
Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-1

17 Anwendungen: Sortieren, Suchen, Mischen

Gliederung

17.1 Das Sortieren von Daten ...3

17.1.1 Das BubbleSort-Verfahren ...3
17.1.2 Das MinimumSort-Verfahren ...5
17.1.3 Das QuickSort-Verfahren ...5
17.1.4 Demo-Programm zum Testen der Sortier-Algorithmen6

17.2 Das Suchen in Listen ..14

17.3 Das Mischen von sortierten Daten..16

17-2 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Vorbemerkungen und Variablentausch

Sortieren, Suchen und Mischen kommen besonders in der kommerziellen Datenver-
arbeitung recht häufig vor. Der Zeitanteil wird in diesem Bereich auf 30% bis 50%
geschätzt.

Sortieren, Suchen und Mischen setzen indizierte Variablen (Arrays, Listen) voraus.

Beim Sortieren müssen sehr häufig (indizierte) Variablen getauscht werden.

In Turbo-Pascal steht für das Tauschen von zwei Variablen keine Standard-Prozedur zur
Verfügung. Man muß selbst den sog. "Dreieckstausch" programmieren. Dazu ist eine
Hilfsvariable vom gleichen Datentyp notwendig.

Beispiel:

 x := 'Huber';
 y := 'Meier';

 Temp := x; { temporäre Hilfsvariable für Dreieckstausch }
 x := y;
 y := Temp;

 WriteLn(x); { │Meier }
 WriteLn(y); { │Huber }

Hinweis: Die Turbo-Pascal-Standardfunktion "Swap" vertauscht das niederwertige mit
dem höherwertigen Byte eines Integer- oder Word-Ausdrucks. Dieses "Swap" ist für die
hier genannte Aufgabe nicht geeignet.

17.1 Das Sortieren von Daten

Für das Sortieren gibt es viele Verfahren (Bubble-Sort, Sortieren durch Einfügen, Heap-
Sort, Shell-Sort, Quick-Sort, Misch-Sort, ...). Sie unterscheiden sich im Programmier-
aufwand, in der Leistung (Zeitbedarf) und im Speicherbedarf.

Im allgemeinen gilt das »Quick-Sort« als das effektivste Verfahren. Dieses Verfahren
wird im Praktikum behandelt.

Es gilt die Regel: Je leistungsfähiger, desto aufwendiger!

Ausnahmen gibt es viele. Das optimale Verfahren kann man ohne Kenntnis des Um-
fanges und der Konstellation der Daten nicht sicher angeben.

Es zeigt sich, daß leistungsfähige Verfahren bei kleinen Datenmengen in bezug auf Sor-
tierzeit ungünstiger abschneiden als einfache Verfahren. Bei kommerziellen Anwen-
dungen liegen fast immer große Datenmengen vor. Einfache Verfahren führen in diesen
Fällen zu unzumutbaren Zeiten.

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-3

Kernpunkt des Sortierens ist der Vergleich von zwei Daten. Bei numerischen Daten ist
die Entscheidung unstrittig. Bei Strings muß nach (sinnvollen) Vereinbarungen vorge-
gangen werden; die Länge eines Strings ist offensichtlich nicht das entscheidende
Kriterium. Man denke an die Suche im Telefonbuch!

Beim Vergleich von zwei Strings werden intern die ASCII-Ordnungsnummern der ein-
zelnen Zeichen miteinander verglichen und zwar von links beginnend. Tritt zum ersten-
mal ein Unterschied auf, dann ist die Ordnungsnummer entscheidend dafür, ob der eine
String größer oder kleiner ist als der andere. Die Länge der Strings ist unerheblich. Man
beachte, daß auch das Leerzeichen (Space, Blank) ein codiertes Zeichen ist (Ord-
nungsnummer 32). Zwei Strings sind nur dann gleich, wenn sie an allen Stellen gleiche
Zeichen, d.h. gleiche Ordnungsnummern aufweisen. Sie sind dann zwangsweise auch
gleich lang.

Das folgende Beispiel zeigt den String-Vergleich:

┌───>────── y: Ordnungsnummer 121 (siehe Kap. 13)
│

String_1: Hans Meyer
String_2: Hans Meierlein

│
└───>────── i: Ordnungsnummer 105

Somit ist String1 größer als String2.

Allgemeines Sortierproblem bei Sonderzeichen: Die deutschen Sonderzeichen (Um-
laute und Scharf-S) besitzen im IBM-Zeichensatz Ordnungsnummern > 127. Sie sind
somit nach 'Z' bzw. 'z' angeordnet, siehe Kap. 13. Deshalb ist z.B. 'Ärger' größer als
'Zirkus'. Dieses Problem ist ggf. durch eigene programmtechnische Maßnahmen zu
lösen, z.B. wie folgt: Vor dem Vergleich der beiden Strings diese auf temporäre Strings
kopieren, darin die Umlaute durch Umschreibungen zu ersetzen sind ('AE' statt 'Ä', 'ue'
statt 'ü', 'ss' statt 'ß' usw. Dazu u.a. die Funktion "Pos" nach Kap. 14 einsetzen). Zum
Sortier-Vergleich benutzt man die beiden temporären Strings, tauscht dann aber im
gegebenen Fall die originalen Strings.

Nachstehend wird ein sehr einfaches Verfahren, das sog. Bubble-Sort-Verfahren,
gezeigt. Weitere Verfahren werden im Praktikum behandelt.

17.1.1 Das BubbleSort-Verfahren

Der Grundgedanke: Man durchlaufe wiederholt den Array von Anfang an bis zum vor-
letzten Element und vergleiche das Element i mit dem Nachfolger-Element i + 1. Ist das
i-te Element größer als sein Nachfolger, so werden beide getauscht. Man merke sich,
wenn ein Tausch stattgefunden hat. Hat bei einem Durchgang kein Tausch mehr
stattgefunden, so ist der Array sortiert und der Vorgang kann beendet werden.

17-4 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Stellt man sich den Array als eine senkrechte Leiter vor, so wandern die kleineren Ele-
mente bei jedem Durchgang um eine Sprosse nach oben, vergleichbar mit aufsteigenden
Luftblasen. Daher der Name BubbleSort.

BubbleSort zeigt günstiges Zeitverhalten, wenn die Daten weitgehend vorsortiert sind.
Für größere Datenmengen ist BubbleSort im allgemeinen nicht gut geeignet. Das
folgende Demo-Programm zeigt BubbleSort.

program Pas17011; { Kap. 17.1: Sortieren, BubbleSort }

const
 iMax = 8;

var
 x: array[1..iMax] of Integer;
 TempX: Integer; { Hilfsvariable für Integer-Dreiecks-Tausch }
 StrA: array[1..iMax] of string[20];
 TempStr: string[20]; { Hilfsvariable für String-Dreiecks-Tausch }
 i: Byte;
 Sortiert: Boolean;

begin
 x[1] := 7; x[2] := 3; x[3] := 6; x[4] := 5; { Demo-Daten ... }
 x[5] := 3; x[6] := 4; x[7] := 9; x[8] := 0;

 StrA[1] := 'Huber'; StrA[2] := 'huber';
 StrA[3] := 'Huber Anton'; StrA[4] := 'Aumann';
 StrA[5] := 'Ängstlich'; StrA[6] := 'Zeppelin';
 StrA[7] := 'Maus'; StrA[8] := 'Mausilein';

 repeat { Integer sortieren }
 Sortiert := True; { vorerst nur kühne Behauptung }
 for i := 1 to iMax - 1 do
 if x[i] > x[i + 1] then
 begin
 TempX := x[i]; { Drei- }
 x[i] := x[i + 1]; { ecks- }
 x[i + 1] := TempX; { tausch }
 Sortiert := False;
 end;
 until Sortiert;

 repeat { Strings sortieren }
 Sortiert := True;
 for i := 1 to iMax - 1 do
 if StrA[i] > StrA[i + 1] then
 begin
 TempStr := StrA[i]; { Drei- }
 StrA[i] := StrA[i + 1]; { ecks- }
 StrA[i + 1] := TempStr; { tausch }
 Sortiert := False;

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-5

 end;
 until Sortiert;

 for i := 1 to iMax do
 WriteLn(i,': ', x[i], i:10, ': ', StrA[i]);

 { Die Bildschirmausgabe: }
 { │1: 0 1: Aumann }
 { │2: 3 2: Huber }
 { │3: 3 3: Huber Anton }
 { │4: 4 4: Maus }
 { │5: 5 5: Mausilein }
 { │6: 6 6: Zeppelin }
 { │7: 7 7: huber }
 { │8: 9 8: Ängstlich }
end.

BubbleSort wird auch im späteren Demo-Programm "Pas17012.PAS" als Verfahren 2
gezeigt.

17.1.2 Das MinimumSort-Verfahren

Wird als Verfahren 1 im späteren Demo-Programm "Pas17012.PAS" gezeigt

Das erste Element des Vektors wird zunächst als kleinstes Element angenommen.
Dieses wird mit allen folgenden Elementen verglichen. Wenn ein kleineres Element
auftaucht, dann werden beide Elemente getauscht.

Nach dem 1. Durchgang steht das kleinste Element an der Spitze des Vektors. Für den
weiteren Verlauf braucht man nur den restlichen Vektor betrachten.

Enthält der Vektor n Elemente, dann ist das Sortieren nach (n - 1) Durchgängen abge-
schlossen, wie das folgende numerische Beispiel mit n = 6 zeigt (das fett-kursiv gesetzte
Element wird zunächst als kleinstes Element für den jeweiligen Durchgang
angenommen).

Original i = 1 i = 2 i = 3 i = 4 iMax = n - 1 = 5

j = 1 3 3, 2, 1, 0 0 0 0 0
j = 2 7 7 7, 3, 2,1 1 1 1
j = 3 2 2, 3 3, 7 7, 3, 2 2 2
j = 4 9 9 9 9 9, 7, 3 3
j = 5 1 1, 2 2, 3 3, 7 7, 9 9, 7
jMax = n = 6 0 0, 1 1, 2 2, 3 3, 7 7, 9
Nach der Entwicklung des MinimumSort-Algoritmus mache man sich Gedanken über
eine Optimierung (Verfahren 4 im Demo-Programm "Pas17012.PAS"), die mit wenig
Zusatzaufwand erreicht wird. Der Grundgedanke der Optimierung besteht darin, zuerst
nur den Index des kleinsten Elementes zu suchen; mit dessen Kennntnis braucht bei
jedem Durchgang höchstens einmal getauscht werden.

17-6 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

17.1.3 Das QuickSort-Verfahren

Wird als Verfahren 3 im späteren Demo-Programm "Pas17012.PAS" gezeigt.

Quicksort gilt im allgemeinen als das effektivste Verfahren, wenn größere Datenmengen
zu sortieren sind. Das Verfahren stammt von C. A. Hoare.

Bei Quick-Sort wird (wie bei allen höheren Sortierverfahren) die Tatsache ausgenutzt,
daß das Austauschen von Elementen über größere Distanzen effizienter ist als über
kürzere Distanzen. BubbleSort ist bei dieser Betrachtung sehr ungünstig, da immer nur
benachbarte Elemente ausgetauscht werden.

Das Sortiervorgang beginnt beim QuickSort nicht mit dem ersten Element, sondern
sondern mit einem mittleren. Der Vektor wird dann vom Anfang und vom Ende her
durchsucht, bis vor dem mittleren Element ein größeres und nach ihm ein kleineres
Element auftaucht. Diese beiden Elemente werden dann getauscht. Der Vorgang wird
wiederholt, bis sich die beiden Indizies treffen. Der Vektor ist dann in zwei Hälften
aufgeteilt, die linke Hälfte hat kleinere Elemente als das Element in der Mitte, die rechte
Häfte besitzt die größeren Elemente.

Mit dem gleichen Verfahren werden dann beide Hälften getrennt bearbeitet. Der
Vorgang wird solange wiederholt, bis schließlich die "Hälften" nur noch aus einem
Element bestehen. Dann ist der Vektor sortiert.

In Pascal kann Quicksort mit einer rekursiven Unter-Prozedur relativ einfach dargestellt
werden.

Es existiert ein nicht-rekursives QuickSort-Verfahren, das mit einem Integer-Hilfsarray arbeitet. Dieses
Verfahren ist anzuwenden, wenn die Programmiersprache keine Rekursion erlaubt oder wenn man die
Nachteile der Rekursion (Belastung des Stack-Speichers) vermeiden möchte.

Das Demo-Programm "Pas17012.PAS"

program Pas17012; { Verschiedene Sortier-Algorithmen. Sortierzeit }
 { Hier nur für Zufall-Strings }
 { Turbo-Pascal, 31090693. Dr. K. Haller, FHM, DR }
{$M 65520, 0, 655350 } { Compilerbefehl $M (Memory), Stackspeicher }
 { auf Maximalwert 65520 für Rekursion bei "rekursivem QuickSort" }
uses
 CRT, DOS;

const
 ZeitMin = 4.0; { Mindest-Sortierzeit in Sekunden, s. später}
 nMax = 2500; { Maximale Vektorlänge begrenzen. }
 StringLaenge = 10; { Der String-Vektor schluckt viel Speicher! }
 { Außerdem werden in diesem Demo-Programm }
 { immer 2 Vektoren angelegt, damit später }
 { die Daten zur Demonstration auch in un- }
 { sortierter Form ausgegeben werden können. }
type
 Verfahren = (Ende, MinimumSort1, BubbleSort,
 QuickSort, MinimumSort2);
 StringVektor = array[1..nMax] of string[StringLaenge];

var

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-7

 Sortierverfahren: Verfahren;
 s, s_unsortiert: StringVektor; { "s_unsortiert" steht für }
 { unsortierten Vektor. Für }
 { spätere Ausgabe notwendig. }
 n: LongInt; { n = aktuelle Vektorlänge }
 MitZeitmessung: Boolean;
 Zeit, ZeitGesamt: Real;
 AnzahlTausch: LongInt; { Anzahl der Vertauschungen }
 Wiederholungen: Word;
{ -- }

procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);
begin
 GotoXY(Spalte, Zeile);
 Write(Meldung);
end;

function Uhrzeit: Real;
var
 hh, mm, ss, ss100: Word;
begin
 GetTime(hh, mm, ss, ss100);
 Uhrzeit := 3600.0*hh + 60*mm + ss + 0.01*ss100;
 { "3600.0" damit Real-Mulitiplikation erzwungen wird, }
 { sonst Overflow-Error bei strenger Compiler-Einstellung }
end; { von Funktion "Uhrzeit" }

procedure Menue(var Sortierverfahren: Verfahren; var n: LongInt);
var
 Ch: Char;
 nStr: string;
 Fehlercode: Integer;
begin
 ClrScr;
 WriteXY(02, 2, 'Sortierverfahren. Hier Sortierzeit für ' +
 'Zufalls-Strings mit ');
 WriteLn(StringLaenge, ' Zeichen. kha ');
 WriteXY(20, 4, 'Sortierverfahren');
 WriteXY(20, 5, '----------------');
 WriteXY(20, 6, '1 MinimumSort1');
 WriteXY(20, 7, '2 BubbleSort ');
 WriteXY(20, 8, '3 QuickSort ');
 WriteXY(20, 9, '4 MinimumSort2');
 WriteXY(20, 10, 'Esc Ende, auch 0');
 WriteXY(20, 11, '---------------- Zeitmessung (j/n): j');
 WriteXY(20, 12, ' Eingabe n (1..');
 Write(nMax, '): ');
 GotoXY(20, 12);

 repeat
 Ch := ReadKey;
 if Ch = #27 then Ch := '0';
 until Ch in ['0'..'4'];
 Write(Ch);

17-8 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

 case Ch of
 '0': begin Sortierverfahren := Ende; Exit; end; { >>>>>>>>>>>> }
 '1': Sortierverfahren := MinimumSort1;
 '2': Sortierverfahren := BubbleSort;
 '3': Sortierverfahren := QuickSort;
 '4': Sortierverfahren := MinimumSort2;
 end;

 repeat
 GotoXY(64, 11);
 Ch := ReadKey;
 if Ch = #13 then Ch := 'j';
 until UpCase(Ch) in ['J', 'N'];
 Write(Ch);
 if UpCase(Ch) = 'J'
 then MitZeitmessung := True
 else MitZeitmessung := False;

 repeat
 GotoXY(64, 12); ClrEoL;
 GotoXY(64, 12);
 ReadLn(nStr); { Numerik-Eingabe abgesichert !! }
 Val(nStr, n, Fehlercode)
 until (n >= 1) and (n <= nMax) and (Fehlercode = 0);

end; { von Prozedur "Menue" }

procedure MinimumSort1String(n: Word;
 var s: StringVektor;
 var AnzahlTausch: LongInt);
var
 i, j: Word;
 sTemp: string; { Hilfsvariable für Tauschen }
begin
 AnzahlTausch := 0;
 for i := 1 to n - 1 do
 for j := i + 1 to n do
 if s[j] < s[i] then
 begin
 sTemp := s[i]; { Drei- }
 s[i] := s[j]; { ecks- }
 s[j] := sTemp; { tausch }
 Inc(AnzahlTausch);
 end;
end; { von Prozedur "MinimumSort1String" }

procedure MinimumSort2StringOpt(n: Word;
 var s: StringVektor;
 var AnzahlTausch: LongInt);
var { Freiwillige Zusatzaufgabe für die Studenten }
 i, j,
 iMin: Word;
 sTemp: string; { Hilfsvariable für Tauschen }

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-9

begin
 AnzahlTausch := 0;
 for i := 1 to n - 1 do
 begin
 iMin := i; { Vorerst }
 for j := i + 1 to n do
 if s[j] < s[iMin]
 then iMin := j;
 if iMin > i then
 begin
 sTemp := s[iMin]; { Drei- }
 s[iMin] := s[i]; { ecks- }
 s[i] := sTemp; { tausch }
 Inc(AnzahlTausch);
 end;
 end;
end; { von Prozedur "MinimumSort2StringOpt" }

procedure BubbleSortString(n: Word;
 var s: StringVektor;
 var AnzahlTausch: LongInt);
var
 i: Word;
 sTemp: string; { Hilfsvariable für Tauschen }
 Sortiert: Boolean;
begin
 AnzahlTausch := 0;
 repeat
 Sortiert := True; { vorerst nur kühne Behauptung }
 for i := 1 to n - 1 do
 if s[i] > s[i + 1] then
 begin
 sTemp := s[i]; { Drei- }
 s[i] := s[i + 1]; { ecks- }
 s[i + 1] := sTemp; { tausch }
 Sortiert := False;
 Inc(AnzahlTausch);
 end;
 until Sortiert
end; { von Prozedur "BubbleSortString" }

procedure QuickSortString(n: Word;
 var s: StringVektor;
 var AnzahlTausch: LongInt);
procedure QSortString(Links, Rechts: Word; { Unterprozedur }
 var AnzahlTausch: LongInt); { lokal }
var
 i, j: Word;
 sMitte: string; { Mittenelement String }
 sTemp: String; { Hilfsvariable für Tauschen }
begin
 i := Links;
 j := Rechts;
 sMitte := s[(Links + Rechts) div 2]; { Element etwa in der Mitte }
 repeat
 while s[i] < sMitte do Inc(i);

17-10 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

 while s[j] > sMitte do Dec(j);
 if i <= j then
 begin
 sTemp := s[i]; { Drei- }
 s[i] := s[j]; { ecks- }
 s[j] := sTemp; { tausch }
 Inc(i);
 Dec(j);
 Inc(AnzahlTausch);
 end;
 until i > j;
 if Links < j
 then QSortString(Links, j , AnzahlTausch); { rekurs. Aufruf }
 if Rechts > i
 then QSortString(i, Rechts, AnzahlTausch); { rekurs. Aufruf }
end; { von Unter-Prozedur "QSortString" }

begin
 AnzahlTausch := 0;
 QSortString(1, n, AnzahlTausch);
end; { von Prozedur "QuickSortString" }

procedure ZufallsStrings(n: Word;
 var s: StringVektor;
 StringLaenge: Byte);
var
 i: Word; { Index für das Zufallswort i }
 j: Byte;
 nStr: string;
 Fehlercode: Integer;

function Zufallszahl(Anfangswert, Endwert: Integer): Integer;
begin
 Zufallszahl := Anfangswert + Random(Endwert + 1 - Anfangswert);
end; { von lokaler Funktion "Zufallszahl" }

begin
 for i := 1 to n do { 1. Zeichen groß }
 begin { Rest klein }
 s[i] := Chr(Zufallszahl(Ord('A'), Ord('Z')));
 for j := 2 to StringLaenge do
 s[i] := s[i] + Chr(Zufallszahl(Ord('a'), Ord('z')));
 end;
end; { von Prozedure "ZufallsStrings" }

procedure Ausgabe; { Benützt außer "i" und "iStr" }
 { nur globale Variablen! }
var
 i: Word;
 iStr: string[4];
begin
 GotoXY(1, WhereY); ClrEoL;
 WriteXY(20, WhereY, 'Nr unsortiert sortiert');
 WriteXY(20, WhereY + 1, '-----------------------------' + #13#10);

 for i := 1 to n do
 begin
 Str(i, iStr);

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-11

 while Length(iStr) < 4 do
 iStr := '0' + iStr;
 GotoXY(20, WhereY);
 WriteLn(iStr, ' ', s_unsortiert[i], ' ', s[i]);
 end;
 WriteXY(20, WhereY, '-----------------------------' + #13#10);
 GotoXY(10, WhereY);
 Write('Sortierverfahren: ');
 case Sortierverfahren of
 MinimumSort1: WriteLn('MinimumSort1, einfach ');
 BubbleSort: WriteLn('BubbleSort ');
 QuickSort: WriteLn('QuickSort ');
 MinimumSort2: WriteLn('MinimumSort2, optimiert');
 end;

 GotoXY(10, WhereY);
 WriteLn('Anzahl Vertauschungen: ', AnzahlTausch);
 if MitZeitmessung then
 begin
 GotoXY(10, WhereY);
 WriteLn('Die Sortierzeit: ', Zeit:12:4, ' s');
 GotoXY(10, WhereY);
 WriteLn('Wegen genauerer Zeitmessung wurde der Sortier' +
 'vorgang ', Wiederholungen, '-mal wieder-');
 GotoXY(10, WhereY);
 WriteLn('holt. Die angegebene Zeit gilt aber für e i n e n ' +
 ' Sortiervorgang.');
 end;
 WriteLn;
 WriteXY(10, WhereY, 'Weiter mit Tastendruck ... ');
 repeat
 until ReadKey <> '';
end; { von Prozedure "Ausgabe" }

begin { ====== Hauptprogramm ===================================== }
 TextBackGround(Blue); TextColor(Yellow); ClrScr;

 repeat
 Menue(Sortierverfahren, n);

 if Sortierverfahren = Ende then Halt; { >>>>>>>>>>>>>>>>> }

 ZufallsStrings(n, s, StringLaenge);

 s_unsortiert := s; { unsortierter Vektor ... }
 { ... für spätere Ausgabe }
 WriteXY(10, WhereY + 2, 'Sortierung läuft. Bitte warten ... ');

 Wiederholungen := 0;
 ZeitGesamt := 0.0;

 repeat
 Inc(Wiederholungen);
 Zeit := Uhrzeit;
 s := s_unsortiert; { Array für Wiederholung regenerieren, }
 { sonst würde BubbleSort bevorzugt. Die Zeit fürs }
 { "Regenerieren" müßte man abziehen; relatativ klein. }
 case Sortierverfahren of
 MinimumSort1: MinimumSort1String(n, s, AnzahlTausch);
 BubbleSort: BubbleSortString(n, s, AnzahlTausch);

17-12 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

 QuickSort: QuickSortString(n, s, AnzahlTausch);
 MinimumSort2: MinimumSort2StringOpt(n, s, AnzahlTausch);
 end;
 Zeit := Uhrzeit - Zeit;
 ZeitGesamt := ZeitGesamt + Zeit;
 if not MitZeitmessung then Break;
 until ZeitGesamt >= ZeitMin; { Damit genauere Zeiten ... }

 Zeit := ZeitGesamt/Wiederholungen;
 Ausgabe;
 until Sortierverfahren = Ende; { Ausstieg aber weiter oben }
end. { === }

Die folgenden Excel-Tabellen wurden mit den Ausgaben von "Pas17012.PAS" erstellt.

Das erste Diagramm zeigt die Rechenzeiten als f(n) in linearer Darstellung, das zweite
in doppelt-logarithmischer Darstellung, das noch deutlicher die Leistungsfähigkeit von
QuickSort bei großen Datenmengen zeigt.

Sortierzeiten für Zufallsstrings mit 10 Zeichen. Excel-Tabelle

 Nach Programm "Pas17021.PAS", Rechner Pentium P-166, 16060693, Dr. K. Haller
Anzahl n MinimumSort1 BubbleSort QuickSort MinimumSort2

ohne Optimierung rekursiv mit Optimierung
0 0,000 0,000 0,000 0,000

10 0,002 0,002 0,002 0,002
50 0,005 0,006 0,002 0,004

100 0,013 0,017 0,003 0,007
150 0,027 0,034 0,004 0,012
200 0,046 0,065 0,005 0,021
400 0,172 0,239 0,009 0,076
600 0,385 0,549 0,012 0,167
800 0,697 0,998 0,017 0,294

1000 1,085 1,483 0,020 0,464
1500 2,445 3,430 0,031 1,043
2000 4,400 6,370 0,041 1,867
2500 6,860 10,000 0,053 2,940

Vertausch. 1.568.494 1.548.390 7.237 2.491
bei n = 2500

Die Sortierzeiten, von oben nach unten für
• BubbleSort
• MinimumSort1
• MinimumSort2
• QuickSort

a) in linearer Darstellung:

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-13

Sortierzeit in Sekunden in linearer Darstellung

0,000
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

0 500 1000 1500 2000 2500

Anzahl n

b) in doppelt-logarithmischer Darstellung:

0,001

0,010

0,100

1,000

10,000

100,000

1000,000

10000,000

10 100 1000 10000 100000

Anzahl n

17.2 Das Suchen in Listen

Beim Suchen geht es darum, die Stelle (= Index) eines Elementes in einer Liste (ein-
dimensionaler Array) zu ermitteln oder nachzuweisen, daß das Element in der Liste ent-
halten bzw. nicht enthalten ist.

17-14 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Wenn die Liste nicht sortiert ist, muß sequentiell jedes Element mit dem gesuchten Ele-
ment verglichen werden. Hat die Liste den Umfang n, so sind im ungünstigsten Fall n-
Vergleiche (Zugriffe) notwendig, im statistischem Mittel n/2. Das sequentielle Suchen
ist somit sehr zeitaufwendig.

Ein ungleich schnelleres Suchen wird erzielt, wenn die Liste sortiert vorliegt und die
Methode des binären Suchens eingesetzt wird. Die Anzahl zMax der maximalen
Zugriffe reduziert sich dann auf zMax = ld(n + 1). »ld« bedeutet logarithmus dualis,
Logarithmus zur Basis 2. Dezimalzahlen sind auf den nächsten ganzzahligen Wert
aufzurunden.

Die folgende Tabelle zeigt den Zusammenhang zMax = f(n):

Umfang der Liste n Anzahl der maximalen Zugriffe zMax beim binären Suchen
2 .. 3 2
4 .. 5 3
8 .. 15 4

16 .. 31 5
32 .. 63 6
64 .. 127 7

128 .. 255 8
256 .. 511 9
512 .. 1023 10

1024 .. 2047 11
2048 .. 4095 12
4096 .. 8191 13
8192 .. 16383 14

16384 .. 32767 15
32768 .. 65535 16

Mit zMax = 27 Zugriffen könnte ein Element in einer sortierten Liste mit dem Umfang n
= 227 - 1 = ca. 134 Millionen gesucht werden. Diese Zahl ist weit größer als die Ein-
wohnerzahl der Bundesrepublik (ca. 85 Mio). Zu bedenken ist aber, daß statische Arrays
in Pascal maximal 65536 Elemente enthalten können und auch nicht mehr Speicherplatz
in Bytes belegen dürfen.

Das binäre Suchen kann vereinfacht wie folgt beschrieben werden:

Man betrachte ein Element, das etwa in der Mitte der Liste steht. Wenn keine Überein-
stimmung mit dem Such-Element vorliegt sind zwei Fälle zu unterscheiden: Ist das
Such-Element kleiner als das Mitten-Element, so ist in der linken Teilhälfte
weiterzusuchen, anderenfalls in der rechten. Von dem zutreffendem Teilfeld betrachte
man wieder das Mitten-Element, wenn keine Übereinstimmung mit dem Such-Element
vorliegt, ist in dem zutreffenden Teil des Teilfeldes weiterzusuchen usw., bis entweder

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-15

das Such-Element gefunden wird oder die Ober- und Untergrenze des Teilfeldes
zusammenfallen. In diesem Fall ist das gesuchte Element nicht in der Liste enthalten.

Das folgende Demo-Programm zeigt das binäre Suchen am Beispiel eines String-
Arrays:

program Pas17021; { Kap. 17.2: Binäres Suchen }

uses
 CRT;

const
 iMax = 10; { Bei einer Liste mit 8..15 Elementen sind beim }
 { binären Suchen maximal 4 Zugriffe notwendig }
type
 String25 = string[25];
 StringArray = array[1..iMax] of String25;

var
 Unten,
 Oben,
 Mitte,
 GesuchterIndex,
 Zugriffe: Word;
 Gefunden: Boolean;
 StrA: StringArray;
 Suchelement: String25;

procedure Daten_einlesen_und_sortieren(var StrA: StringArray);
var
 i: Word;
 TempStr: String25; { Hilfsvariable für Dreiecks-Tausch }
 Sortiert: Boolean;

begin
 StrA[1] := 'Huber'; StrA[2] := 'Unentdeckter';
 StrA[3] := 'Meier'; StrA[4] := 'Geheimnisträger';
 StrA[5] := 'Yuppie'; StrA[6] := 'Stilles Wasser';
 StrA[7] := 'Bonze'; StrA[8] := 'Verdächtiger';
 StrA[9] := 'Unauffindbar'; StrA[10] := 'Strafpunktesammler';

 repeat { Bubble-Sort }
 Sortiert := True;
 for i := 1 to iMax - 1 do
 if StrA[i] > StrA[i + 1] then
 begin
 TempStr := StrA[i]; { Drei- }
 StrA[i] := StrA[i + 1]; { ecks- }
 StrA[i + 1] := TempStr; { tausch }
 Sortiert := False;
 end;
 until Sortiert;

 for i := 1 to iMax do
 WriteLn(i, ': ', StrA[i]); { nur für Demo }
end; { von »Daten_einlesen_und_sortieren« }

begin { Hauptprogramm binäres Suchen }

17-16 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

 ClrScr;

 Daten_einlesen_und_sortieren(StrA); { Binäres Suchen setzt
 sortierte Liste voraus }
 repeat
 WriteLn;
 Write('Eingabe Suchelement, Ende mit RETURN: ');

 ReadLn(Suchelement);

 if Suchelement = '' { »''«, wenn nur »Return« }
 then EXIT; { >>>>>>>>>>>>>>>>>>>>>>> }

 Unten := 1;
 Oben := iMax;
 Zugriffe := 0;
 Gefunden := False;

 repeat
 Inc(Zugriffe); { nur aus Neugierde Zugriffe zählen }
 Mitte := (Unten + Oben) div 2; { Element etwa in der Mitte }
 if Suchelement = StrA[Mitte]
 then begin
 Gefunden := True;
 GesuchterIndex := Mitte;
 end
 else if Suchelement > StrA[Mitte]
 then Unten := Mitte + 1 { »Oben« bleibt }
 else Oben := Mitte - 1; { »Unten« bleibt }
 until Gefunden or (Unten > Oben); { Vergleich unbedingt }
 { mit »>« und nicht »>=«, sonst Fehler! }

 if Gefunden
 then Write('Das Suchelement »', Suchelement,
 '« hat den Index: ', GesuchterIndex)
 else Write('Das Suchelement ist in der Liste ',
 'nicht enthalten');
 WriteLn('. Anzahl der Zugriffe: ', Zugriffe);
 until Suchelement = '';
end.

17.3 Das Mischen von sortierten Daten

Die Aufgabenstellung: Es liegen zwei sortierte Listen I und J vor. Aus diesen Listen soll
eine gemeinsame Liste K erstellt werden. Die Elemente von I und J sollen aber so in die
Liste K eingetragen werden, daß sie ohne Sortiervorgang sortiert ist.

Beispiel mit numerischen Daten:

Aus Liste I: 2, 4, 5, 6, 8, 13, 15

und Liste J: 1, 2, 3, 7

soll werden: Liste K: 1, 2, 2, 3, 4, 5, 6, 7, 8, 13, 15

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-17

Das Mischen wird dann eingesetzt, wenn man große Dateien zu sortieren hat, die im
Arbeitsspeicher des Rechners nicht Platz haben. Man teilt die große Datei in mehrere
kleinere externe Dateien auf, sortiert diese nacheinander im Arbeitsspeicher und
schreibt die sortierten Teillisten wieder in eine externe Datei (Magnetplatte, Magnet-
band, Diskette usw.). Dann mischt man zwei Teillisten und schreibt das Ergebnis wieder
in eine externe Datei. Durch Wiederholung kann man somit Dateien sortieren, deren
Größe nur durch die Kapazität des externen Speichers begrenzt ist.

Bei der Formulierung des Misch-Algorithmus ist zu bedenken, daß die zu mischenden
Listen unterschiedlich lang sein können. Unter dieser Berücksichtigung kann man das
Mischen wie folgt formulieren:

1. Wiederhole die Vorgänge 2 und 3 so lange, bis die K-Liste mit allen Elementen der
beiden Listen I und J gefüllt ist:

2. Vergleiche die beiden ersten Elemente (bzw. die beiden nächsten Elementen bei
weiteren Durchläufen) der beiden Listen I und J.

3. Ist das I-Element kleiner als das J-Element?
Wenn ja, dann:
3a1: Schreibe das I-Element in die Liste K.
3a2: Frage ab, ob die I-Liste bereits beendet ist.

Wenn ja, dann: Schreibe alle noch nicht übertragenen J-Elemente in die
Liste K.

anderenfalls:
3b1: Schreibe das J-Element in die Liste K.
3b2: Frage ab, ob die J-Liste bereits beendet ist.

Wenn ja, dann: Schreibe alle noch nicht übertragenen I-Elemente in die
Liste K.

Das folgende Struktogramm zeigt den Misch-Algorithmus in schematischer Pascal-
Schreibweise. Dabei werden folgende Variablennamen benutzt:

- Li_I[1..iMax] sortierte Liste I
- Li_J[1..jMax] sortierte Liste J
- Li_K[1..kmax] gemischte Liste K, sortiert.
 kMax = iMax + jMax
- i, j, k Laufvariablen für Listen I, J und K

17-18 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

i := 1

j := 1

for k := 1 to kMax

ja nein

Li_K[k] := Li_I[i]

i := i + 1

Li_I[i] < Li_J[j]

Li_K[k] := Li_J[j]

j := j + 1

i > iMax j > jMax

ja ja neinnein

to kMax
for k := k + 1 for k := k + 1

to kMax

Li_K[k] := Li_J[j]

j := j + 1

Li_K[k] := Li_I[i]

i := i + 1./. ./.

Das folgende Demo-Programm zeigt das Mischen von zwei sortierten String-Listen:

program Pas17031; { Kap. 17.3: Mischen von sortierten Daten }

uses
 CRT;

const
 iMax = 5;
 jMax = 8;
 kMax = iMax + jMax;

type
 String15 = string[15];
 StringArrayI = array[1..iMax] of String15;
 StringArrayJ = array[1..jMax] of String15;
 StringArrayK = array[1..kMax] of String15;

var
 ListeI: StringArrayI;
 ListeJ: StringArrayJ;
 ListeK: StringArrayK;
 i, j , k: Word;

procedure Daten_einlesen_und_sortieren(var ListeI: StringArrayI;
 var ListeJ: StringArrayJ);
var
 i: Word;
 TempStr: String15; { Hilfsvariable für Dreiecks-Tausch }
 Sortiert: Boolean;

begin
 ListeI[1] := 'Huber'; ListeI[2] := 'Zeppelin';
 ListeI[3] := 'Haspert'; ListeI[4] := 'Meyer';
 ListeI[5] := 'Yuppie';
 repeat { Bubble-Sort, Liste I }
 Sortiert := True;
 for i := 1 to iMax - 1 do
 if ListeI[i] > ListeI[i + 1] then
 begin

Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-19

 TempStr := ListeI[i]; { Drei- }
 ListeI[i] := ListeI[i + 1]; { ecks- }
 ListeI[i + 1] := TempStr; { tausch }
 Sortiert := False;
 end;
 until Sortiert;
 GotoXY(5, 1); WriteLn('Liste I ');
 GotoXY(5, 2); WriteLn('---------------');
 for i := 1 to iMax do
 begin
 GotoXY(5, 2 + i);
 Write(i, ': ', ListeI[i]); { nur für Demo }
 end;

 ListeJ[1] := 'Lippert'; ListeJ[2] := 'Aumann';
 ListeJ[3] := 'Kugler'; ListeJ[4] := 'Vulpert';
 ListeJ[5] := 'Huber'; { !! s.o. !! } ListeJ[6] := 'Greiner';
 ListeJ[7] := 'Meier'; ListeJ[8] := 'Berthold';
 repeat { Bubble-Sort, Liste J }
 Sortiert := True;
 for i := 1 to jMax - 1 do
 if ListeJ[i] > ListeJ[i + 1] then
 begin
 TempStr := ListeJ[i]; { Drei- }
 ListeJ[i] := ListeJ[i + 1]; { ecks- }
 ListeJ[i + 1] := TempStr; { tausch }
 Sortiert := False;
 end;
 until Sortiert;
 GotoXY(25, 1); WriteLn('Liste J ');
 GotoXY(25, 2); WriteLn('---------------');
 for i := 1 to jMax do
 begin
 GotoXY(25, 2 + i);
 Write(i, ': ', ListeJ[i]); { nur für Demo }
 end;
end; { von »Daten_einlesen_und_sortieren« }

begin { Hauptprogramm }
 ClrScr;

 Daten_einlesen_und_sortieren(ListeI, ListeJ);

 { Beginn Mischen }
 i := 1; { Start-Index für Liste I }
 j := 1; { Start-Index für Liste J }
 for k := 1 to kMax do
 if ListeI[i] < ListeJ[j]
 then begin
 ListeK[k] := ListeI[i];
 Inc(i);
 if i > iMax then
 for k := k + 1 to kMax do
 begin
 ListeK[k] := ListeJ[j];
 Inc(j);
 end;
 end

17-20 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

 else begin
 ListeK[k] := ListeJ[j];
 Inc(j);
 if j > jMax then
 for k := k + 1 to kMax do
 begin
 ListeK[k] := ListeI[i];
 Inc(i);
 end;
 end;
 { Ende Mischen }

 GotoXY(45, 1); WriteLn('Gemischte Liste K');
 GotoXY(45, 2); WriteLn('-----------------');
 for k := 1 to kMax do
 begin
 GotoXY(45, 2 + k);
 Write(k:2, ': ', ListeK[k]); { nur für Demo }
 end;

 repeat
 until KeyPressed;

 { Die Bildschirmausgabe: }
 { ¦ Liste I Liste J Gemischte Liste K }
 { ¦ --------------- --------------- ----------------- }
 { ¦ 1: Haspert 1: Aumann 1: Aumann }
 { ¦ 2: Huber 2: Berthold 2: Berthold }
 { ¦ 3: Meyer 3: Greiner 3: Greiner }
 { ¦ 4: Yuppie 4: Huber 4: Haspert }
 { ¦ 5: Zeppelin 5: Kugler 5: Huber }
 { ¦ 6: Lippert 6: Huber }
 { ¦ 7: Meier 7: Kugler }
 { ¦ 8: Vulpert 8: Lippert }
 { ¦ 9: Meier }
 { ¦ 10: Meyer }
 { ¦ 11: Vulpert }
 { ¦ 12: Yuppie }
 { ¦ 13: Zeppelin }
end.

77030597 Dr. K. Haller

	Vorbemerkungen und Variablentausch

