Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-1

17 Anwendungen: Sortieren, Suchen, Mischen

Gliederung

17.1 Das Sortieren von Daten ... ..oooeeeeeeeeeeeeeeeeee e 3
17.1.1 Das BubbleSort-Verfahren ..........ooooveeeeeeeeeeeeeeeeeeeeeeeeeeeeee 3
17.1.2  Das MinimumSort-Verfahren ........coooeeueeeeeeeeeeeeeeeeeeeeeeeeeeennn. 5
17.1.3  Das QuickSort-Verfahren ...........cccccooeviiiiiiiiieiiie e 5
17.1.4  Demo-Programm zum Testen der Sortier-Algorithmen............... 6
17.2 Das SUChen 10 LISTEN ..uuneieeeeee e 14

17.3 Das Mischen von sortierten Daten.......ceeeeeeeeeeeeeeeeiieeeeeeeeieeeennnns




17-2 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Vorbemerkungen und Variablentausch

Sortieren, Suchen und Mischen kommen besonders in der kommerziellen Datenver-
arbeitung recht hdufig vor. Der Zeitanteil wird in diesem Bereich auf 30% bis 50%
geschitzt.

Sortieren, Suchen und Mischen setzen indizierte Variablen (Arrays, Listen) voraus.
Beim Sortieren miissen sehr haufig (indizierte) Variablen getauscht werden.

In Turbo-Pascal steht fiir das Tauschen von zwei Variablen keine Standard-Prozedur zur
Verfiigung. Man muf} selbst den sog. "Dreieckstausch" programmieren. Dazu ist eine
Hilfsvariable vom gleichen Datentyp notwendig.

Beispiel:
X = 'Huber
y 1= 'Meier
Temp : = Xx; { temporéare Hilfsvariable fur Dreieckstausch }
X R
y = Tenp;
WitelLn(x); { |Mmeier }
WitelLn(y); { |Huber }

Hinweis: Die Turbo-Pascal-Standardfunktion "Swap" vertauscht das niederwertige mit
dem hoherwertigen Byte eines Integer- oder Word-Ausdrucks. Dieses "Swap" ist flir die
hier genannte Aufgabe nicht geeignet.

17.1 Das Sortieren von Daten

Fiir das Sortieren gibt es viele Verfahren (Bubble-Sort, Sortieren durch Einfligen, Heap-
Sort, Shell-Sort, Quick-Sort, Misch-Sort, ...). Sie unterscheiden sich im Programmier-
aufwand, in der Leistung (Zeitbedarf) und im Speicherbedarf.

Im allgemeinen gilt das »Quick-Sort« als das effektivste Verfahren. Dieses Verfahren
wird im Praktikum behandelt.

Es gilt die Regel: Je leistungsfahiger, desto aufwendiger!

Ausnahmen gibt es viele. Das optimale Verfahren kann man ohne Kenntnis des Um-
fanges und der Konstellation der Daten nicht sicher angeben.

Es zeigt sich, daf leistungsfahige Verfahren bei kleinen Datenmengen in bezug auf Sor-
tierzeit ungiinstiger abschneiden als einfache Verfahren. Bei kommerziellen Anwen-
dungen liegen fast immer grofle Datenmengen vor. Einfache Verfahren fiihren in diesen
Fillen zu unzumutbaren Zeiten.



Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-3

Kernpunkt des Sortierens ist der Vergleich von zwei Daten. Bei numerischen Daten ist
die Entscheidung unstrittig. Bei Strings mufl nach (sinnvollen) Vereinbarungen vorge-
gangen werden; die Lénge eines Strings ist offensichtlich nicht das entscheidende
Kriterium. Man denke an die Suche im Telefonbuch!

Beim Vergleich von zwei Strings werden intern die ASCII-Ordnungsnummern der ein-
zelnen Zeichen miteinander verglichen und zwar von links beginnend. Tritt zum ersten-
mal ein Unterschied auf, dann ist die Ordnungsnummer entscheidend dafiir, ob der eine
String grofBer oder kleiner ist als der andere. Die Lange der Strings ist unerheblich. Man
beachte, dal auch das Leerzeichen (Space, Blank) ein codiertes Zeichen ist (Ord-
nungsnummer 32). Zwei Strings sind nur dann gleich, wenn sie an allen Stellen gleiche
Zeichen, d.h. gleiche Ordnungsnummern aufweisen. Sie sind dann zwangsweise auch
gleich lang.

Das folgende Beispiel zeigt den String-Vergleich:
|—>— y: Ordnungsnummer 121 (siehe Kap. 13)

String I: Hans Meyer
String 2: Hans Meierlein

|—>— i: Ordnungsnummer 105
Somit ist Stringl groBer als String?2.

Allgemeines Sortierproblem bei Sonderzeichen: Die deutschen Sonderzeichen (Um-
laute und Scharf-S) besitzen im IBM-Zeichensatz Ordnungsnummern > 127. Sie sind
somit nach 'Z' bzw. 'z angeordnet, siche Kap. 13. Deshalb ist z.B. 'Arger' groBer als
'Zirkus'. Dieses Problem ist ggf. durch eigene programmtechnische Maflnahmen zu
16sen, z.B. wie folgt: Vor dem Vergleich der beiden Strings diese auf tempordre Strings
kopieren, darin die Umlaute durch Umschreibungen zu ersetzen sind ('AE' statt 'A’, 'ue'
statt 'U', 'ss' statt 'B' usw. Dazu u.a. die Funktion "Pos" nach Kap. 14 einsetzen). Zum
Sortier-Vergleich benutzt man die beiden tempordren Strings, tauscht dann aber im

gegebenen Fall die originalen Strings.

Nachstehend wird ein sehr einfaches Verfahren, das sog. Bubble-Sort-Verfahren,
gezeigt. Weitere Verfahren werden im Praktikum behandelt.

17.1.1 Das BubbleSort-Verfahren

Der Grundgedanke: Man durchlaufe wiederholt den Array von Anfang an bis zum vor-
letzten Element und vergleiche das Element i mit dem Nachfolger-Element i + 1. Ist das
i-te Element groBer als sein Nachfolger, so werden beide getauscht. Man merke sich,
wenn ein Tausch stattgefunden hat. Hat bei einem Durchgang kein Tausch mehr
stattgefunden, so ist der Array sortiert und der Vorgang kann beendet werden.




17-4 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Stellt man sich den Array als eine senkrechte Leiter vor, so wandern die kleineren Ele-
mente bei jedem Durchgang um eine Sprosse nach oben, vergleichbar mit aufsteigenden
Luftblasen. Daher der Name BubbleSort.

BubbleSort zeigt giinstiges Zeitverhalten, wenn die Daten weitgehend vorsortiert sind.
Fiir groflere Datenmengen ist BubbleSort im allgemeinen nicht gut geeignet. Das
folgende Demo-Programm zeigt BubbleSort.

program Pas17011; { Kap. 17.1: Sortieren, BubbleSort }

const
i Max = 8;
var
X: array[1..i Max] of Integer;
TempX: Integer; { Hilfsvariable fur Integer-Dreiecks-Tausch }
StrA: array[1..iMax] of string[20];
TempStr: string[20]; { Hlfsvariable fir String-Drei ecks-Tausch }
i Byt e;
Sortiert: Bool ean;
begi n
x[1] :=7;, x[2] :=3; x[3] :=6; x[4] :=5; { Denmp-Daten ... }
X[5] :=3; x[6] :=4; x[7] :=9; x[8] := 0;
StrA[ 1] := 'Huber'; StrA[ 2] := "huber’;
StrA[ 3] := 'Huber Anton'; StrA[ 4] :='Aumann';
StrA[5] := "'Angstlich'; StrA[6] :="'Zeppelin';
StrA[ 7] :="'Mus'; StrA[8] := 'Musilein';
r epeat { Integer sortieren }
Sortiert := True; { vorerst nur kiohne Behauptung }
for i :=1toiMx - 1 do
if x[i] > x[i + 1] then
begi n
TenmpX = x[i]; { Drei- }
x[1] = x[i + 1]; { ecks- }
x[i + 1] := TenpX; { tausch }
Sortiert := False;
end;
until Sortiert;
r epeat { Strings sortieren }
Sortiert := True;
for i :=1toiMx - 1 do
if StrA[i] > StrAli + 1] then
begi n
TempSt r = StrAli]; { Drei- }
StrAi] = StrAli + 1]; { ecks- }
StrA[i + 1] := TenpStr; { tausch }
Sortiert = Fal se;




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-5

end;
until Sortiert;

for i :=1to iMx do
WiteLn(i,': ', x[i], i:10, '": ', StrAli]);

Di e Bil dschi r mausgabe:

: 0 : Aumann

: Huber

: Huber Anton
: Maus

: Mausilein
Zeppelin

: huber

: Angstlich

{
{
{
{
{
{
{
{
{

oo WNBR
ool WNBR
B o s

oYU WW

end.

BubbleSort wird auch im spéteren Demo-Programm "Pas17012.PAS" als Verfahren 2
gezeigt.

17.1.2 Das MinimumSort-Verfahren
Wird als Verfahren 1 im spéteren Demo-Programm '"Pas17012.PAS" gezeigt

Das erste Element des Vektors wird zundchst als kleinstes Element angenommen.
Dieses wird mit allen folgenden Elementen verglichen. Wenn ein kleineres Element
auftaucht, dann werden beide Elemente getauscht.

Nach dem 1. Durchgang steht das kleinste Element an der Spitze des Vektors. Fiir den
weiteren Verlauf braucht man nur den restlichen Vektor betrachten.

Enthilt der Vektor n Elemente, dann ist das Sortieren nach (n - 1) Durchgéngen abge-
schlossen, wie das folgende numerische Beispiel mit n = 6 zeigt (das fett-kursiv gesetzte
Element wird zunéchst als kleinstes Element fiir den jeweiligen Durchgang
angenommen).

Original |i=1 i=2 i=3 i=4 |iMax=n-1=5
i=1 3 3240 [0 0 0 0
=2 7 7 7.3, 21 1 1 1
i=3 2 2,3 3.7 £.3,2 2 2
=4 9 9 9 9 9.7.3 3
=5 1 1.2 2,3 3.7 £9 19 7
Max=n=26 0 0, 1, 2, 3.7 |4 9

Nach der Entwicklung des MinimumSort-Algoritmus mache man sich Gedanken tiber
eine Optimierung (Verfahren 4 im Demo-Programm "Pas17012.PAS"), die mit wenig
Zusatzaufwand erreicht wird. Der Grundgedanke der Optimierung besteht darin, zuerst
nur den Index des kleinsten Elementes zu suchen; mit dessen Kennntnis braucht bei
jedem Durchgang hochstens einmal getauscht werden.



17-6 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

17.1.3 Das QuickSort-Verfahren
Wird als Verfahren 3 im spiateren Demo-Programm '""Pas17012.PAS" gezeigt.

Quicksort gilt im allgemeinen als das effektivste Verfahren, wenn grof3ere Datenmengen
zu sortieren sind. Das Verfahren stammt von C. A. Hoare.

Bei Quick-Sort wird (wie bei allen hoheren Sortierverfahren) die Tatsache ausgenutzt,
dafl das Austauschen von Elementen liber groBere Distanzen effizienter ist als iiber
kiirzere Distanzen. BubbleSort ist bei dieser Betrachtung sehr ungiinstig, da immer nur
benachbarte Elemente ausgetauscht werden.

Das Sortiervorgang beginnt beim QuickSort nicht mit dem ersten Element, sondern
sondern mit einem mittleren. Der Vektor wird dann vom Anfang und vom Ende her
durchsucht, bis vor dem mittleren Element ein gréferes und nach ihm ein kleineres
Element auftaucht. Diese beiden Elemente werden dann getauscht. Der Vorgang wird
wiederholt, bis sich die beiden Indizies treffen. Der Vektor ist dann in zwei Hélften
aufgeteilt, die linke Halfte hat kleinere Elemente als das Element in der Mitte, die rechte
Hifte besitzt die groBeren Elemente.

Mit dem gleichen Verfahren werden dann beide Hilften getrennt bearbeitet. Der
Vorgang wird solange wiederholt, bis schlieBlich die "Hélften" nur noch aus einem
Element bestehen. Dann ist der Vektor sortiert.

In Pascal kann Quicksort mit einer rekursiven Unter-Prozedur relativ einfach dargestellt
werden.

Es existiert ein nicht-rekursives QuickSort-Verfahren, das mit einem Integer-Hilfsarray arbeitet. Dieses
Verfahren ist anzuwenden, wenn die Programmiersprache keine Rekursion erlaubt oder wenn man die
Nachteile der Rekursion (Belastung des Stack-Speichers) vermeiden mochte.

Das Demo-Programm ""Pas17012.PAS"

program Pas17012; { Verschi edene Sortier-Algorithnmen. Sortierzeit }

{ Hier nur far zufall-Strings }

{ Turbo-Pascal, 31090693. Dr. K Haller, FHM DR }

{$M 65520, 0, 655350 } { Conpil erbefehl $M (Menory), Stackspeicher }

{ auf Maxi malwert 65520 fir Rekursion bei "rekursivem QuickSort" }
uses

CRT, DCS;
const
ZeitMn = 4.0; { Mndest-Sortierzeit in Sekunden, s. spater}
nivax = 2500; { Maxi nmal e Vektorl &nge begrenzen. }
StringLaenge = 10; { Der String-Vektor schluckt viel Speicher! }
{ AuBerdem werden in di esem Denp-Progranm }
{ imrer 2 Vektoren angel egt, damit spater }
{ die Daten zur Denonstration auch in un- }
{ sortierter Form ausgegeben werden kdnnen. }
type
Ver f ahr en = (Ende, M ni munSort1, Bubbl eSort,

Qui ckSort, M ni nuntSort 2);
StringVektor = array[1l..nMax] of string[StringLaenge];

var




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-7

Sortierverfahren: Verfahren;

s, s_unsortiert: StringVektor; { "s_ unsortiert" steht far }
{ unsortierten Vektor. Fur }
{ spatere Ausgabe notwendig. }
n: Longl nt ; { n = aktuelle Vektorl ange }
Mt Zei t messung: Bool ean;
Zeit, ZeitGCesant: Real;
Anzahl Tausch: Longl nt ; { Anzahl der Vertauschungen }
W eder hol ungen: Wor d;
L T RRRLREECEEELD }

procedure WiteXY(Spalte, Zeile: Byte; Ml dung: string);
begi n

Got oXY(Spalte, Zeile);

Wit e( Ml dung);

end;
function Uhrzeit: Real;
var

hh, mm ss, ss100: Word;
begin

Get Ti me(hh, mm ss, ss100);

Uhrzeit := 3600.0*hh + 60*mm + ss + 0.01*ss100;

{ "3600.0" damt Real-Muilitiplikation erzwungen wird, }

{ sonst Overflow Error bei strenger Conpiler-Einstellung }
end; { von Funktion "Uhrzeit" }

procedure Menue(var Sortierverfahren: Verfahren; var n: Longlnt);
var

Ch: Char ;

nStr: string;

Fehl er code: | nteger;
begi n

CrScr;

WiteXY(02, 2, 'Sortierverfahren. Her Sortierzeit fiar ' +
"Zufalls-Strings mt ');
WitelLn(StringLaenge, ' Zeichen. kha ');

WiteXy(20, 11,
WiteXy(20, 12,

———————————————— Zei tnmessung (j/n): i)
Ei ngabe n (1..');

WiteXY(20, 4, 'Sortierverfahren');
WiteXY(20, 5, '"---------------- DR
WiteXy(20, 6, '1 M ni munSort1');
WiteXy(20, 7, '2 Bubbl eSort ');
WiteXy(20, 8, '3 Qui ckSor t ");
Witexy(20, 9, '4 M ni munSort2');
WiteXY(20, 10, 'Esc Ende, auch 0');
Wite(nMax, "): ');
Got oXY( 20, 12);
r epeat

Ch : = ReadKey;

if Ch = #27 then Ch :='0';

until Chin['0.."4];
Wite(Ch);




17-8 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

case Ch of

"0': begin Sortierverfahren := Ende; Exit; end; { >>>>>>>>>>>> }
"1': Sortierverfahren := M ni munSort1;

'2': Sortierverfahren : = Bubbl eSort;

"3'": Sortierverfahren := QuickSort;

"4': Sortierverfahren :
end;

M ni munSort 2;

r epeat
Cot oXY(64, 11);
Ch : = ReadKey;
if Ch = #13 then Ch : = 'j';

until UpCase(Ch) in ['J "NJ;
Wite(Ch);
if UpCase(Ch) ="'J'
then Mt Zeitmessung : = True
el se MtZeitnessung : = Fal se;

r epeat
CGot oXY(64, 12); drEoL;
Got oXY( 64, 12);
ReadLn(nStr); { Numerik-Ei ngabe abgesichert !! }
Val (nStr, n, Fehl ercode)
until (n >= 1) and (n <= nMax) and (Fehl ercode = 0);

end; { von Prozedur "Menue" }
procedure M ni nunSort 1String(n: Word;

var s: StringVektor;
var Anzahl Tausch: Longlnt);

var
i, j: Word;
sTemp: string; { Hlfsvariable fur Tauschen }
begi n
Anzahl Tausch : = 0;
for i :=1ton- 1 do
for j :=i +1 to n do
if s[j] <s[i] then
begi n
sTenp := s[i]; { Drei- }
s[i] :=s[il; { ecks- }
s = sTenp; { tausch }

]
I nc( AnzahI Tausch) ;
end;

end; { von Prozedur "M ni muntort 1String" }

procedure M ni munSort 2Stri ngOpt (n: Word;
var s: StringVektor;
var Anzahl Tausch: Longlnt);
var { Freiwillige Zusatzaufgabe fir die Studenten }
s
iMn: Wrd;
sTenp: string; { Hilfsvariable fir Tauschen }




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-9

begin
Anzahl Tausch : = 0;
for i :=1to n- 1 do
begin
iMn :=1i; { Vorerst }
for j :=i +1 to n do
if s[j] < s[iMn]
then iMn :=j;
if iMn > i then
begin
sTenp = s[iMn]; { Drei- }
s[iMn] :=s[i]; { ecks- }
s[i] := sTenp; { tausch }
I nc(Anzahl Tausch);
end;
end;

end; { von Prozedur "M ni munfSort2StringOpt" }

procedure Bubbl eSortString(n: Wrd;
var s: StringVektor;
var Anzahl Tausch: Longlnt);

var
i Wor d;
sTenp: string; { Hilfsvariable fur Tauschen }
Sortiert: Bool ean;
begin
Anzahl Tausch : = 0;
r epeat
Sortiert := True; { vorerst nur kihne Behauptung }
for i :=1 to n- 1 do
if s[i] > s[i + 1] then
begin
sTenp = sl[i]; { Drei- }
s[i] = s[i + 1]; { ecks- }
s[i + 1] := sTenp; { tausch }
Sortiert := False;
I nc(Anzahl Tausch);
end;

until Sortiert
end; { von Prozedur "BubbleSortString" }

procedure QuickSortString(n: Wrd,
var s: StringVektor;
var Anzahl Tausch: Longlnt);
procedure SortString(Links, Rechts: Wrd; { Unterprozedur }
var Anzahl Tausch: Longlnt); { |okal }

var
i, j: Wor d;
sMtte: string; { Mttenelenent String }
sTenp: String; { Hilfsvariable fur Tauschen }
begin
i = Links;
j = Rechts;

sMtte := s[ (Links + Rechts) div 2 ]; { Element etwa in der Mtte }
r epeat
while s[i] < sMtte do Inc(i);




17-10 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

while s[j] > sMtte do Dec(j);
if i <= then

begin
sTemp := s[i]; { Drei- }
s[i] :=s[j]; { ecks- }
s[j] = sTenp; { tausch }
Inc(i);
Dec(]);
I nc(Anzahl Tausch);
end;
until i > j;
if Links < j
then QSort String(Links, j , Anzahl Tausch); { rekurs. Aufruf }
if Rechts > i
then @ortString(i, Rechts, Anzahl Tausch); { rekurs. Aufruf }
end; { von Unter-Prozedur "QSortString" }

begi n
Anzahl Tausch : = 0;
@ortString(l, n, Anzahl Tausch);
end; { von Prozedur "QuickSortString" }

procedure ZufallsStrings(n: Wor d;
var s: Stri ngVekt or;
StringLaenge: Byte);
var
i Wor d; { I'ndex fir das Zufallswort i }
j: Byt e;
nStr: string;

Fehl er code: | nteger;

function Zufallszahl (Anfangswert, Endwert: Integer): Integer;
begin

Zuf al | szahl := Anfangswert + Random( Endwert + 1 - Anfangswert);
end; { von |okal er Funktion "Zufallszahl" }

begin
for i :=1tondo { 1. Zeichen groR }
begi n { Rest klein
s[i] := Chr(zufallszahl (Od('A), Od('Z)));
for j :=2 to StringlLaenge do
s[i] :=s[i] + Chr(zufallszahl (Od('a'), Od('z')));
end;

end; { von Prozedure "ZufallsStrings" }

procedure Ausgabe; { Benltzt aufer "i" und "iStr" }
{ nur gl obal e Vari abl en! }
var
i VWor d;
i Str: string[4];
begin
Got oXY(1, WereY); drEoL;
WiteXY(20, WereY, " Nr unsortiert sortiert');
WiteXY(20, WereY + 1, "-----mmmmmm i "+ #13#10);
for i :=1to n do
begi n

Str(i, iStr);




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-11

whil e Length(iStr) < 4 do

iStr :="0" + iStr;
Got oXY(20, WhereY)
WiteLn(iStr, ' ', s unsortiert[i], ' ",os[i]);
end;
WiteXY(20, WhereY, '----------mmmi o '+ #13#10);
Got oXY( 10, WhereY)
Wite(' Sortierverfahren: ")

case Sortierverfahren of

M ni munSort1: WitelLn(' M nimunSort1, einfach ');
Bubbl eSort : WitelLn(' Bubbl eSort ");
Qui ckSort: WitelLn(' QuickSort ");
M ni munSort2: WitelLn(' M nimunSort2, optinmert');
end;
Got oXY( 10, WhereY)
WitelLn(' Anzahl Vertauschungen: ', Anzahl Tausch);
if MtZeitnmessung then
begi n
Got oXY( 10, WhereY)
WiteLn('Die Sortierzeit: ', Zeit:12:4, ' s');

Got oXY( 10, WhereY)
WitelLn(' Wegen genauerer Zeitnessung wurde der Sortier' +
‘vorgang ', W ederholungen, '-mal weder-');
Got oXY( 10, WhereY)
WiteLn(' holt. Di e angegebene Zeit gilt aber fir ei nen' +
' Sortiervorgang.');
end;
WitelLn;
WiteXY(10, WereY, 'Witer mt Tastendruck ... ');
r epeat
until ReadKey <> '';

end; { von Prozedure "Ausgabe" }

begl n { —===== Haupt pr ogramn s }
Text BackGr ound( Bl ue); Text Col or(Yellow); CrScr
r epeat

Menue( Sorti erverfahren, n);
if Sortierverfahren = Ende then Halt; { >>>>>>>>>>>>>>>>> }

ZufallsStrings(n, s, StringlLaenge);

s _unsortiert :=s; { unsortierter Vektor ... }
... filr spatere Ausgabe }
WiteXY(10, WereY + 2, '"Sortierung lauft. Bitte warten ... ');
W eder hol ungen : = 0;
Zei t Gesamt = 0.0;
r epeat
I nc(W eder hol ungen) ;
Zeit := Uhrzeit;
s := s _unsortiert; { Array fir Wederholung regenerieren, }
{ sonst wirde Bubbl eSort bevorzugt. Die Zeit fiirs }

{ "Regenerieren" mifRte man abzi ehen; relatativ klein. }
case Sortierverfahren of

M ni munSort1: M ni munSort 1String( n, s, Anzahl Tausch);

Bubbl eSort : Bubbl eSort St ri ng( n, s, Anzahl Tausch);




17-12 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Qui ckSort: Qui ckSort String( n, s, Anzahl Tausch)
M ni munSort2: M ni munBSort2Stri ngOpt (n, s, Anzahl Tausch)
end;
Zei t := Uhrzeit - Zeit;
Zeit Gesant := ZeitGesant + Zeit;
if not MtZeitnessung then Break;
until ZeitGesant >= ZeitMn; { Danmit genauere Zeiten ... }

Zeit := ZeitGesant/ W ederhol ungen;
Ausgabe;
until Sortierverfahren = Ende; { Ausstieg aber weiter oben }

end_ { e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e

3

3

Die folgenden Excel-Tabellen wurden mit den Ausgaben von "Pas17012.PAS" erstellt.

Das erste Diagramm zeigt die Rechenzeiten als f(n) in linearer Darstellung, das zweite
in doppelt-logarithmischer Darstellung, das noch deutlicher die Leistungsfahigkeit von

QuickSort bei groflen Datenmengen zeigt.

Sortierzeiten fiir Zufallsstrings mit 10 Zeichen. Excel-Tabelle

Nach Programm "Pas17021.PAS", Rechner Pentium P-166, 16060693, Dr. K. Haller

Anzahl n MinimumSort1 BubbleSort QuickSort MinimumSort2

ohne Optimierung rekursiv mit Optimierung

0 0,000 0,000 0,000 0,000

10 0,002 0,002 0,002 0,002

50 0,005 0,006 0,002 0,004

100 0,013 0,017 0,003 0,007

150 0,027 0,034 0,004 0,012

200 0,046 0,065 0,005 0,021

400 0,172 0,239 0,009 0,076

600 0,385 0,549 0,012 0,167

800 0,697 0,998 0,017 0,294

1000 1,085 1,483 0,020 0,464

1500 2,445 3,430 0,031 1,043

2000 4,400 6,370 0,041 1,867

2500 6,860 10,000 0,053 2,940

Vertausch. 1.568.494 1.548.390 7.237 2.491
bei n = 2500

Die Sortierzeiten, von oben nach unten fiir
* BubbleSort

e MinimumSortl

e  MinimumSort2

* QuickSort

a) in linearer Darstellung:




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-13

Sortierzeit in Sekunden in linearer Darstellung
10,000
9,000
09
s T
4,000 T
3,000 /‘/
2,000 —
1,000
0,000 mmmms—== . .
0 500 1000 1500 2000 2500
Anzahln
b) in doppelt-logarithmischer Darstellung:
10000,000
1000,000
100,000
10,000
1,000
0,100
0,010 %ﬁw
0,001 !
10 100 1000 10000 100000
Anzahln

17.2 Das Suchen in Listen

Beim Suchen geht es darum, die Stelle (= Index) eines Elementes in einer Liste (ein-
dimensionaler Array) zu ermitteln oder nachzuweisen, dafl das Element in der Liste ent-
halten bzw. nicht enthalten ist.



17-14 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

Wenn die Liste nicht sortiert ist, muf3 sequentiell jedes Element mit dem gesuchten Ele-
ment verglichen werden. Hat die Liste den Umfang n, so sind im ungiinstigsten Fall n-
Vergleiche (Zugriffe) notwendig, im statistischem Mittel n/2. Das sequentielle Suchen
ist somit sehr zeitaufwendig.

Ein ungleich schnelleres Suchen wird erzielt, wenn die Liste sortiert vorliegt und die
Methode des bindren Suchens eingesetzt wird. Die Anzahl zy,, der maximalen
Zugriffe reduziert sich dann auf zy.x = Id(r + 1). »ld« bedeutet logarithmus dualis,
Logarithmus zur Basis 2. Dezimalzahlen sind auf den néchsten ganzzahligen Wert
aufzurunden.

Die folgende Tabelle zeigt den Zusammenhang zy,x = f(n):

Umfang der Liste n | Anzahl der maximalen Zugriffe zy,x beim bindren Suchen

2 .. 3 2

4 .. 5 3

8 .. 15 4
16 .. 31 5
32 .. 63 6
64 .. 127 7
128 .. 255 8
256 .. 511 9

512 .. 1023 10

1024 .. 2047 11

2048 .. 4095 12

4096 .. 8191 13

8192 .. 16383 14

16384 .. 32767 15

32768 .. 65535 16

Mit zZyax = 27 Zugriffen konnte ein Element in einer sortierten Liste mit dem Umfang n
=227 - 1 = ca. 134 Millionen gesucht werden. Diese Zahl ist weit groBer als die Ein-
wohnerzahl der Bundesrepublik (ca. 85 Mio). Zu bedenken ist aber, dal3 statische Arrays
in Pascal maximal 65536 Elemente enthalten konnen und auch nicht mehr Speicherplatz
in Bytes belegen diirfen.

Das bindre Suchen kann vereinfacht wie folgt beschrieben werden:

Man betrachte ein Element, das etwa in der Mitte der Liste steht. Wenn keine Uberein-
stimmung mit dem Such-Element vorliegt sind zwei Fille zu unterscheiden: Ist das
Such-Element kleiner als das Mitten-Element, so ist in der linken Teilhélfte
weiterzusuchen, anderenfalls in der rechten. Von dem zutreffendem Teilfeld betrachte
man wieder das Mitten-Element, wenn keine Ubereinstimmung mit dem Such-Element
vorliegt, ist in dem zutreffenden Teil des Teilfeldes weiterzusuchen usw., bis entweder




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-15

das Such-Element gefunden wird oder die Ober- und Untergrenze des Teilfeldes
zusammenfallen. In diesem Fall ist das gesuchte Element nicht in der Liste enthalten.

Das folgende Demo-Programm zeigt das bindre Suchen am Beispiel eines String-
Arrays:

program Pas17021; { Kap. 17.2: Binares Suchen }
uses
CRT,

const
i Max = 10; { Bei einer Liste mt 8..15 Elenmenten sind beim}
{ binaren Suchen maxi mal 4 Zugriffe notwendig }

type
String25 = string[25];
StringArray = array[1..i Max] of String25;
var
Unt en,
Qoen,
Mtte,
Gesucht er | ndex,
Zugri ffe: Wor d;
Gef unden: Bool ean;
StrA: StringArray;
Suchel enent : String25;

procedure Daten_einl esen_und_sortieren(var StrA: StringArray);
var
i VWor d;
TempStr: String25; { Hilfsvariable fiar Drei ecks-Tausch }
Sortiert: Bool ean;

begin
StrAl 1] = ' Huber'; StrAl 2] = ' Unent deckter"';
StrAl 3] = 'Meier'; StrAl 4] = ' Gehei mi stréager';
Str Al 5] = ' Yuppi e'; StrAl 6] = "Stilles Wasser';
StrAl 7] = ' Bonze'; StrAl 8] = 'Verdachtiger';
StrA 9] = '"Unauffindbar'; StrA[10] := 'Strafpunktesanmm er';
repeat { Bubbl e-Sort }
Sortiert := True;
for i :=1toiMwx - 1 do
if StrA[i] > StrA[i + 1] then
begi n
TempStr = StrAli]; { Drei- }
StrAi] = StrAli + 1]; { ecks- }
StrA[i + 1] := TenpStr; { tausch }
Sortiert = Fal se;
end;
until Sortiert;
for i :=1to iMux do
WiteLn(i, ': ', StrAi]); { nur fir Denvo }
end; { von »Daten_einlesen_und sortieren« }

begi n { Haupt progranm bi nares Suchen }




17-16 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

ClrScr;

Dat en_ei nl esen_und_sortieren(StrA); { Binares Suchen set zt
sortierte Liste voraus }
r epeat
Wi teLn;
Wite(' Ei ngabe Suchel enent, Ende mit RETURN. ');

ReadLn( Suchel enent ) ;

if Suchelement ='' { »''«, wenn nur »Return« }
then EXIT; { >>>55>555>555>>55>>5>>> )
Unt en = 1;
Gben = i Max;
Zugriffe := 0;
Gef unden : = Fal se;
repeat
Inc(Zugriffe); { nur aus Neugi erde Zugriffe zahlen }

Mtte := (Unten + Oben) div 2; { Elenent etwa in der Mtte }
if Suchelement = StrAlMtte]

then begin
Gef unden = True;
Gesuchterlndex := Mtte;
end
else if Suchelement > StrAlMtte]
then Unten := Mtte + 1 { »Oben« bleibt }
el se Oben = Mtte - 1; { »Unten« bleibt }
until Gefunden or (Unten > Qoben); { Vergl ei ch unbedi ngt }
{ mt »>« und nicht »>=«, sonst Fehler! }
i f Gefunden
then Wite(' Das Suchel ement »', Suchel enent,

« hat den Index: ', Gesuchterlndex)
el se Wite('Das Suchel ement ist in der Liste ',
‘nicht enthalten');
WiteLn('. Anzahl der Zugriffe: ', Zugriffe);

until Suchel ement = ;
end.

17.3 Das Mischen von sortierten Daten

Die Aufgabenstellung: Es liegen zwei sortierte Listen / und J vor. Aus diesen Listen soll
eine gemeinsame Liste K erstellt werden. Die Elemente von 7 und J sollen aber so in die
Liste K eingetragen werden, dal3 sie ohne Sortiervorgang sortiert ist.

Beispiel mit numerischen Daten:

Aus Liste I: 2,4,5,6,8,13, 15

und Liste J: 1,2,3,7

soll werden: Liste K: 1,2,2,3,4,5,6,7,8, 13,15




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-17

Das Mischen wird dann eingesetzt, wenn man gro3e Dateien zu sortieren hat, die im
Arbeitsspeicher des Rechners nicht Platz haben. Man teilt die groBe Datei in mehrere
kleinere externe Dateien auf, sortiert diese nacheinander im Arbeitsspeicher und
schreibt die sortierten Teillisten wieder in eine externe Datei (Magnetplatte, Magnet-
band, Diskette usw.). Dann mischt man zwei Teillisten und schreibt das Ergebnis wieder
in eine externe Datei. Durch Wiederholung kann man somit Dateien sortieren, deren
GroBe nur durch die Kapazitit des externen Speichers begrenzt ist.

Bei der Formulierung des Misch-Algorithmus ist zu bedenken, dafl die zu mischenden
Listen unterschiedlich lang sein koénnen. Unter dieser Berlicksichtigung kann man das
Mischen wie folgt formulieren:

1. Wiederhole die Vorgédnge 2 und 3 so lange, bis die K-Liste mit allen Elementen der
beiden Listen / und J gefiillt ist:

2. Vergleiche die beiden ersten Elemente (bzw. die beiden nichsten Elementen bei
weiteren Durchldufen) der beiden Listen / und J.

3. Ist das /-Element kleiner als das J-Element?

Wenn ja, dann:

3al:  Schreibe das /-Element in die Liste K.

3a2:  Frage ab, ob die /-Liste bereits beendet ist.
Wenn ja, dann: Schreibe alle noch nicht iibertragenen J-Elemente in die
Liste K.

anderenfalls:

3bl:  Schreibe das J-Element in die Liste K.

3b2:  Frage ab, ob die J-Liste bereits beendet ist.
Wenn ja, dann: Schreibe alle noch nicht iibertragenen /-Elemente in die
Liste K.

Das folgende Struktogramm zeigt den Misch-Algorithmus in schematischer Pascal-
Schreibweise. Dabei werden folgende Variablennamen benutzt:

- Li _IT1. .1 Mx] sortierte Liste /
- Li _J[1..jMx] sortierte Liste J
- Li _K[1..kmax] gemischte Liste K, sortiert.

kMax = iMax + jMax
-0, j, k Laufvariablen fiir Listen /, Jund K



17-18 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen

i =1
j =1
for k := 1 to kMax
Li _I[i] < Li_J[j]
ja nein
Li _K[k] :=Li_I[i] Li _K[k] :=Li_J[j]
i =i +1 j =] +1
i > iMax j > jMax
ja nein ja nein
for k := k + 1 for k :=k + 1
to kMax to kMax
Li _K k] := Li_J[j] Li _K k] := Li_I[i]
i =i o+1 . o=+ 1 .

Das folgende Demo-Programm zeigt das Mischen von zwei sortierten String-Listen:

program Pas17031; { Kap. 17.3: M schen von sortierten Daten }

uses
CRT;

const
i Max
j Max
k Max

type
Stringlhs
StringArrayl
StringArraylJ
StringArrayK

S5;
8;
i Max + j Max;

string[ 15];

array[1..i Max] of Stringl5;
array[1..jMax] of Stringl5;
array[ 1..kMax] of Stringl5;

var
Listel: StringArrayl;
Li sted: StringArrayd;
Li st ek Stri ngArrayk;

i, j , ki Wrd;

procedure Daten_einl esen_und_sortieren(var Listel: StringArrayl;
var Listed: StringArrayld);
var
i Vor d;
TempStr: Stringl5; { Hilfsvariable fiur Drei ecks-Tausch }
Sortiert: Bool ean;

begi n
Listel[1] := 'Huber'; Listel[2] := 'Zeppelin';
Listel[3] := 'Haspert'; Listel[4] := ' Meyer'
Listel[5] := 'Yuppie';
repeat { Bubble-Sort, Liste | }
Sortiert := True;
for i :=1toiMux - 1 do

if Listel[i] > Listel[i + 1] then
begi n




Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen 17-19

TempSt r = Listel[i]; { Drei- }
Listel[i] = Listel[i + 1]; { ecks- }
Listel[i + 1] := TenpStr; { tausch }
Sortiert = Fal se;

end;

until Sortiert;
CGot oXY(5, 1); WitelLn('Liste |l ");

Got oXY(5, 2); WiteLn('--------------- ");
for i :=1to iMx do
begin
Got oXY(5, 2 + i);
Wite(i, ": ', Listel[i]); { nur far Denvo }
end;
Listed[1] := 'Lippert'; Listed[2] := 'Aumann';
Listed[3] := 'Kugler'; Listed[4] := '"WVul pert';
Li steJ[5] := 'Huber'; { !l s.o. 'l } Listel[6] := "Geiner';
Listel[7] := "'Meier'; Listel[8] := 'Berthold';
repeat { Bubble-Sort, Liste J}
Sortiert := True;
for i :=1to jMax - 1 do
if ListeJ[i] > Listed[i + 1] then
begi n
TempStr = Listed[i]; { Drei- }
Listed[i] = Listed[i + 1]; { ecks- }
Listed[i + 1] := TenpStr; { tausch }
Sortiert = Fal se;
end;

until Sortiert;
Got oXY(25, 1); WitelLn('Liste J ');

Got oXY(25, 2); WiteLn('--------------- )
for i :=1to jMax do
begi n
Got oXY(25, 2 + i);
Wite(i, ": ', Listed[i]); { nur fir Deno }
end;

end; { von »Daten_einl esen_und_sortieren« }

begin { Hauptprogranmm }
CrsScr;

Dat en_ei nl esen_und_sortieren(Listel, Listeld);

{ Beginn M schen }
i { Start-Index for Liste I }
j { Start-Index fur Liste J }
for k :=1 to kMax do
if Listel[i] < Listeld[j]
then begin
ListeK[k] := Listel[i];
Inc(i);
if i >iMx then
for k := k + 1 to kMax do
begin
ListeK[k] := Listed[j];
Inc(j);
end;

3

1,
1,

end




17-20 Dr. K. Haller Turbo-Pascal Kap. 17: Sortieren, Suchen, Mischen
el se begin
ListeK[k] := Listed[j];
Inc(j);
if j > jMx then
for k :=k + 1 to kMax do
begin
ListeK[k] := Listel[i];
Inc(i);
end;
end;

{ Ende M schen }

CGot oXY(45, 1); WitelLn(' Gem
CGot oXY(45, 2); WitelLn('
for k :=1 to kMax do
begin
Got 0XY(45, 2 + Kk);
Wite(k:2, ': ', ListeK|
end;

r epeat

until KeyPressed,;

{ Die Bildschirmusgabe: }

schte Liste K );
------------- ")

k]);

{ nur far

Deno }

{1 Liste | Liste J Gemi schte Liste K}
T eseomescomcocon cooomccommccome mcomoscomcoconco: }
{1 1: Haspert 1: Aunmann 1: Aunmann }
{1 2: Huber 2: Berthold 2: Berthold }
{1 3: Meyer 3: Geiner 3: Geiner }
{1 4: Yuppi e 4: Huber 4: Haspert }
{1 5: Zeppelin 5: Kugl er 5: Huber }
{1 6: Lippert 6: Huber }
{1 7. Meier 7: Kugl er }
{1 8: Wul pert 8: Lippert }
{1 9: Meier }
{1 10: Meyer }
{1 11: Wul pert }
{1 12: Yuppie }
{1 13: Zeppelin }

end.

77030597 Dr. K. Haller




	Vorbemerkungen und Variablentausch

