
Bei spi el : Wenn das Laufwerk nicht betriebsbereit ist, wird der
Fehl ercode "152" (Drive not ready) geliefert.
Um auf den Fehl er reagi eren zu kdénnen, nuf3 die automati sche IO
Kontrolle mt dem Conpilerschalter "$l-" abgeschaltet werden.
Nach ei nem Fehl er werden fol gende Ei n- und Ausgabeoperati onen
sol ange ignoriert, bis die Funktion "IOResult" aufgerufen wird.

}
uses
CRT,
var
| O_Fehler: Wrd;
F: file of Char;
begi n
CrScr;
Assign(F, 'A: Datei 3.DAT"); { Fur die Denmp soll imLaufwerk A}
{ keine Diskette sein }
{$l -} { Conpilerschalter: Automatische IO Kontrolle AUS }
Reset (F) ;
IO Fehler := IOResult;
{$l +} { Conpilerschalter: Automatische IO Kontrolle EIN}
if 10 Fehler = 152
then WitelLn(' Fehler ', 10 Fehler,
': Laufwerk nicht betriebsbereit ... ");
{
}
repeat
until KeyPressed;
end.

18.5 Sonderfall: Gerite als Textdateien

pr ogram Pas18051; { Kap. 18.5: Ceréate als Textdateien }
{ Alternativ Ausgabe auf Bildschirm Drucker oder Datei }
uses
CRT, PRI NTER;

var
Ch, ChL: Char ;
Text zeil e: string;

begi n
Text Background(Bl ue); Text Col or(Yellow); CrScr;
Wite(' Ausgabe auf Bildschirm (B), Drucker (D) ',
‘oder File (F): ");
r epeat
Ch : = UpCase(ReadKey);
until Chin['B, 'D, "F];
WitelLn(Ch, #13#10);

18-22 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

Text Col or (White); { Aber nicht wirksam wenn mt "Lst" }

{ auf Bildschirm geschrieben wrd }
case Ch of
"B': Assign(Lst, '"CON); { "Lst": List Device, Standard- }
"D : Assign(Lst, 'LPT1'); { Dateibezeichner aus Unit PRI NTER }
"F': Assign(Lst, 'C\Student\Tenp. TXT');
end;

Rewite(Lst); { "Datei" offnen fur Schreiben }

WitelLn(Lst, 'Auch zeichenorientierte Geradte wie Bildschirm und
WitelLn(Lst, 'Drucker kénnen als Textdatei en angesprochen werden.
WiteLn(Lst, 'Dazu wird "Lst" aus der Unit "Printer" bendtigt.
WitelLn(Lst,
WitelLn(Lst,
WitelLn(Lst,

I)
. ")
. ")
" " CON": Consol e. Bei Ausgabe Bil d- ")
' schirm bei Eingabe Tastatur ')
WitelLn(Lst, '"LPT1", "LPT2", usw. Paralleler Drucker. ")
WitelLn(Lst, ' Nur fdr Ausgaben ")
WitelLn(Lst, '"PRN": We "LPT1" ")
WitelLn(Lst, '"COML", "COWR", usw. Serielle Schnittstellen. Fur ')
WitelLn(Lst, ' Ei n- und Ausgaben. ")
WitelLn(Lst, '"AUX": We "COWL" ")
WiteLn(Lst, '"NUL": Nul | geréat. lgnoriert Ausgaben')
WitelLn(Lst, ' und liefert bei Ei ngaben so- ')
WitelLn(Lst, fort "End of File" (EoF). ")
WitelLn(Lst, Far Programm Test zwecke ")
Witeln(Lst, " ------mmmm oo .
#13#10) ;
Cl ose(Lst); { "Datei" schlieRen }

Reset (Lst); { &fnen fir "Lesen" }
if Ch ='B then
begi n
Text Col or (Yel | ow) ;
Wite(' Ei ngabe Textzeile: ');
Readl n(Lst, Textzeile); { "Lesen" von der Console = Tastatur }
Text Col or (White);
WitelLn(Textzeile);
end;
Cl ose(Lst);
if Ch ='F then
begi n
Text Col or (Yel | ow) ;
Wite(' Erzeugte Datei wi eder |dschen (j/n): j');
CGot oXY(WhereX - 1, \WWhereY);

r epeat
ChL : = UpCase(ReadKey);
if ChL = #13
then ChL := 'J";
until ChL in ['J", "N];
Wite(ChlL);
if chL = 'J' { Die Prozedure "Erase" |dscht Datei }
then Erase(Lst); { wie der DOS-Befehl "del Dateiename" }
end;
Wite(#13#10#13#10, 'Ende mit Tastendruck ... ');
r epeat

until ReadKey <> :
end.

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-23

18.6 Demo untypisierte Datei

program Pas18061; { Kap. 18.6: Untypisierte Dateien }

{ Dempnstriert das bytewei se Einlesen einer (beliebigen) Datei }
{ in einen Puffer, der anschlielRend sofort in eine andere Datei }
{ geschrieben wird. }

{ Die Formate von "Reset" und "Rewite" bei untypisierten Dateien:
- Reset(datei [, recordgroesse])
- Rewrite(datei [, recordgroesse])
dat ei : Dat ei vari abl e fur typisierte Datei
recor dgroesse: RecordgrodfRe, Word- Ausdruck. Optional .
Wenn ni cht angegeben, dann wird di e Recordgr 6i3e
auf den Standardwert 128 geset zt.

Di e Formate von "Bl ockRead" und "Bl ockWite":

- Bl ockRead(datei, puffer, rSoll [, rlst])

- BlockWite(datei, puffer, rSoll [, rlst])

datei: Dateivariable fir typisierte Datei

puffer: Variable beliebigen Typs,
nor mal erwei se Typ "Byte" oder "Char"

rSoll: Word-Ausdruck. Anzahl der Records,
di e gel esen (Bl ockRead) bzw. geschrieben
(Bl ockWite) werden soll en.

rist: Wor d- Vari abl e. Optional er Rickgabewert. Anzahl
der Records, die tatséchlich gel esen (Bl ockRead)
bzw. geschrieben (Bl ockWite) wurden.
Wenn die Option ni ¢ ht benutzt wird, dann
wird ein Laufzeitfehler erzeugt, wenn versucht
wi rd, Uber das Datei ende hinaus Records zu | esen
(bei Bl ockRead) oder nicht alle Records geschrieben
wer den konnen (bei Bl ockWite, wenn z.B. Datentrager

vol | ist.
}
uses
CRT,
const { Pfade anpassen }
DOS Quell e = ' Pas18061. QQQ ;
DOS Zi el = 'C \ Student\ Pas18061. ZzZZ' ;
Recordl aenge = 1; { byteweise in/aus Puffer }
var
F Quell e,
F Ziel: file; { untypisierte Datei }
Puf f er V: array[1l..512] of Byte;
{ Datentyp normal erwei se "Byte" oder "Char". }
{ Die Variable "PufferV' mul3 m ndestens so grof} }
{ grolR sein wi e "Recordl aenge * Recordzahl Sol | " }
{ und kann max. 64 KByte grof3 sein. }
rReadSol I, { Soviele Records sollen gel esen werden }
r Readl st , { Soviele Records wurden tatséachlich gel esen. }
rwiteSol |,

rWitelst: Wrd;

procedur e Datei G oessenAnzei gen;
begi n
WitelLn; { Standardfunktion "FileSize" liefert Anzahl }

18-24 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

{ der Konponenten. Wenn Datei |eer, dann 0. }

WitelLn(' Dat ei gr6Re Quelle: ', FileSize(F_Quelle));
WitelLn(' Dat ei gr 63e Zi el : ', FileSize(F ziel));
Wi teLn;
end;
begi n
CrScr;
Assign(F_Quelle, DOS Quelle); Reset(F_Quelle, Recordl aenge);
Assign(F_Ziel, DOS Ziel); Rewite(F_ Zel, Recor dl aenge) ;
Dat ei gr oessenAnzei gen;
rReadSol | := SizeO (PufferV); { hier auf naximalen Wert setzen }
r epeat
Bl ockRead(F_Quelle, PufferV, rReadSoll, rReadlst);
Wite(' Gel esene Records: ', rReadlst:4); { Nur Demp }
rwiteSoll := rReadlst;
Bl ockWite(F_ziel, PufferV, rWwiteSoll, rWitelst);
Witel n(" Geschriebene Records: ', rWitelst:4); { Nur Demp }
if rwitelst < rWiteSoll then
begi n
Dat ei gr oessenAnzei gen;
Wite(' Dat entrager voll. Abbruch nmit Taste Esc ... ');

Cl ose(F_Quelle);
Cl ose(F_Ziel);
r epeat
until ReadKey = #27;
Hal t (4711); { >>>>>>>>>>>> }
end;
until (rReadlst = 0);

Dat ei gr oessenAnzei gen;
Cl ose(F_Quelle);
Cl ose(F_Ziel);

Wite(' Ende mit Esc ... ');
r epeat
until ReadKey = #27;

end.

18.7 Ausgewaihlte Datei-Routinen aus der Unit DOS

Inhaltsverzeichnis und Datei-Attribute unter Turbo-Pascal anzeigen:

program Pas18071; { Ausgewahlte Datei-Routinen aus der Unit DOCS }
{ K Haller, 77040599 }

uses
CRT, DOCS
{ I'n der Unit DOS ist der Recordtyp "SearchRec" wie folgt definiert:
fooccocooccoccocoococcocoocococooococoooococoooooooooo +
type

1 1
1 1
! SearchRec = record !
! Fill: array[1..21] of Byte; |

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-25

! Attr: Byte; i

! Ti me: Longl nt; !

] Si ze: Longlnt; 0

] Nanme: string[12]; 0

] end; 0

P ccoocococoococoocoCoCOCOCOCOSOSOSOSOSOSOSOSOCDoDoD +
Zu "Fill": Fir DOS reserviert.
Zu "Attr": Dateiattribut, in der Unit DOS wie fol gt deklariert:

f-ccococococococoooooo +

| const | dez

i ReadOnly = $01; | 1

I Hi dden = $02; | 2

i SysFile = $04; | 4

I Vol unel D = $08; | 8

I Directory = $10; | 16

I Archive = $20; | 32

! AnyFile = $3F, | 63 =1+2+ 4+ 8 + 16 + 32

f-ccococococococoooooo +

Bei der Eingabe der Attribute ist zu beachten, dafR
di e Prozedur "FindFirst" (Anwendung spater) auch
Datei en findet, die ein weniger eingeschréanktes
Attribut besitzen.

Zu "Time": GCepackte Darstellung von "Tinme" und "Date" der Datei-
erstellung bzw. |etzten Anderung. Mt der Unit-DGCS-
Prozedur "UnpackTi ne" (Anwendung spéter) kann aufge-
splittet werden.

Zu "Size": Dateigro6BRe in Byte.

Zu "Nane": Dateinane nit Extension, incl. Trennpunkt.

}
procedure Inhaltsverzeichnis; { --------- Haupt pr ozedur ------------ }
const

St andar df ar be = Cyan;

Di r Far be = Green;
type

Str10 = string[10];

Str8 = string[8];

Str6 = string[6];

Str3 = string[3];
var

Dat ei nane: Str8;

Ext ensi on: Str3;

Dat ei | nf o: SearchRec; { Recordtyp "SearchRec" aus Unit DCS }

Dat ei Dat um Str10;

Dat ei Zei t: Str8;

Attribut: Byt e;

AttributStr: Str6;

i VWor d;

i Str: string[3];

Dir _oder Vol: Bool ean;

Kur zf orm Bool ean;

Zei | eMax: Byt e;
procedure WiteXY(Spalte, Zeile: Byte; Meldung: string);
begi n

Got oXY(Spal te, Zeile);
Wite(Ml dung);
end;

18-26 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

procedur e \Wart eAuf Tast endruck(Zei |l eMax: Byte);

var
Ch: Char;

begi n
Text Col or (Di r Far be) ;
WiteXY(25, ZeileMax, ' Weiter mit Tastendruck ... ");

Text Col or (St andar df ar be) ;
whi | e KeyPressed do

Ch : = ReadKey;
Ch : = ReadKey;

CrScr;
end;
procedur e Datun¥eit unfornen(Dateil nfo: Sear chRec;
var Datei Datum Str10;
var Datei Zeit: Str8);
var
Dat un¥ei t : Dat eTi ne; { Recordt py "DateTi me" aus Unit DOCS: }
Jahr Str: string[4]; {H+----------m e +}
Monat St r: string[2]; {} type DateTime = record i1}
TagStr: string[2]; {| Year: 1980..2099; |}
St undenStr, {i Mont h: 1..12; 1}
M nutenStr, {i Day: 1..31; 1}
SekundenStr: string[2]; {| Hour: 0..23; 1}
{i M n: 0..59; 1}
begi n {i Sec: 0..59; 1}
; { end, 1}
; o CC OO0 O000O000No0Co0NC0NC000Co0C000000 000G +}
UnpackTi ne(Dat ei | nfo. Ti me, Datun¥eit);
{ Prozedur "UnpackTinme" aus Unit DCS }
Str(DatunZeit. Year, JahrStr);
Str(DatunZeit.Month, MnatStr);
St r (Dat unizei t . Day, TagStr);
i f Length(TagStr) = 1 then TagStr ='0" + TagStr;
if Length(MonatStr) = 1 then MonatStr := '0" + MonatStr;
Dat ei Datum : = TagStr + '.' + MnatStr + '.' + JahrStr;
Str(DatunZeit. Hour, StundenStr);
Str(DatunZzeit.M n, M nutenStr);
Str (Dat unzei t . Sec, SekundenStr) ;
if Length(StundenStr) = 1 then StundenStr ='0" + StundenStr;
if Length(MnutenStr) = 1 then MnutenStr ='0" + MnutenStr;
i f Length(SekundenStr) = 1 then SekundenStr :='0" + SekundenStr;
Datei Zeit := StundenStr + ':' + MnutenStr + ':' + SekundenStr;
end;
procedur e Dat ei nane_unf or nen(Dat ei | nf o: Sear chRec;
var Datei name: Str8;
var Extension: Str3);
var
pPos: Byte;
Ch: Char ;
j: Byt e;
begi n
if (Dateilnfo.Name = '.") or (Dateilnfo.Name ="'..")
then begin

Dat ei nane : = Dat ei | nf 0. Nane;

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-27

Extension : = ;
end
el se begin
pPos := Pos('.', Dateilnfo.Nanme); { Punktposition }

if pPos =0
then begin
Dat ei name : = Datei | nf 0. Nane;
Extension :="";
end
el se begin
Dat ei nanme : = Copy(Dateilnfo.Nanme, 1, pPos - 1);
Ext ensi on : = Copy(Dateilnfo.Name, pPos + 1, 3);
end;
end;
whi | e Lengt h(Dat ei nanme) < 8 do
Datei name := Dateiname + ' '; { Mt Blanks auffillen }
whi | e Lengt h(Ext ension) < 3 do
Extension := Extension + ' '; { Mt Blanks auffillen }
if (Pos('D, AttributStr) = 0) and (Pos('V , AttributStr) = 0) then
begi n
for j := 1 to Length(Dateinane) do
begi n
Ch := Dateinane[j];
if Chin['A.."'Z] { In Klein- }
then Dateiname[j] := Chr(Od(Ch) + 32); { buchstaben }
end; { Bei ASCIl: 32 =0Od('a") - Od('A) }
for j := 1 to Length(Extension) do
begi n
Ch := Extension[j];
if Chin['A..'"Z] { In Klein- }
then Extension[j] := Chr(Od(Ch) + 32); { buchstaben }
end;
end;
end;
procedur e Drucke_Kopfl ei ste;
begi n
Text Col or (St andar df ar be) ;
WiteXY(3, 1, "H-------mmmmm e T
! cccocococooocooconoccoooooooocooooo +');
WiteXY(3, 2, '] '+
' i)
WiteXY(3, 3, "H------mmmmme i T
' [B
1 £
WiteXY(3, 4, '| N| Nane | Ext] Attri but e Dat ei gr 6Re' +
‘I DateTime | Datum | Zeit I
WiteXY(3, 5, "H---4-------- L e T
"o oocococoooo focooococoooo Fococooocoo :'),
Text Col or (Di r Far be) ;
WiteXY(5, 2, 'Directory mt Turbo-Pascal-Unit DOS. ' +

"Dr. K Haller, FHM 77040599');
Text Col or (St andar df ar be) ;
Wi telLn;
W ndow(1, 6, 80, 25);
end;

18-28 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien
procedure Daten_ausdrucken; { Der Einfachheit hal ber }
begi n { kei ne Paranet er ibergabe }

if Dir_oder Vol

t hen Text Col or (Di r Far be)

el se Text Col or (St andar df ar be) ;
WiteXY(4, WereY, iStr);
WiteXY(8, WiereY, Dateinane);
WiteXY(17, WereY, Extension);
CGot oXY(21, \hereY); Wite(Attribut:2);
WiteXY(24, WhereY, AttributStr);
Got oXY(31, \ereY);

if not Dir_oder_ Vol
then Wite(Datei
else if Pos('D,

| nf o.

AttributStr) <> 0

{

Si ze: 10) {

" Dat ei gr 63e"
{ dessen Hi nweis drucken.

D- und V-Eintrage haben
0. Statt

then Wite('*Sub--Dir' + #17) { Zei chen #17 nicht
else Wite('sVolunelD + #17); { mt "At-17" nmoglich
CGot oXY(42, \WereY); Wite(Dateilnfo.Tine);
WiteXY(52, WereY, DateiDatun;
WiteXY(63, WiereY, DateiZeit);
Text Col or (St andar df ar be) ;
WiteXY(3, WereY, '|'); WitexXY(7, WereY, '|');
WiteXY(16, WereY, '|'); WiteXY(20, WereY, '|');
WiteXY(30, WiereY, '!'); WiteXY(41, WereY, '!');
WiteXY(51, WereY, '!'); WiteXY(62, WereY, '!');
WiteXY(71, WereY, '|'); WitelLn;
end;
procedure AttributeErmttel n(var AttributStr: Stré6;
var Dir_oder Vol : Bool ean;
Dat ei | nf O: Sear chRec) ;
begi n
Attri but :Dateilnfo.Attr;
AttributStr :="";
{ Nachf ol gend Bit-Nr 0, 1, 2, 3, 4 und 5 testen, ob gesetzt: }
if (Attribut and 1) = 1 then AttributStr := AttributStr + 'R ;
if (Attribut and 2) = 2 then AttributStr := AttributStr + 'H ;
if (Attribut and 4) = 4 then AttributStr := AttributStr +'S';
if (Attribut and 8) = 8 then AttributStr := AttributStr + 'V ;
if (Attribut and 16) = 16 then AttributStr := AttributStr + 'D ;
if (Attribut and 32) = 32 then AttributStr := AttributStr + 'A";
whi |l e Length(AttrlbutStr) < 6 do { Strlng vorne nmt }
AttributStr :=" "' + AttributStr; { Blanks auffullen }
if (Pos('V, AttributStr) <> 0) or (Pos('D, AttributStr) <> 0)
then Dir_oder Vol := True
el se Dir_oder Vol := False;
end;
function KurzfornE nzug: Bool ean;
var
Ch: Char;
begi n
CrScr;
WiteXY(10, 5, 'Directory mt Routinen der Turbo-Pascal-Unit DOS
WiteXY(10, 7, '1 Langfassung. Ausgabe aller Dateilnformationen'
WiteXY(10, 8, '2 Kurzfassung. Keine H, S-, V- und D Eintrége '
WiteXY(10, 9, " ----mmmmmm oo '
WiteXY(10,10, '1'); GotoXY(WiereX - 1, \WereY);

)
)
)
)

v " e e

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-29

r epeat

Ch : = ReadKey;

if Ch = #13

then Ch := "1

until Chin["21", "2'];
Wite(Ch);
if Ch ="1

then KurzfornEi nzug :

el se KurzfornEi nzug :
CrScr;

end;

Fal se
True;

begin { Begi nn Runpf der Hauptprozedur "I nhaltsverzeichnis" ------- }
Kur zf orm : = Kur zf or nEi nzug;

i f not Kurzform
then begin
CrScr;
Drucke_Kopf | ei st e;
i : 0; { Fur Z&hler Anzahl der Eintrage }

ZeileMax := 20; { Nur fur Tastendruck-H nweis }
end
el se begin
CrScr;
Text col or (Di r Far be) ;
Wite(' ---------------- Directory ohne H, S, ' +
V- und Ordner-Eintrage ------------- ");

Text Col or (St andar df ar be) ;
ZeileMax := 24; { Nur fiur Tastendruck-H nweis }
end;
FindFirst('C*.*", AnyFile, Dateilnfo);

{ Prozedur "FindFirst" aus Unit DCS, }

{ Format: Fi ndFi rst (pfad, dateiattribut, recordvariable) }
whil e DosError = 0 do

begi n { Variable "DosError" aus Unit DCS. Die Wrte: }

; { 0: Fehlerfrei }

; { 2: Directory nicht gefunden }

; { 18: Keine weiteren Eintrage (nur bei "FindNext") }

AttributeErm'tteIn(AttributStr, Dir_oder_Vol, Dateilnfo);
i f not Kurzform

then begin
Inc(i);
Str(i, iStr);
while Length(iStr) < 3 do
iStr :="'0" + iStr;

Dat unZei t _unf or nen(Dat ei | nfo, Datei Datum Datei Zeit);
Dat ei name_unf or nen(Dat ei | nf o, Dat ei name, Extension);
Dat en_ausdr ucken;

end

else if (Pos('H, AttributStr) = 0) and { nicht Hi dden }
(Pos('S, AttributStr) = 0) and { nicht System }
(Pos('V, AttributStr) = 0) and { nicht VolunelD }
(Pos('D, AttributStr) = 0) { nicht Directory }
then Wite(Dateilnfo.Nanme: 16) ; { "normal e" Datei }

if VereY = Zeil eMax
t hen Wart eAuf Tast endr uck(Zei | eMax) ;
Fi ndNext (Dateil nfo); { Prozedur "FindNext" aus Unit DOCS, }

18-30 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

{ Format: Fi ndNext (recordvari abl e) }
end;
i f not Kurzform
then WiteXY(3, WereY, '+----- Ende ---------------------- ' +
B TP kha---+")
el se WitelLn(#13, ' ------- Ende ----------------------- ' +
B e kha----");

War t eAuf Tast endr uck(Zei | eMax) ;
W ndow(1, 1, 80, 25);

end; { ---- von Hauptprozedur "Inhaltsverzeichnis" ---------------- }

begin { ==== Fbuptprogranﬁ]::: }
I nhal t sver zei chni s;

end. == ——————————————————————————

Eine Ausgabe des Programms Pas18071.PAS (Langfassung der Dateieintrige):

Directory mit Turbo-Pascal-Unit DOS. Dr. K. Haller, FHM, 77848599
Nr| Name Ext|Attribute|Dateigrope| DateTime Datum Zeit

B81|DISK_1 48 Ua|»UolumeID4]|574832814|83. 82. 1997| 88:85: 28
B882| RECYCLED 22 HSD|»Sub—Dir«|557345737| 24. 89. 1996| 13: 38: 18
883| WINIS 16 D|»Sub—Dir«]| 574966377| 84. 82. 1997|89: 23: 34
B84| FONTS 16 D|»Sub—Dir«]|574961168| 84. 82. 1997|89: 29: 32
B885| bootlog |txt]|34 HA 15752]1574904371| 84.82. 1997 11:81: 38
886| command | com| 32 A 95382| 521686597 24. 8. 1995| 89:58: 18
B887| suhdlog |dat]|35 RHA 7798|54281676808] 14. 82. 1996| 16: 37: 56
888|config |sys|3Z A 178]574898992| 84. 82. 1997| 88: 25: 32
B889| msdos -——134 HA 22|542816528] 14.82. 1996 16:32: 16
818| BEETHSTH 16 D|»Sub—Dir«]|574845812| 83. 82. 1997| 14: 27: 48
811| PLUGPLAY 16 D|»Sub—Dir«] 542882186 15. 82. 1996| 16: 36: 88
812| PROGRA™1 1?7 RD|»Sub—Dir«] 5420873555| 15. 82. 1996| 12: 22: 38
B813| SCSI 16 D|»Sub—Dir«] 5420881263 15.82. 1996| 16:87: 38
B814| setuplog| txt| 34 HA 42872|5428168687) 14.62.1996|16:41: 14
B15| XING 16 D|»Sub—Dir«]542138734| 16.82. 1996| 88: 17: 28
816| msdos sys| 7 RHS 1653| 574893675 84. 82. 1997| 88: 28: 86
B817| bootlog |prv|34 HA 16885]5749640008| 84. 82. 1997| 18: 54: 88
B18|detlog |txt]|38 HSA 70657|542818991] 14.62.1996|17: 45: 38
819 netlog |txt]|32 A 489| 542816625 14.82. 1996]| 16:35: 34

Weiter mit Tastendruck ...

27030593 Dr. K. Haller

