
Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-1

18 Strukturierter Datentyp »file« (Dateien)

Gliederung

18.1 Vorbemerkungen, Dateitypen...2

18.2 Einleitende Beispiele für typisierte Datei und Textdatei6

18.3 Standardprozeduren und -funktionen für Dateien............................12

18.4 Weitere Demos für typisierte Dateien ..16

18.5 Sonderfall: Geräte als Textdateien ...22

18.6 Demo untypisierte Datei ...23

18.7 Ausgewählte Datei-Routinen aus der Unit DOS25
Inhaltsverzeichnis und Datei-Attribute unter Turbo-Pascal anzeigen

18-2 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

18.1 Vorbemerkungen, Dateitypen

Unter Datei (engl. file) versteht man eine Sammlung von Daten, die letztlich auf einen
Datenträger (Diskette, Platte) geschrieben (gespeichert) werden oder von diesem Daten-
träger gelesen werden.

Die Datei hat auf dem Datenträger einen Namen nach Konvention des Betriebssystems;
übliche Extensionen sind z.B. ».DAT« oder ».TXT«, letztere vorzugsweise für Text-
dateien.

Programmintern erhält die Datei einen frei wählbaren Dateibezeichner (Dateivariable),
nach Pascal-Konvention; häufig wählt man nur kurz »F«. Vor dem ersten Öffnen der
Datei ist mit der Prozedur »Assign« (Details siehe später) eine Zuordnung von DOS-
Dateiname zu programminternen Dateibezeichner notwendig.

Vor dem Zugriff auf die Datei ist diese zu "öffnen". Dazu dienen die Prozeduren
»Reset« oder »Rewrite«. Wenn die Datei im Programm nicht mehr weiter angesprochen
wird, ist sie mit der Prozedur »Close« zu "schließen". Das Schließen ist sehr wichtig, da
der Dateizugriff "gepuffert" erfolgt. Wird ein Programm bei einer noch geöffneten Datei
beendet oder abgebrochen, was z.B. auch durch einen Laufzeitfehler oder durch einen
Stromausfall geschehen kann, dann ist ein Datenverlust die Folge.

Innerhalb eines Programms kann die gleiche Datei beliebig oft geöffnet und geschlossen
werden.

Es können auch mehrere Dateien gleichzeitig geöffnet sein. Die Anzahl der gleichzeitig
geöffneten Dateien wird durch das Betriebssystem bestimmt und beträgt in der Stan-
dardeinstellung 8. Für eine größere Anzahl ist der Parameter »files« in der MS-DOS-
Konfigurationsdatei CONFIG.SYS auf den gewünschten Wert zu setzen, z.B. mit »files
= 15«, siehe Kap. 29. Der Höchstwert: »files = 20«.

Für das Lesen eines Datensatzes dienen die Prozeduren »Read« oder »ReadLn«, zum
Schreiben entsprechend »Write oder »WriteLn«. Bei diesen Prozeduren ist gegenüber
den bisher behandelten Anwendungen ein weiterer Parameter – der programminterne
Dateibezeichner - anzugeben und zwar als erster Parameter. Besonderheit bei "untypi-
sierten" Dateien siehe später.

Die Dateitypen in Turbo-Pascal

Turbo-Pascal kennt drei Dateitypen:

1) Typisierte Datei mit Datensätzen fester Länge als Komponenten.
2) Textdatei: Datei mit Textzeilen variabler Länge als Komponenten. Sonderfall:

Externe Geräte (Bildschirm, Tastatur, Drucker, serielle Schnittstelle) als Textdatei.
Dieser Dateityp ist eigentlich auch typisiert, aber anders zu handhaben als 1).

3) Untypisierte Datei. Sonderanwendungen.

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-3

Dateityp Deklaration:
 ║
 ║ ┌─────────────────────┐ var
 ║ │ Typisierte Datei │ bezeichner: file of komponententyp
1) ╟──┤ mit Datensätzen │
 ║ │ fester Länge als │ Beispiel 1: F1: file of Integer;
 ║ │ Komponenten │ 2: F2: file of Real;
 ║ └─────────────────────┘ 3: F3: file of record
 ║ ;
 ║ ;
 ║ end;
 ║ ┌─────────────────────┐
 ║ │ Textdatei mit Text─ │
2) ╟──┤ zeilen variabler │ var
 ║ │ Länge als │ dateibezeichner: Text;
 ║ │ Komponenten │ { In Delphi-Pascal "TextFile" statt "Text" }
 ║ └─────────────────────┘
 ║ ┌─────────────────────┐
 ║ │ Untypisierte Datei. │
 ║ │ Keine Annahme über │
3) ╟──┤ Typ u. Organisation │ var
 ║ │ der Daten. Nur für │ dateibezeichner: file;
 ║ │ Sonderanwendungen. │
 ║ └─────────────────────┘

1) Bei typisierten Dateien sind alle Datensätze gleich lang; somit kann auf jeden Daten-
satz wahlfrei direkt zugegriffen werden, und zwar sowohl schreibend oder auch
lesend. Typisierte Dateien werden mit »Write« geschrieben und mit »Read« gelesen.
Der Zugriff erfolgt über die Datensatznummer (Positionszeiger); die interne Zählung
beginnt mit 0. Mit der Prozedur »Seek« kann die gewünschte Position eingestellt
werden. Bei jedem Schreib- oder Lesevorgang wird der Positionszeiger automatisch
um eins erhöht. Numerische Daten werden in typisierten Dateien binär gespeichert.
Andere Bezeichnungen für »typisierte Datei« mit festen Datensatzlängen: Direkt-
zugriffsdatei, Random-Access-Datei.

Schematische Darstellung einer typisierten Datei:

 1 2 3 4 5 n Datensatz-Nr
╔══════╤══════╤══════╤══════╤══════╤══()══╤══════╗
║ │ │ │ │ │ │ ║
╚══════╧══════╧══════╧══════╧══════╧══()══╧══════╝
 0 1 2 3 4 n - 1 Positions-Nr
Direkter Zugriff (lesend/schreibend beliebig) auf jeden beliebigen Datensatz.

2) Bei Textdateien sind dagegen die Datensätze unterschiedlich lang. Um auf einen
bestimmten Datensatz zugreifen zu können, müssen alle Datensätze vom Dateianfang
an durchgegangen werden (sequentieller Zugriff). Quelltextdateien von Programmen
sind z.B. immer Textdateien.

Im Gegensatz zu typisierten Dateien kann bei Textdateien die Positionsnummer nicht
gewählt werden; dagegen wird der Positionzeiger bei jedem Schreib- und Lese-
vorgang wie bei typisierten Dateien um eins erhöht. Eine (geöffnete) Textdatei kann
entweder nur beschrieben (mit »WriteLn«) oder nur gelesen werden (mit »ReadLn«).

18-4 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

Beim Schreiben wird bei jedem Datensatz der Textdatei an das Ende des Datensatzes
automatisch ein CR (Carriage Return) als Zeilentrenner geschrieben (genauer: CR +
LF, Carriage Return und Line Feed, #13 und #10); beim Lesen wird bis zu diesen
Trennzeichen gelesen.

Schematische Darstellung einer Textdatei:

 1 2 3 4 5 n Datensatz-Nr
╔════╤═════════╤═══╤══════╤══════════╤══()══╤════╗
║ │ │ │ │ │ │ ║
╚════╧═════════╧═══╧══════╧══════════╧══()══╧════╝
 0 1 2 3 4 n - 1 Positions-Nr
Nur sequentieller Zugriff. Nur lesend oder schreibend.

Nicht dargestellt sind die Steuerzeichen CR und LF (#13 und #10) am Ende jedes
Datensatzes. Manche Texteditoren (so auch der Turbo-Pascal-Editor) erzeugen am
Ende der Textdatei noch ein weiteres Steuerzeichen (Zeichen #26, Strg+Z, Ctrl+Z),
das auch als Kennung für Dateiende (End of File) interpretiert wird.

3) Bei untypisierten Dateien werden keine Annahmen über die Art und Organisation der
Daten gemacht. Damit kann man Dateien mit beliebigen Strukturen bearbeiten,
allerdings immer nur ganze Blöcke schreiben (Prozedur »BlockWrite«) oder lesen
(Prozedur »BlockRead«). Die Blockgröße beträgt standardmäßig 128 Byte, kann aber
zwischen 1 Byte und 64 KByte gewählt werden. Weitere Details siehe Unterpunkt
18.6.

Vorab die wichtigsten Dateiprozeduren und Dateifunktionen
Vollständige Darstellung Kap. 18.3

In den Beispielen wird als Bezeichner für die Dateivariable schlicht »F« verwendet. Mit
»a« sei ein beliebiger Ausdruck und mit »v« eine Variable bezeichnet.

• Prozedur »Assign« Zuordnung der Dateivariablen zum DOS-Dateinamen.
Beispiel: Assign(F, 'B:Huber.TXT');
Der Pfad ist ein String-Ausdruck

• Prozedur »Reset« Eine existierende Datei öffnen.
Beispiel: Reset(F);

• Prozedur »Rewrite« Eine neue Datei anlegen.
Beispiel: Rewrite(F);

• Prozedur »Close« Datei schließen.
Beispiel: Close(F);

• Prozedur »Write« In typisierte Datei schreiben
Beispiel: Write(F, v); { v = Variable }

• Prozedur »WriteLn« In Textdatei schreiben.
Beispiel: WriteLn(F, a); { a = Ausdruck }

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-5

• Prozedur »Read« Liest einen Wert aus einer typisierten Datei und weist ihn
auf eine Variable zu.
Beispiel: Read(F, v);

• Prozedur »ReadLn« Liest eine Zeile aus einer Textdatei weist sie auf eine
Variable zu, in der Regel eine Stringvariable.
Beispiel: ReadLn(F, v);

• Prozedur »Seek« Setzen des Datei-Positionszeigers bei typisierten Dateien.
Beispiel: Seek(F, a); { a = LongInt-Ausdruck }

• Funktion »EoF« End of File. Ergebnistyp ist Boolean
Beispiel: EoF(F)

• Funktion »FileSize« Liefert die Anzahl der Komponenten (Datensätze) einer
typisierter (oder untypisierten) Datei. Nicht für Text-
dateien. Ergebnistyp ist LongInt.
Beispiel: FileSize(F)

Zur binären Speicherung von numerischen Daten in typisierten Dateien

Es sei eine Integerdatei mit folgenden sechs Integerdaten angenommen:

4711 -4711 4712 4711 4712 4711

Die Datei als Char-Dump: g↕Öøh↕g↕h↕g↕

Der Datei als Hex-Dump: 67 12 99 ED 68 12 67 12 68 12 67 12

Die einzelnen Speicherdaten in hex und dez, mit Umrechnung in Integerdaten:

g↕ 67 12 103 018 018 * 256 + 103 = 4711
Öø 99 ED 153 237 (237 - 256)* 256 + 153 = -4711
h↕ 68 12 104 018 018 * 256 + 104 = 4712
g↕ 67 12 103 018 018 * 256 + 103 = 4711
h↕ 68 12 104 018 018 * 256 + 104 = 4712
g↕ 67 12 103 018 018 * 256 + 103 = 4711

Es wird zuerst das niederwertige Byte und dann erst das höherwertige Byte abgespei-
chert. Bei Integerdaten enthält das Bit-Nr 7 (Wertigkeit 27 = 128) das Vorzeichen; die
Korrektur ist bei allen höherwertigen Bytes >= 128 in der gezeigten Weise vorzuneh-
men.

Wird die gleiche Integerdatei (vielleicht versehentlich) als Realdatei eingelesen, dann
werden die zwölf Bytes als zwei Reals – ein Real belegt in Turbo-Pascal sechs Byte –
interpretiert und zwar wie folgt:

 1.7044352770E-08
 1.7043508660E-08

18-6 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

18.2 Einleitende Beispiele

18.2.1 Einleitendes Beispiel für typisierte Datei

program Pas18021; { Kap. 18.2: Einleitendes Beispiel }
 { für "Typisierte Datei" }
uses
 CRT;

const
 DOS_Dateiname = 'C:\Student\Pas18021.DAT';

var
 F: file of Integer; { Dateibezeichner, hier kurz "F", }
 { ansonsten beliebiger (freier) }
 { Bezeichner nach Pascal-Konvention }
 F_r: file of Real;
 F_b: file of Byte;
 F_c: file of Char;
 F_Bool: file of Boolean;
 i, j: Integer;
 r: Real;
 b: Byte;
 Ch: Char;
 Bool: Boolean;

begin
 TextBackground(Blue); ClrScr;

 Assign(F, DOS_Dateiname); { Mit "Assign" Zuordnung DOS-Dateiname }
 { auf Dateivariable, hier kurz "F", }

 TextColor(Yellow);
 WriteLn('Demo "Pas18021.PAS": Typisierte Datei ');
 TextColor(White);

 { ----- 1. Neue Datei anlegen und mit Werten beschreiben --------- }
 Rewrite(F); { Mit "Rewrite" neue Datei anlegen. }
 { Evtl. vorhandene wird gelöscht. }
 { Positionszeiger wird auf Anfang = 0 }
 { gesetzt. }

 i := 0; Write(F, i); { Nur V a r i a b l e n in typi- }
 j := 1111; Write(F, j); { sierte Datei schreiben. Ausdrücke }
 { nur bei Textdateien. In typisierte }
 { Dateien nur mit "Write" schreiben; bei Textdateien }
 { dagegen auch mit "WriteLn". Numerische Werte werden }
 { typisierten Dateien binär gespeichert, bei Text- }
 { dateien dagegen als Textzeichen. }
 i := 2222;
 j := -4711;
 Write(F, i, j); { Parameterliste mit mehreren Variablen }
 Close(F); { Datei schließen }

 { ----- 2. Datei wieder öffnen und Daten lesen ------------------- }
 Reset(F); { Mit "Reset" vorhandene Datei öffnen und }
 { Positionszeiger auf Anfang = 0 setzen }

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-7

 Read(F, i); Write(i, ' '); { Nur in V a r i a b l e n einlesen }
 Read(F, i); Write(i, ' '); { (bei allen Dateitypen) }
 Read(F, i); Write(i, ' '); { Bei typisierten Dateien nur "Read", }
 Read(F, i); Write(i, ' '); { bei Textdateien nur "ReadLn" }
 WriteLn; WriteLn;
 Close(F);

 { ----- 3.1 An beliebiger Position lesen ------------------------- }
 Reset(F);
 Seek(F, 2); { Mit "Seek" Positionszeiger setzen. }
 { Hier Position 2 = Datensatz 2 + 1 = 3 }
 { Positionszeiger: LongInt-Ausdruck }
 Read(F, i, j);
 WriteLn(i, ' ', j);
 WriteLn;

 { ----- 3.2 An beliebiger Position schreiben/lesen --------------- }
 Seek(F, 3);
 j := 3333;
 Write(F, j); { Alten Wert überschreiben }

 Seek(F, 3);
 Read(F, i); WriteLn(i);
 WriteLn;

 { ----- 3.3 Alle Daten lesen und Anzahl feststellen -------------- }
 Write('Alle Daten der Datei: ');
 Seek(F, 0); { Positionszeiger auf Anfang = 0 setzen }
 j := 0;
 while not EoF(F) do { Solange Dateiende n i c h t erreicht.. }
 begin { Boolean-Funktion EoF = End of File }
 Read(F, i);
 Write(i, ' ');
 Inc(j);
 end;
 WriteLn;
 WriteLn('Die Anzahl der Daten: ', j); { ¦: 4 }
 WriteLn('Die Anzahl der Daten mit der Funktion "FileSize(F)": ',
 FileSize(F)); WriteLn; { ¦: 4 }
 Close(F); { Datei schließen }

 { ----- 4. Datei beliebig beschreiben und lesen ------------------ }
 Reset(F); { Mit "Reset" vorhandene Datei öffnen und }
 { Positionszeiger auf Anfang = 0 setzen }
 j := 5555;
 i := 5;
 Seek(F, i);
 Write(F, j);
 WriteLn('Auf die Position ', i, ' wurde der Wert "', j,
 '" geschrieben');

 Seek(F, 4);
 Read(F, j);
 WriteLn('Wert auf Position 4 noch undefiniert, ',
 'hier zufällig: ', j);

 j := 4444;
 Seek(F, 4);
 Write(F, j);
 WriteLn('Auf die Position 4 wurde der Wert "', j, '" geschrieben');

18-8 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 WriteLn;

 { Der Lesezugriff auf eine Position hinter der bisherigen }
 { höchsten Schreibposition würde zum Abbruch führen mit }
 { der Fehlermeldung "Error 100: Disk read error" }
 { Seek(F, 9); }
 { Read(F, j); }

 Write('Jetzt alle Daten der erweiterten Datei: ');
 Seek(F, 0);
 while not EoF(F) do
 begin
 Read(F, i);
 Write(i, ' ');
 end;
 WriteLn; WriteLn;

 Close(F);

 { ----- 5.1 Integerdatei als Realdatei behandeln ----------------- }
 { Nicht empfehlenswert, hier nur zur Demo. Die Anzahl der Integer- }
 { daten muß für dieses Experiment durch 3 teilbar sein, sonst }
 { Diskfehler, wenn alle Daten eingelesen werden sollen. }
 { Zur Erinnerung: Für Integer 2 Byte Speicher, für Real 6 Byte }

 Assign(F_r, DOS_Dateiname);
 Write('6 Integer auf 2 Real einlesen: ');
 Reset(F_r);
 while not EoF(F_r) do
 begin
 Read(F_r, r);
 Write(r);
 end;
 Close(F_r);
 WriteLn;

 { ----- 5.2 Integerdatei als Bytedatei behandeln ----------------- }
 { Nicht empfehlenswert, hier nur zur Demo. Die 6 Integerdaten }
 { ergeben 12 Bytedaten. }

 Assign(F_b, DOS_Dateiname);
 Reset(F_b);
 Write('6 Integer auf 12 Byte einlesen: ');
 while not EoF(F_b) do
 begin
 Read(F_b, b);
 Write(b, ' ');
 end;
 WriteLn;
 Close(F_b);

 { ----- 5.3 Integerdatei als Boolean-Datei behandeln ------------- }
 { Nicht empfehlenswert, hier nur zur Demo. Die 6 Integerdaten }
 { ergeben 12 Boolean }

 Assign(F_Bool, DOS_Dateiname);
 Reset(F_Bool);

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-9

 Write('6 Integer auf 12 Bool einlesen: ');
 while not EoF(F_Bool) do
 begin
 Read(F_Bool, Bool);
 if Bool
 then Write('T ')
 else Write('F ');
 end;
 WriteLn;
 Close(F_Bool);

 { ----- 5.4 Integerdatei als Char-Datei behandeln ---------------- }
 { Nicht empfehlenswert, hier nur zur Demo. Die 6 Integerdaten }
 { ergeben 12 Char }

 Assign(F_c, DOS_Dateiname);
 Reset(F_c);
 Write('6 Integer auf 12 Char einlesen: ');
 while not EoF(F_c) do
 begin
 Read(F_c, Ch);
 Write(Ch, ' ');
 end;
 WriteLn;
 { Die Zeichenfolge des Beispiels enthält auch Chr(13);
 damit wird ein CR ausgelöst und der Zeilenanfang überschrieben }
 Close(F_c);

 repeat
 until KeyPressed;
end.

18.2.2 Einleitendes Beispiel für Textdatei

program Pas18022; { Kap. 18.2: Einleitendes Beispiel für "Textdatei" }

uses
 CRT;

18-10 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

var
 F: Text; { Standard-Dateidatentyp "Text" }
 s, { Nicht "file of Text" }
 s1,
 s2: string;
 i: Integer;

procedure Ueberschrift(s: string);
begin
 TextColor(Yellow);
 WriteLn(s);
 TextColor(White);
end;

begin
 TextColor(Blue); ClrScr;

 Assign(F, 'C:\Student\Pas18022.TXT');
 { Mit "Assign" Zuordnung DOS-Dateiname }
 { auf Dateivariable, hier kurz "F", }

 { --- Nr 1: -- }
 Ueberschrift('Nr. 1: Neue Textdatei anlegen');
 Rewrite(F); { "Rewrite": Neue Textdatei zum Schreiben }
 { anlegen. Wenn Datei bereits vorhanden, }
 { dann wird sie überschrieben (gelöscht). }

 s := 'Anton Huber, München ';
 i := 4711;
 WriteLn(F, s); { Mit "WriteLn" in Textdatei schreiben; }
 { "Write" im Prinzip auch möglich, aber }
 { auf jeden Fall Abschluß mit "WriteLn". }
 WriteLn(F, i); { Bei typisierten Dateien dagegen nur mit }
 WriteLn(F, 'FHM: ' + s); { "Write". In die Textdatei können }
 WriteLn(F, s, i + 10); { beliebige Ausdrücke geschrieben werden; }
 { bei typisierten Dateien dagegen nur }
 { Variablen. Nach jeder Zeile einer Text- }
 { datei wird ein "Return" gespeichert, }
 { genauer ein CR + LF, #13 + #10. }
 Close(F); { Datei schließen }

 { --- Nr. 2: --- }
 Ueberschrift('Nr. 2: Textdatei lesen');
 Reset(F); { Textdatei zum Lesen öffnen. Im Gegen- }
 { satz zu typisierten Dateien können }
 { Textdateien entweder nur zum Schreiben }
 { oder nur zum Lesen geöffnet werden. }

 while not Eof(F) do { Solange nicht am Dateiende ... }
 begin
 ReadLn(F, s); { Aus Textdatei nur mit "ReadLn" lesen; }
 { In der Regel auf Stringvariable. Bei }
 { typisierten Dateien dagegen mit "Read" }

 WriteLn(s); { Die Bildschirmausgabe: }
 { ¦Anton Huber, München }
 { ¦4711 }
 { ¦FHM: Anton Huber, München }
 { ¦Anton Huber, München 4721 }
 end;

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-11

 Close(F); { Datei schließen }

 { --- Nr. 3: --- }
 Ueberschrift('Nr. 3: Neue Textdatei anlegen. Numerikdaten');
 Rewrite(F); { Neue Datei zum Schreiben öffnen. }
 for i := 11 to 12 do { Im Gegensatz zu typisierten Dateien }
 WriteLn(F, i); { werden numerische Werte in Textdateien }
 { nicht binär, sondern als Textzeichen }
 { gespeichert und können somit beim Aus- }
 { lesen auch auf String-Variablen zuge- }
 { wiesen werden. }
 Close(F); { Datei schließen }

 { --- Nr. 4: -- }
 Ueberschrift('Nr. 4: Textdatei lesen. Numerik auf String');
 Reset(F); { Datei zu Lesen öffnen }
 while not Eof(F) do
 begin { ¦11 } { Numerische Daten k ö n n e n }
 ReadLn(F, s); { ¦12 } { bei Textdateien auch auf }
 WriteLn(s); { Strings eingelesen werden. }
 end;
 Close(F); { Datei schließen }

 { --- Nr. 5: --- }
 Ueberschrift('Nr. 5: Textdatei lesen. Numerik auf Numerik');
 Reset(F); { Datei zu Lesen öffnen }
 while not EoF(F) do
 begin { ¦11 } { Hier Einlesen von numerischen }
 ReadLn(F, i); { ¦12 } { Daten einer Textdatei auf }
 WriteLn(i); { Integervariable. }
 end;
 Close(F); { Datei schließen }

 { --- Nr. 6: --- }
 Ueberschrift('Nr. 6: Textdatei am Ende fortsetzen');
 Append(F); { (Text-) Datei am Ende fortschreiben }
 WriteLn(F, 'Fortsetzungszeile 1');
 WriteLn(F, 'Fortsetzungszeile 2');
 Close(F);

 { --- Nr. 7: --- }
 Ueberschrift('Nr. 7: Erweiterte Textdatei lesen');
 Reset(F); { Erweiterte Datei komplett lesen }
 while not EoF(F) do
 begin
 ReadLn(F, s);
 WriteLn(s);
 end;
 Close(F);

 { -- }
 repeat
 until KeyPressed;
end.

18.3 Standardprozeduren und -funktionen für Dateien

Die Auflistung verwendet folgende Abkürzungen:

18-12 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

P Prozedur
F Funktion
V Byte-Variable aus der Standard-Unit SYSTEM

F Dateibezeichner, Dateivariable
a Ausdruck
v Variable

Die Auflistung enthält auch einige Prozeduren und Funktionen, die zwar nicht direkt mit
Dateien zu tun haben, sondern mit dem Datenträger, wie z.B. die Funktion "DiskFree"
und somit doch häufig in Verbindung mit Dateien gebraucht werden.

Art Bezeichner Bemerkungen, Beispiele
P Append Öffnet vorhandene Textdatei für Schreiben weiterer Daten am

Dateiende.
Beispiel: Append(F)

P Assign Zuordnung der Dateivariablen zum DOS-Dateinamen.
Beispiel: Assign(F, 'B:Huber.TXT')

P AssignCRT Unit CRT. Zuordnung Bildschirm zu Textdatei für schnellere Bild-
schirm-Ausgabe als über DOS.
Beispiel: AssignCRT(F)

P BlockRead Liest Record(s) aus untypisierter Datei in Puffervariable. Siehe
Demo-Programm.

P BlockWrite Schreibt Record(s) aus Puffervariablen in untypisierte Datei. Siehe
Demo-Programm.

P ChDir Wechselt Standardverzeichnis, ähnlich DOS-Befehl CD
Beispiel: ChDir('A:\Ordner2')

P Close Datei schließen
Beispiel: Close(F)

F DiskFree Unit DOS. Liefert Größe des freien Speichers auf dem angebenen
Laufwerk. Ergebnistyp LongInt.
Beispiel: DiskFree(0) { 0 = aktuell. Laufwerk }
Beispiel: DiskFree(1) { 1 = Laufwerk A }
Beispiel: DiskFree(2) { 2 = Laufwerk B }
Beispiel: DiskFree(3) { 3 = Laufwerk C usw. }

F DiskSize Unit DOS. Liefert die Gesamtkapazität des angebenen Laufwerks
in Byte. Ergebnistyp LongInt.
Beispiel: DiskSize(1) { 0, 1, 2, 3 wie bei }
 { Funktion "DiskFree" }

F EoF End of File. Prüfung, ob Dateiende erreicht. Ergebnistyp Boolean.

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-13

Beispiel: EoF(F)

F EoLn End of Line. Prüfung, ob Position innerhalb einer Textdatei auf
Zeilenende steht. Ergebnistyp Boolean.
Beispiel: EoLn(F)

P Erase Löscht Datei, die aber nicht geöffnet sein darf.
Beispiel: Erase(F)

F FExpand Unit DOS. File Expand. Erweitert den DOS-Dateinamen um den
dazugehörigen Pfad.
Beispiel: FExpand('LiGleich.PAS');
Das Ergebnis könnte z.B. sein: C:\STUDENT\LIGLEICH.PAS

V FileMode In der Standard-Unit SYSTEM deklariert. Legt fest, in welchem
Modus typisierte und untypisierte Dateien durch Reset geöffnet
werden.
Beispiel: FileMode := 2; { Standard. Für Lesen }

 { und Schreiben }

Beispiel: FileMode := 0; { Öffnen von untypisierten }
{ Dateien nur zum Lesen }

Beispiel: FileMode := 1; {Nur für Schreiben }

F FilePos Liefert die momentane Position innerhalb der typisierten oder
untypisierten Datei. Zählung ab 0. Ergebnisdatentyp LongInt. Siehe
auch Prozedur »Seek«. Für die Byte-Position muß das Ergebnis
noch mit Größe der Komponente multipliziert werden, bei Integer
z.B. mit dem Faktor 2.
Beispiel: FilePos(F)

F FileSize Liefert die Anzahl der Komponenten (Datensätze) in der typisierten
oder untypisierten Datei. Ergebnistyp LongInt. Wenn die Datei leer
ist, dann wird das Ergebnis 0 geliefert.
Beispiel: FileSize(F)

P FindFirst Unit DOS. Sucht ein Verzeichnis nach dem ersten Vorkommen
eines Dateinamens ab. Details siehe Kap. 18.7 und Online-Hilfe.

P FindNext Unit DOS. Setzt die mit FindFirst begonnene Suche nach einem
Dateinamen fort; siehe dort.

P Flush Erzwingt das Schreiben des Puffers in die Textdatei.
Beispiel: Flush(F)

F FSearch Unit DOS. File Search. Sucht eine Liste von Verzeichnissen nach
einem DOS-Dateinamen ab. Details siehe Online-Hilfe.

18-14 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

P FSplit Unit DOS. File Split. Zerlegt einen vollständigen DOS-Dateinamen
in seine Komponenten: Zugriffspfad, Dateiname und Extension.
Details siehe Online-Hilfe.

P GetDir Unit DOS. Ermittelt das aktuelle Verzeichnis eines Laufwerks (0 =
aktuelles Laufwerk, 1 = A: 2 = B, 3 = C usw.) und legt es unter der
Stringvariablen v ab.
Beispiel: GetDir(0, v) { 0 = aktuelles Laufwerk }

P GetFAttr Unit DOS. Get File Attribut. Liefert die File-Attribute (ReadOnly,
Hidden, SysFile usw.) einer Datei unter der Word-Variablen v
zurück. Durch anschließende Bit-Operationen können die einzel-
nen Attribute bestimmt werden. Details siehe Online-Hilfe.
Beispiel: GetFAttr(F, v)

F IOResult Liefert den Fehlerstatus der letzten Ein-/Ausgabeoperation zurück.
Ergebnistyp Word. Bei fehlerfreier Ausführung hat IOResult den
Wert 0. Siehe Demo-Programm und Kapitel 25.
Beispiel: if IOResult <> 0 then

P MkDir Make Direktory. Legt ein neues Unterverzeichnis an, wie DOS-
Befehl MD.
Beispiel: MkDir('C:\Student\LiGleich')

P Read Liest Wert(e) aus typisierter Datei in die Variable(n).
Beispiel: Read(F, v)
Beispiel: Read(F, v1, v2, v3)

P ReadLn Liest Zeile aus einer Textdatei und weist sie auf Variable(n) zu.
Beispiel: ReadLn(F, v)

P Rename Ändern des DOS-Dateinames ähnlich wie DOS-Befehl REN. Der
in der Assign-Prozedur genannte alte DOS-Name wird über die
Dateivariable F durch einen neuen (Stringausdruck) ersetzt, wobei
im Gegensatz zu REN auch der Pfad gewechselt werden kann. Die
Prozedur darf nicht bei geöffneten Dateien angewendet werden.
Beispiel: Rename(F, DOS_neu);

P Reset Existierende Datei öffnen.
Beispiel: Reset(F)

P Rewrite Neue Datei anlegen. Eine eventuell existierende Datei wird über-
schrieben.
Beispiel: Rewrite(F)

P RmDir Löscht ein Verzeichnis, das aber leer sein muß. Wirkung wie der
entsprechende DOS-Befehl.
Beispiel: RmDir('C:\Ordner1\Ordner11');

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-15

P Seek Setzt Positionszeiger einer typisierten oder untypisierten Datei auf
die angegebene Komponente n, die einen LongInt-Ausdruck dar-
stellt.
Beispiel: Seek(F, n)

F SeekEoF Prüft bei einer Textdatei, ob sich zwischen der momentanen Posi-
tion und dem Dateiende noch "echte" Zeichen befinden, wobei
Leerzeichen, Tabulatoren und Zeilenvorschub = (CR + LF) nicht
betrachtet werden. Ergebnistyp Boolean.
Beispiel: SeekEoF(F)

F SeekEoLn Prüft bei einer Textdatei, ob sich zwischen der momentanen Posi-
tion und dem nächsten Zeilenvorschub = (CR + LF) noch "echte"
Zeichen befinden; siehe auch »SeekEoF«. Ergebnistyp Boolean. Im
Gegensatz zur Funktion EoLn wird bei SeekEoLn der Positions-
zeiger versetzt.
Beispiel: SeekEoLn(F)

P SetFAttr Unit DOS. Setzt die Attribute der Datei, die mit der Assign-Proze-
dur mit der Dateivariablen f verbunden ist. Das Attribut ist ein
Byte-Ausdruck, wobei auch die in der Unit DOS deklarierten
Konstanten (ReadOnly, Hidden usw) benutzt werden können.
Details siehe Online-Hilfe. Die Datei darf nicht geöffnet sein.
Beispiel: SetFAttr(F, ReadOnly);

P SetTextBuf Mit dieser Prozedur kann die Größe des Puffers einer Textdatei,
die standardmäßig 128 Byte beträgt, auf einen beliebige Word-
Ausdruck gesetzt werden. Details siehe Online-Hilfe.

P Truncate Schneidet eine typisierte oder untypisierte Datei an der momen-
tanen Position ab; d.h. die restlichen Daten werden gelöscht.
Beispiel: Truncate(F);

P Write Wert(e) in typisierte Date schreiben
Beispiel: Write(F, v); | v, v1, v2, v3:
Beispiel: Write(F, v1, v2, v3); | Variablen

P WriteLn Zeile in Textdatei schreiben und Abschluß mit Return
Beispiel: WriteLn(F, a) |a, a1, a2, a3:

Beispiel: WriteLn(F, a1, a2, a3) |Ausdrücke

18.4 Weitere Demos für typisierte Dateien

program Pas18041; { Kap. 18.4: Demo typisierte Datei }

uses

18-16 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 CRT;

const
 DOS_Dateiname = 'C:\Student\Pas18041.DAT'; { Ggf. Pfad ändern }
 Min = -4711; { Später Zufallsdaten aus diesem }
 Max = -Min; { Bereich in Datei schreiben. }
 Anzahl = 5; { Für Demo nur wenige Daten. }

var
 F: file of Integer; { Somit für jeden Wert 2 Byte. }
 Wert: Integer;
 i: Word;
 Ch,
 Zugriff: Char;

begin
 TextBackGround(Blue); TextColor(Yellow); ClrScr;

 GotoXY(2, 1); Write('Demonstration: Typisierte Datei');
 TextColor(White);

 Assign(F, DOS_Dateiname); { Zuweisung des DOS-Dateinamens auf "F" }

{ +-------- A: Neue Datei anlegen, in Datei schreiben -------------+ }
 GotoXY(2, 3);
 TextColor(Yellow); WriteLn('A: Schreiben '); TextColor(White);

 ReWrite(F); { Legt neue Datei an und setzt auch Positionszeiger }
 { auf Null. Somit "Seek" nicht notwendig, wenn Datei }
 { - wie hier - von Anfang an geschrieben (oder }
 { gelesen) wird. }
 for i := 1 to Anzahl do
 begin
 Wert := Min + Random(Max + 1 - Min); { Für Demo Zufallswerte }
 Seek(F, i - 1); { "Seek" in dieser Situation nicht notwendig }
 Write(F, Wert); { Mit "Write" (bei typisierten Dateien nicht }
 { "WriteLn") Schreiben der V a r i a b l e n }
 { "Wert" in die Datei. }
 GotoXY(2, WhereY);
 WriteLn(i, ': In Datei: ', Wert:6);
 end;
 Close(F);

 { +-------- Lesen I (Alle Daten, bei bekannter Anzahl) ----------+ }
 GotoXY(28, 3);
 TextColor(Yellow); WriteLn('B: Lesen I '); TextColor(White);

 Reset(F); { Öffnet Datei und setzt Positionszeiger auf Null. }
 { Somit "Seek" nicht notwendig, wenn Datei - wie hier - }
 { von Anfang an gelesen (oder geschrieben) wird. }
 for i := 1 to Anzahl do
 begin
 Seek(F, i - 1); { "Seek" in dieser Situation nicht notwendig }
 Read(F, Wert); { Einlesen auf V a r i a b l e "Wert" }
 { Bei typisierten Dateien Einlesen mit }
 { "Read", nicht mit "ReadLn". }
 GotoXY(28, WhereY);

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-17

 WriteLn('Aus Datei: ', Wert:6);
 end;
 Close(F);

 { +--- Lesen II (Alle Daten bis EoF, bei unbekannter Anzahl) ----+ }
 GotoXY(51, 3);
 TextColor(Yellow); WriteLn('C: Lesen II '); TextColor(White);

 Reset(F); { Öffnet Datei und setzt Positionszeiger auf Null. }
 { Somit "Seek" nicht notwendig, wenn Datei - wie hier - }
 { von Anfang an gelesen (oder geschrieben) wird. }

 while not Eof(F) do { "EoF" End of File }
 begin
 Read(F, Wert);
 GotoXY(51, WhereY);
 WriteLn('Aus Datei: ', Wert:6);
 end;
 Close(F);

 { +-------- D: Wahlfrei Schreiben und Lesen ---------------------+ }
 { Nur bei typisierten Dateien möglich }
 Reset(F); { Öffnet Datei und setzt Positionszeiger auf Null. }
 { "Seek" später notwendig, da wahlfrei schreibend }
 { oder lesend zugegriffen wird. }
 repeat
 GotoXY(2, 10);
 TextColor(Yellow);
 Write('D: Wahlfreier Zugriff. ',
 '"S" Schreiben, "L" Lesen, "E" Ende: ');
 TextColor(White); ClrEoL;
 repeat
 Zugriff := UpCase(ReadKey);
 until Zugriff in ['S', 'L', 'E'];
 WriteLn(Zugriff);
 if not (Zugriff = 'E') then
 repeat
 GotoXY(2, 11); ClrEoL;
 Write('Datensatz Nr (1..', Anzahl, '): ');
 Ch := ReadKey;
 i := Ord(Ch) - Ord('0');
 until i in [1..Anzahl]; { Der Positionszeiger zählt }
 { aber von 0 bis (Anzahl - 1) }
 case Zugriff of
 'S': begin
 GotoXY(29, 11); Write('Eingabe Integer-Wert: ');
 ReadLn(Wert);
 Seek(F, i - 1); { Wahlfreier Zugriff, des- }
 Write(F, Wert); { halb hier "Seek" notwendig }
 end;
 'L': begin
 Seek(F, i - 1); { Wahlfreier Zugriff, des- }
 Read(F, Wert); { halb hier "Seek" notwendig }
 GotoXY(29, 11); Write('Aus Datei: ', Wert:6);
 end;
 end;
 until UpCase(Zugriff) = 'E';

18-18 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 Close(F);

 { +-------- E: Lesen III --+ }
 GotoXY(2, 13);
 TextColor(Yellow); WriteLn('E: Lesen III'); TextColor(White);
 Reset(F); { Öffnet Datei und setzt Positionszeiger auf Null. }
 { Somit "Seek" nicht notwendig, wenn Datei - wie hier - }
 { von Anfang an gelesen (oder geschrieben) wird. }
 i := 0;
 while not Eof(F) do
 begin
 Read(F, Wert);
 Inc(i);
 GotoXY(2, WhereY);
 WriteLn(i, ': Aus Datei: ', Wert:6);
 end;
 GotoXY(2, WhereY + 1);
 WriteLn('Die Anzahl der Datensätze: ', i);
 Close(F);

 repeat
 until KeyPressed;
 { Die Ausgabe unter der Annahme, daß bei Punkt D: der Datensatz
 Nr. 4 mit "S" auf "9999" überschrieben wurde:
 +---
 ¦ Demonstration: Typisierte Datei
 ¦
 ¦ A: Schreiben B: Lesen I C: Lesen II
 ¦ 1: In Datei: -4711 Aus Datei: -4711 Aus Datei: -4711
 ¦ 2: In Datei: -2655 Aus Datei: -2655 Aus Datei: -2655
 ¦ 3: In Datei: 4603 Aus Datei: 4603 Aus Datei: 4603
 ¦ 4: In Datei: -858 Aus Datei: -858 Aus Datei: -858
 ¦ 5: In Datei: 3752 Aus Datei: 3752 Aus Datei: 3752
 ¦
 ¦ D: Wahlfreier Zugriff. "S" Schreiben, "L" Lesen, "E" Ende:
 ¦ Datensatz Nr (1..5): 4 Eingabe Integer-Wert: 9999
 ¦
 ¦ E: Lesen III
 ¦ 1: Aus Datei: -4711
 ¦ 2: Aus Datei: -2655
 ¦ 3: Aus Datei: 4603
 ¦ 4: Aus Datei: 9999
 ¦ 5: Aus Datei: 3752
 ¦
 ¦ Die Anzahl der Datensätze: 5
 ¦
 +---
 }
end.

program Pas18042; { Kap. 18.4: Demo typisierte Datei }
 {
 Es wird der schreibende und lesende Dateizugriff demonstriert.
 Dabei werden folgende Datei-Prozeduren "P" und -Funktionen "F"
 eingesetzt:

 "Assign" P Zuweisung physische Datei an Dateivariable

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-19

 "Rewrite" P Neue Datei öffnen und anlegen
 "Close" P Datei schließen
 "Reset" P Vorhandene Datei öffnen
 "EoF" F Ende der Datei. Ergebnistyp: Boolean
 "Seek" P Positionszeiger setzen
 "FilePos" F Positionszeiger anzeigen
 "FileSize" F Anzahl der Datensätze anzeigen
 }

uses
 CRT;

const
 AnzahlDatensaetze = 7;
 Aw = 10; { für spätere Zufallsdaten }
 Ew = 60;

var
 i,
 Zahl,
 Nummer: Byte;
 Datei: file of Byte; { Reserviertes Wort "file", strukturierter }
 { Typ. Allgemein: "file of Datentyp" }
 { Bei Textdateien wegen der variablen }
 { Zeilenlängen dagegen: "Datei: Text" }
begin
 ClrScr;

 Assign(Datei, 'C:\Student\Datei1.DAT');
 { Zuweisung eines physischen (DOS-) Dateinamens, hier }
 { "C:\Student\Datei1.DAT" an die (logische) Dateivariable, }
 { hier "Datei". Der physische Dateiname ist ein String- }
 { Ausdruck nach MS-DOS-Konvention. }

 { -- }

 Rewrite(Datei); { Eine neue Datei wird mit "Rewrite" eingerichtet,
 eine evtl. vorhandene wird zerstört. Vorsicht!
 Der Positionszeiger wird auf das erste Element
 gesetzt; die Zählung beginnt aber mit 0. }

 Write('Test 1: ');
 for i := 1 to AnzahlDatensaetze do
 begin
 Zahl := Aw + Random(Ew + 1 - Aw); { Zufallszahl }
 Write(Zahl, ' '); { ¦Test 1: 10 26 33 26 46 14 36 }
 Write(Datei, Zahl); { Variable in typ. Datei schreiben. }
 { Nur Variable, kein Ausdruck! }
 end;
 WriteLn;

 Close(Datei); { Schließen mit "Close". Dateien nur so lange offen }
 { halten wie unbedingt notwendig. Datenverlust bei }
 { Stromausfall und bei Rechnerabsturz möglich! }

 { -- }
 Reset(Datei); { Öffnen einer existierenden Datei mit "Reset" }

 Write('Test 2: ');
 while not EoF(Datei) do { Standardfunktion "EoF", End of File }
 begin
 Read(Datei, Zahl); { Von Datei lesen und auf Variable zuweisen }

18-20 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 Write(Zahl, ' '); { ¦Test 2: 10 26 33 26 46 14 36 }
 end;
 WriteLn;

 { -- }
 Nummer := 3; { Der 3. "Datensatz" soll überschrieben werden }

 Seek(Datei, Nummer - 1);
 { Der Positionszeiger wird hier mittels "Seek" auf "Nummer - 1" }
 { gesetzt, da die interne Zählung mit 0 beginnt }

 Zahl := 99;
 Write(Datei, Zahl); { Das 3. Element wird überschrieben }

 Seek(Datei, 0); { Positionszeiger wird auf den Anfang gesetzt }

 Write('Test 3: ');
 while not Eof(Datei) do
 begin
 Read(Datei, Zahl);
 Write(Zahl, ' '); { ¦Test 3: 10 26 99 26 46 14 36 }
 end;
 WriteLn;
 { -- }
 Nummer := 4;

 Seek(Datei, Nummer - 1);

 Write('Test 4: ');
 while not EoF(Datei) do
 begin
 Read(Datei, Zahl);
 Write(Zahl, ' '); { ¦Test 4: 26 46 14 36 }
 end;
 WriteLn;
 { -- }
 Nummer := 5;
 Seek(Datei, Nummer - 1);
 Writeln('Test 5a: Der Positionszeiger: ', FilePos(Datei));{ ¦...: 4}

 Write('Test 5b: ');
 Read(Datei, Zahl);
 WriteLn(Zahl); { ¦Test 5b: 46 }

 WriteLn('Test 5c: Der Positionszeiger: ', FilePos(Datei));{ ¦...: 5}
 WriteLn('Test 5d: Anzahl Datensätze: ', FileSize(Datei));{¦...: 7}
 { -- }

 Close(Datei); { Schließen mit "Close", siehe oben }

 repeat
 until KeyPressed;
end.

Das folgende Programm behandelt den Compilerschalter "$I" (automatische IO-Kon-
trolle und die Standardfunktion IOResult am Beispiel einer typisierten Datei. Die Aus-
führungen treffen aber für alle Dateitypen zu.

program Pas18043; { Kap. 18.4: Demo typisierte Datei }
 { Weitere Datei-Prozeduren "P" und -Funktionen "F":
 "(Dateiname)" P: Löscht eine Datei, wie DOS

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-21

 "Rename(Dateiname1, Dateiname2)" P: Umbennen einer Datei, wie DOS
 "IOResult" F: Liefert Fehlerstatus der
 letzten Ein-/Ausgabeoperation mit Datentyp Word. Die Funktion
 liefert den Wert 0, wenn kein Fehler aufgetreten ist, sonst
 einen Fehlercode.
 Beispiel: Wenn das Laufwerk nicht betriebsbereit ist, wird der
 Fehlercode "152" (Drive not ready) geliefert.
 Um auf den Fehler reagieren zu können, muß die automatische IO-
 Kontrolle mit dem Compilerschalter "$I-" abgeschaltet werden.
 Nach einem Fehler werden folgende Ein- und Ausgabeoperationen
 solange ignoriert, bis die Funktion "IOResult" aufgerufen wird.
 }
uses
 CRT;
var
 IO_Fehler: Word;
 F: file of Char;

begin
 ClrScr;

 Assign(F, 'A:Datei3.DAT'); { Für die Demo soll im Laufwerk A }
 { keine Diskette sein }

 {$I-} { Compilerschalter: Automatische IO-Kontrolle AUS }

 Reset(F);
 IO_Fehler := IOResult;
 {$I+} { Compilerschalter: Automatische IO-Kontrolle EIN }
 if IO_Fehler = 152
 then WriteLn('Fehler ', IO_Fehler,
 ': Laufwerk nicht betriebsbereit ... ');
 {

 }
 repeat
 until KeyPressed;
end.

18.5 Sonderfall: Geräte als Textdateien

program Pas18051; { Kap. 18.5: Geräte als Textdateien }
 { Alternativ Ausgabe auf Bildschirm, Drucker oder Datei }
uses
 CRT, PRINTER;

var
 Ch, ChL: Char;
 Textzeile: string;

begin
 TextBackground(Blue); TextColor(Yellow); ClrScr;
 Write('Ausgabe auf Bildschirm (B), Drucker (D) ',
 'oder File (F): ');
 repeat
 Ch := UpCase(ReadKey);
 until Ch in ['B', 'D', 'F'];
 WriteLn(Ch, #13#10);

18-22 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 TextColor(White); { Aber nicht wirksam, wenn mit "Lst" }
 { auf Bildschirm geschrieben wird }
 case Ch of
 'B': Assign(Lst, 'CON'); { "Lst": List Device, Standard- }
 'D': Assign(Lst, 'LPT1'); { Dateibezeichner aus Unit PRINTER }
 'F': Assign(Lst, 'C:\Student\Temp.TXT');
 end;

 Rewrite(Lst); { "Datei" öffnen für Schreiben }
 WriteLn(Lst, 'Auch zeichenorientierte Geräte wie Bildschirm und ');
 WriteLn(Lst, 'Drucker können als Textdateien angesprochen werden.');
 WriteLn(Lst, 'Dazu wird "Lst" aus der Unit "Printer" benötigt. ');
 WriteLn(Lst, '---');
 WriteLn(Lst, '"CON": Console. Bei Ausgabe Bild- ');
 WriteLn(Lst, ' schirm, bei Eingabe Tastatur ');
 WriteLn(Lst, '"LPT1", "LPT2", usw: Paralleler Drucker. ');
 WriteLn(Lst, ' Nur für Ausgaben ');
 WriteLn(Lst, '"PRN": Wie "LPT1" ');
 WriteLn(Lst, '"COM1", "COM2", usw: Serielle Schnittstellen. Für ');
 WriteLn(Lst, ' Ein- und Ausgaben. ');
 WriteLn(Lst, '"AUX": Wie "COM1" ');
 WriteLn(Lst, '"NUL": Nullgerät. Ignoriert Ausgaben');
 WriteLn(Lst, ' und liefert bei Eingaben so- ');
 WriteLn(Lst, ' fort "End of File" (EoF). ');
 WriteLn(Lst, ' Für Programm-Testzwecke ');
 WriteLn(Lst, '---',
 #13#10);
 Close(Lst); { "Datei" schließen }

 Reset(Lst); { Öffnen für "Lesen" }
 if Ch = 'B' then
 begin
 TextColor(Yellow);
 Write('Eingabe Textzeile: ');
 Readln(Lst, Textzeile); { "Lesen" von der Console = Tastatur }
 TextColor(White);
 WriteLn(Textzeile);
 end;
 Close(Lst);
 if Ch = 'F' then
 begin
 TextColor(Yellow);
 Write('Erzeugte Datei wieder löschen (j/n): j');
 GotoXY(WhereX - 1, WhereY);
 repeat
 ChL := UpCase(ReadKey);
 if ChL = #13
 then ChL := 'J';
 until ChL in ['J', 'N'];
 Write(ChL);
 if ChL = 'J' { Die Prozedure "Erase" löscht Datei }
 then Erase(Lst); { wie der DOS-Befehl "del Dateiename" }
 end;
 Write(#13#10#13#10, 'Ende mit Tastendruck ... ');
 repeat
 until ReadKey <> '';
end.

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-23

18.6 Demo untypisierte Datei

program Pas18061; { Kap. 18.6: Untypisierte Dateien }
 { Demonstriert das byteweise Einlesen einer (beliebigen) Datei }
 { in einen Puffer, der anschließend sofort in eine andere Datei }
 { geschrieben wird. }

 { Die Formate von "Reset" und "Rewrite" bei untypisierten Dateien:
 - Reset(datei [, recordgroesse])
 - Rewrite(datei [, recordgroesse])
 datei: Dateivariable für typisierte Datei
 recordgroesse: Recordgröße, Word-Ausdruck. Optional.
 Wenn nicht angegeben, dann wird die Recordgröße
 auf den Standardwert 128 gesetzt.

 Die Formate von "BlockRead" und "BlockWrite":
 - BlockRead(datei, puffer, rSoll [, rIst])
 - BlockWrite(datei, puffer, rSoll [, rIst])
 datei: Dateivariable für typisierte Datei
 puffer: Variable beliebigen Typs,
 normalerweise Typ "Byte" oder "Char"
 rSoll: Word-Ausdruck. Anzahl der Records,
 die gelesen (BlockRead) bzw. geschrieben
 (BlockWrite) werden sollen.
 rIst: Word-Variable. Optionaler Rückgabewert. Anzahl
 der Records, die tatsächlich gelesen (BlockRead)
 bzw. geschrieben (BlockWrite) wurden.
 Wenn die Option n i c h t benutzt wird, dann
 wird ein Laufzeitfehler erzeugt, wenn versucht
 wird, über das Dateiende hinaus Records zu lesen
 (bei BlockRead) oder nicht alle Records geschrieben
 werden können (bei BlockWrite, wenn z.B. Datenträger
 voll ist.
 }

uses
 CRT;

const { Pfade anpassen }
 DOS_Quelle = 'Pas18061.QQQ';
 DOS_Ziel = 'C:\Student\Pas18061.ZZZ';
 Recordlaenge = 1; { byteweise in/aus Puffer }

var
 F_Quelle,
 F_Ziel: file; { untypisierte Datei }
 PufferV: array[1..512] of Byte;
 { Datentyp normalerweise "Byte" oder "Char". }
 { Die Variable "PufferV" muß mindestens so groß }
 { groß sein wie "Recordlaenge * RecordzahlSoll" }
 { und kann max. 64 KByte groß sein. }
 rReadSoll, { Soviele Records sollen gelesen werden }
 rReadIst, { Soviele Records wurden tatsächlich gelesen. }
 rWriteSoll,
 rWriteIst: Word;

procedure DateiGroessenAnzeigen;
begin
 WriteLn; { Standardfunktion "FileSize" liefert Anzahl }

18-24 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 { der Komponenten. Wenn Datei leer, dann 0. }
 WriteLn(' Dateigröße Quelle: ', FileSize(F_Quelle));
 WriteLn(' Dateigröße Ziel: ', FileSize(F_Ziel));
 WriteLn;
end;

begin
 ClrScr;

 Assign(F_Quelle, DOS_Quelle); Reset(F_Quelle, Recordlaenge);
 Assign(F_Ziel, DOS_Ziel); Rewrite(F_Ziel, Recordlaenge);

 DateigroessenAnzeigen;

 rReadSoll := SizeOf(PufferV); { hier auf maximalen Wert setzen }

 repeat
 BlockRead(F_Quelle, PufferV, rReadSoll, rReadIst);

 Write(' Gelesene Records: ', rReadIst:4); { Nur Demo }
 rWriteSoll := rReadIst;

 BlockWrite(F_Ziel, PufferV, rWriteSoll, rWriteIst);
 Writeln(' Geschriebene Records: ', rWriteIst:4); { Nur Demo }

 if rWriteIst < rWriteSoll then
 begin
 DateigroessenAnzeigen;
 Write(' Datenträger voll. Abbruch mit Taste Esc ... ');
 Close(F_Quelle);
 Close(F_Ziel);
 repeat
 until ReadKey = #27;
 Halt(4711); { >>>>>>>>>>>> }
 end;
 until (rReadIst = 0);

 DateigroessenAnzeigen;
 Close(F_Quelle);
 Close(F_Ziel);

 Write(' Ende mit Esc ... ');
 repeat
 until ReadKey = #27;
end.

18.7 Ausgewählte Datei-Routinen aus der Unit DOS

Inhaltsverzeichnis und Datei-Attribute unter Turbo-Pascal anzeigen:

program Pas18071; { Ausgewählte Datei-Routinen aus der Unit DOS }
 { K. Haller, 77040599 }
uses
 CRT, DOS;
{ In der Unit DOS ist der Recordtyp "SearchRec" wie folgt definiert:
 +---+
 ¦ type ¦
 ¦ SearchRec = record ¦
 ¦ Fill: array[1..21] of Byte; ¦

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-25

 ¦ Attr: Byte; ¦
 ¦ Time: LongInt; ¦
 ¦ Size: LongInt; ¦
 ¦ Name: string[12]; ¦
 ¦ end; ¦
 +---+
 Zu "Fill": Für DOS reserviert.
 Zu "Attr": Dateiattribut, in der Unit DOS wie folgt deklariert:
 +---------------------+
 ¦ const ¦ dez
 ¦ ReadOnly = $01; ¦ 1
 ¦ Hidden = $02; ¦ 2
 ¦ SysFile = $04; ¦ 4
 ¦ VolumeID = $08; ¦ 8
 ¦ Directory = $10; ¦ 16
 ¦ Archive = $20; ¦ 32
 ¦ AnyFile = $3F; ¦ 63 = 1 + 2 + 4 + 8 + 16 + 32
 +---------------------+
 Bei der Eingabe der Attribute ist zu beachten, daß
 die Prozedur "FindFirst" (Anwendung später) auch
 Dateien findet, die ein weniger eingeschränktes
 Attribut besitzen.
 Zu "Time": Gepackte Darstellung von "Time" und "Date" der Datei-
 erstellung bzw. letzten Änderung. Mit der Unit-DOS-
 Prozedur "UnpackTime" (Anwendung später) kann aufge-
 splittet werden.
 Zu "Size": Dateigröße in Byte.
 Zu "Name": Dateiname mit Extension, incl. Trennpunkt.
}
procedure Inhaltsverzeichnis; { --------- Hauptprozedur ------------ }
const
 Standardfarbe = Cyan;
 DirFarbe = Green;

type
 Str10 = string[10];
 Str8 = string[8];
 Str6 = string[6];
 Str3 = string[3];

var
 Dateiname: Str8;
 Extension: Str3;
 DateiInfo: SearchRec; { Recordtyp "SearchRec" aus Unit DOS }
 DateiDatum: Str10;
 DateiZeit: Str8;
 Attribut: Byte;
 AttributStr: Str6;
 i: Word;
 iStr: string[3];
 Dir_oder_Vol: Boolean;
 Kurzform: Boolean;
 ZeileMax: Byte;

procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);
begin
 GotoXY(Spalte, Zeile);
 Write(Meldung);
end;

18-26 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

procedure WarteAufTastendruck(ZeileMax: Byte);
var
 Ch: Char;
begin
 TextColor(DirFarbe);
 WriteXY(25, ZeileMax, ' Weiter mit Tastendruck ... ');
 TextColor(Standardfarbe);
 while KeyPressed do
 Ch := ReadKey;
 Ch := ReadKey;
 ClrScr;
end;

procedure DatumZeit_umformen(DateiInfo: SearchRec;
 var DateiDatum: Str10;
 var DateiZeit: Str8);
var
 DatumZeit: DateTime; { Recordtpy "DateTime" aus Unit DOS: }
 JahrStr: string[4]; {+---------------------------------------+}
 MonatStr: string[2]; {¦ type DateTime = record ¦}
 TagStr: string[2]; {¦ Year: 1980..2099; ¦}
 StundenStr, {¦ Month: 1..12; ¦}
 MinutenStr, {¦ Day: 1..31; ¦}
 SekundenStr: string[2]; {¦ Hour: 0..23; ¦}
 {¦ Min: 0..59; ¦}
begin {¦ Sec: 0..59; ¦}
 ; {¦ end; ¦}
 ; {+---------------------------------------+}
 UnpackTime(DateiInfo.Time, DatumZeit);
 { Prozedur "UnpackTime" aus Unit DOS }
 Str(DatumZeit.Year, JahrStr);
 Str(DatumZeit.Month, MonatStr);
 Str(DatumZeit.Day, TagStr);
 if Length(TagStr) = 1 then TagStr := '0' + TagStr;
 if Length(MonatStr) = 1 then MonatStr := '0' + MonatStr;
 DateiDatum := TagStr + '.' + MonatStr + '.' + JahrStr;

 Str(DatumZeit.Hour, StundenStr);
 Str(DatumZeit.Min, MinutenStr);
 Str(DatumZeit.Sec, SekundenStr);
 if Length(StundenStr) = 1 then StundenStr := '0' + StundenStr;
 if Length(MinutenStr) = 1 then MinutenStr := '0' + MinutenStr;
 if Length(SekundenStr) = 1 then SekundenStr := '0' + SekundenStr;
 DateiZeit := StundenStr + ':' + MinutenStr + ':' + SekundenStr;
end;

procedure Dateiname_umformen(DateiInfo: SearchRec;
 var Dateiname: Str8;
 var Extension: Str3);
var
 pPos: Byte;
 Ch: Char;
 j: Byte;
begin
 if (DateiInfo.Name = '.') or (DateiInfo.Name = '..')
 then begin
 Dateiname := DateiInfo.Name;

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-27

 Extension := '';
 end
 else begin
 pPos := Pos('.', DateiInfo.Name); { Punktposition }
 if pPos = 0
 then begin
 Dateiname := DateiInfo.Name;
 Extension := '';
 end
 else begin
 Dateiname := Copy(DateiInfo.Name, 1, pPos - 1);
 Extension := Copy(DateiInfo.Name, pPos + 1, 3);
 end;
 end;
 while Length(Dateiname) < 8 do
 Dateiname := Dateiname + ' '; { Mit Blanks auffüllen }
 while Length(Extension) < 3 do
 Extension := Extension + ' '; { Mit Blanks auffüllen }

 if (Pos('D', AttributStr) = 0) and (Pos('V', AttributStr) = 0) then
 begin
 for j := 1 to Length(Dateiname) do
 begin
 Ch := Dateiname[j];
 if Ch in ['A'..'Z'] { In Klein- }
 then Dateiname[j] := Chr(Ord(Ch) + 32); { buchstaben }
 end; { Bei ASCII: 32 = Ord('a') - Ord('A') }
 ;
 for j := 1 to Length(Extension) do
 begin
 Ch := Extension[j];
 if Ch in ['A'..'Z'] { In Klein- }
 then Extension[j] := Chr(Ord(Ch) + 32); { buchstaben }
 end;
 end;
end;

procedure Drucke_Kopfleiste;
begin
 TextColor(Standardfarbe);
 WriteXY(3, 1, '+-------------------------------------' +
 '------------------------------+');
 WriteXY(3, 2, '¦ ' +
 ' ¦');
 WriteXY(3, 3, '+-------------------------------------' +
 '------------------------------¦');
 WriteXY(3, 4, '¦ Nr¦ Name ¦Ext¦Attribute¦Dateigröße' +
 '¦DateTime ¦ Datum ¦ Zeit ¦');
 WriteXY(3, 5, '+---+--------+---+---------+----------' +
 '+---------+----------+--------¦');
 TextColor(DirFarbe);
 WriteXY(5, 2, 'Directory mit Turbo-Pascal-Unit DOS. ' +
 'Dr. K. Haller, FHM, 77040599');
 TextColor(Standardfarbe);
 WriteLn;
 Window(1, 6, 80, 25);
end;

18-28 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

procedure Daten_ausdrucken; { Der Einfachheit halber }
begin { keine Parameterübergabe }
 if Dir_oder_Vol
 then TextColor(DirFarbe)
 else TextColor(Standardfarbe);
 WriteXY(4, WhereY, iStr);
 WriteXY(8, WhereY, Dateiname);
 WriteXY(17, WhereY, Extension);
 GotoXY(21, WhereY); Write(Attribut:2);
 WriteXY(24, WhereY, AttributStr);
 GotoXY(31, WhereY);
 if not Dir_oder_Vol { D- und V-Einträge haben }
 then Write(DateiInfo.Size:10) { "Dateigröße" 0. Statt }
 else if Pos('D', AttributStr) <> 0 { dessen Hinweis drucken. }
 then Write('•Sub--Dir' + #17) { Zeichen #17 nicht }
 else Write('•VolumeID' + #17); { mit "Alt-17" möglich }

 GotoXY(42, WhereY); Write(DateiInfo.Time);
 WriteXY(52, WhereY, DateiDatum);
 WriteXY(63, WhereY, DateiZeit);
 TextColor(Standardfarbe);
 WriteXY(3, WhereY, '¦'); WriteXY(7, WhereY, '¦');
 WriteXY(16, WhereY, '¦'); WriteXY(20, WhereY, '¦');
 WriteXY(30, WhereY, '¦'); WriteXY(41, WhereY, '¦');
 WriteXY(51, WhereY, '¦'); WriteXY(62, WhereY, '¦');
 WriteXY(71, WhereY, '¦'); WriteLn;
end;

procedure AttributeErmitteln(var AttributStr: Str6;
 var Dir_oder_Vol: Boolean;
 DateiInf0: SearchRec);
begin
 Attribut := DateiInfo.Attr;
 AttributStr := '';
 { Nachfolgend Bit-Nr 0, 1, 2, 3, 4 und 5 testen, ob gesetzt: }
 if (Attribut and 1) = 1 then AttributStr := AttributStr + 'R';
 if (Attribut and 2) = 2 then AttributStr := AttributStr + 'H';
 if (Attribut and 4) = 4 then AttributStr := AttributStr + 'S';
 if (Attribut and 8) = 8 then AttributStr := AttributStr + 'V';
 if (Attribut and 16) = 16 then AttributStr := AttributStr + 'D';
 if (Attribut and 32) = 32 then AttributStr := AttributStr + 'A';
 while Length(AttributStr) < 6 do { String vorne mit }
 AttributStr := ' ' + AttributStr; { Blanks auffüllen }
 if (Pos('V', AttributStr) <> 0) or (Pos('D', AttributStr) <> 0)
 then Dir_oder_Vol := True
 else Dir_oder_Vol := False;
end;

function KurzformEinzug: Boolean;
var
 Ch: Char;
begin
 ClrScr;
 WriteXY(10, 5, 'Directory mit Routinen der Turbo-Pascal-Unit DOS');
 WriteXY(10, 7, '1 Langfassung. Ausgabe aller DateiInformationen');
 WriteXY(10, 8, '2 Kurzfassung. Keine H-, S-, V- und D-Einträge ');
 WriteXY(10, 9, '--');
 WriteXY(10,10, '1'); GotoXY(WhereX - 1, WhereY);

Dr. K. Haller Turbo-Pascal Kap. 18: Dateien 18-29

 repeat
 Ch := ReadKey;
 if Ch = #13
 then Ch := '1'
 until Ch in ['1', '2'];
 Write(Ch);
 if Ch = '1'
 then KurzformEinzug := False
 else KurzformEinzug := True;
 ClrScr;
end;

begin { Beginn Rumpf der Hauptprozedur "Inhaltsverzeichnis" ------- }
 Kurzform := KurzformEinzug;

 if not Kurzform
 then begin
 ClrScr;
 Drucke_Kopfleiste;
 i := 0; { Für Zähler Anzahl der Einträge }
 ZeileMax := 20; { Nur für Tastendruck-Hinweis }
 end
 else begin
 ClrScr;
 Textcolor(DirFarbe);
 Write(' ---------------- Directory ohne H-, S-, ' +
 'V- und Ordner-Einträge -------------');
 TextColor(Standardfarbe);
 ZeileMax := 24; { Nur für Tastendruck-Hinweis }
 end;
 FindFirst('C:*.*', AnyFile, DateiInfo);
 { Prozedur "FindFirst" aus Unit DOS, }
 { Format: FindFirst(pfad, dateiattribut, recordvariable) }
 while DosError = 0 do
 begin { Variable "DosError" aus Unit DOS. Die Werte: }
 ; { 0: Fehlerfrei }
 ; { 2: Directory nicht gefunden }
 ; { 18: Keine weiteren Einträge (nur bei "FindNext") }
 AttributeErmitteln(AttributStr, Dir_oder_Vol, DateiInfo);
 if not Kurzform
 then begin
 Inc(i);
 Str(i, iStr);
 while Length(iStr) < 3 do
 iStr := '0' + iStr;
 DatumZeit_umformen(DateiInfo, DateiDatum, DateiZeit);
 Dateiname_umformen(DateiInfo, Dateiname, Extension);
 Daten_ausdrucken;
 end
 else if (Pos('H', AttributStr) = 0) and { nicht Hidden }
 (Pos('S', AttributStr) = 0) and { nicht System }
 (Pos('V', AttributStr) = 0) and { nicht VolumeID }
 (Pos('D', AttributStr) = 0) { nicht Directory }
 then Write(DateiInfo.Name:16); { "normale" Datei }
 if WhereY = ZeileMax
 then WarteAufTastendruck(ZeileMax);
 FindNext(DateiInfo); { Prozedur "FindNext" aus Unit DOS, }

18-30 Dr. K. Haller Turbo-Pascal Kap. 18: Dateien

 { Format: FindNext(recordvariable) }
 end;
 if not Kurzform
 then WriteXY(3, WhereY, '+----- Ende ----------------------' +
 '----------------------------kha---+')
 else WriteLn(#13, ' ------- Ende -----------------------' +
 '---------------------------------kha----');
 WarteAufTastendruck(ZeileMax);
 Window(1, 1, 80, 25);
end; { ---- von Hauptprozedur "Inhaltsverzeichnis" ---------------- }

begin { ==== Hauptprogramm === }
 Inhaltsverzeichnis;
end. { == }

Eine Ausgabe des Programms Pas18071.PAS (Langfassung der Dateieinträge):

27030593 Dr. K. Haller

