
Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-1

16 Der strukturierte Datentyp "record"

Gliederung

16.1 Kurze Wiederholung zu Datentypen... 2

16.2 Allgemeines zum Datentyp record.. 2

16.3 Demonstration varianter Record .. 7

16.4 Übergabe eines Records als Parameter ... 10

16.5 Record mit weiterem Record und Array... 11

16-2 Dr. K. Haller Turbo-Pascal Kap. 16: Records

16.1 Kurze Wiederholung zu "Datentypen"

A) Unstrukturierte Datentypen

A.1 Ordinal-Typen: Integer, ShortInt, Byte, LongInt, Char, Boolean, Teilbereichstypen
und Aufzählungstypen.

A.2 Real-Typen: Real, Single, Double, Extended und Comp. Mit Ausnahme von
"Real" wird bei den anderen Real-Typen ein mathematischer Coprozessor vor-
ausgesetzt oder dessen softwaremäßige Emulation.

Symbolische Darstellung von unstrukturierten Typen:
┌──┐ ┌─┐ ┌─────┐ ┌───┐
└──┘ └─┘ └─────┘ └───┘

B) Strukturierte Datentypen

B.1 array: Zusammenfassung von Objekten gleichen Typs, z.B. "array of Integer",
"array of Real", "array of Boolean" usw.

Symbolische Darstellung eines Arrays:
╔══╤══╤══╤══╤══╤══╤══╤══╤══╤══╤══╤══╗
╚══╧══╧══╧══╧══╧══╧══╧══╧══╧══╧══╧══╝

B.2 string: Spezielle Zusammenfassung von Char, "array of Char")

Symbolische Darstellung eines Strings:
╔═╦═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╗
╚═╩═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╝

Das erste Byte des Strings (hat die Zählnummer Null) enthält das Längenbyte der
aktuellen Stringlänge.

B.3 set: Zusammenfassung von Ordinaltypen ohne Rangfolge = Menge, wobei die
Ordinalwerte zwischen 0 und 255 liegen müssen, z.B. "set of Char", "set of Byte",
"set of Boolean", usw.

Symbolische Darstellung einer Menge:
╔════════════════════════╗
║ ┌─┐ ┌─┐ ║
║ └─┘ ┌─┐ └─┘ ║
║ ┌─┐ └─┘ ┌─┐ ║
║ └─┘ └─┘ ┌─┐ ║
║ ┌─┐ └─┘ ║
║ └─┘ ║
╚════════════════════════╝

16.2 Allgemeines zum strukturierten Datentyp "record"
Ein "record" ist eine Zusammenfassung von Objekten, die im Gegensatz zu "array",
"string" und "set" verschiedene Datentypen enthalten können, aber dennoch mit einem
gemeinsamen (Haupt-) Namen, dem Record-Bezeichner, angesprochen werden.

Symbolische Darstellung des Records:
╔═════╤══╤═╤═══╤═══╤══╤════════╤══╤═══╤═╤══╤══╗

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-3

╚═════╧══╧═╧═══╧═══╧══╧════════╧══╧═══╧═╧══╧══╝

In der kommerziellen Datenverarbeitung bezeichnet man einen "record" mit "Datensatz"
oder kurz "Satz". Die Eindeutschung von "record" wird oft aber auch mit "Verbund"
vorgenommen.

Die einzelnen Teile eines Records nennt man Felder oder Komponenten. Jedes Feld hat
einen eigenen (Zusatz-) Bezeichner.

Der Zugriff auf ein Feld eines Records erfolgt durch Angabe des Record-Bezeichners
und des Feld-Bezeichners. Beide Bezeichner sind mit einem Trennpunkt voneinander zu
trennen. Beispiel:

Der Record-Bezeichner: Student1
Der Feld-Bezeichner: Note
Der Zugriff somit: Student1.Note

Der Trennpunkt ────┘

Die noch zu erklärende "with"-Anweisung dient zur Vereinfachung des Zugriffs.

Die Feld-Bezeichner ist ein selbständiger Bezeichner und kollidiert somit bei richtiger
Verwendung nicht mit anderen Bezeichnern des Programms. Dennoch sollte man
Namensgleichheit vermeiden.

Zur Veranschaulichung: Ein Record mit dem Namen "Student1":

╔═════════════╤══════════╤════╤══════╗
║Huber │Anton │2000│ 2.13║
╚═════════════╧══════════╧════╧══════╝
│Nachname │Vorname │Jahr│Note │
│1234567890123│1234567890│2 B.│6 Byte│

Das erste Feld soll mit "Nachname" bezeichnet werden. Es enthält einen String mit max.
13 Zeichen. Der Bezeichner des zweiten Feldes soll "Vorname" lauten; dieses Feld ent-
hält ebenfalls einen String. Das dritte Feld enthält das Abschlußjahr, das kurz "Jahr"
genannt werden soll. Der Datentyp wird zweckmäßigerweise als Integer-Teilbereich (2
Byte) vereinbart. Das vierte Feld soll die Abschlußnote enthalten und mit "Note"
bezeichnet werden. Dafür sei der Datentyp Real vorgesehen (6 Byte).

Die Zugriffsmöglichkeiten bei einer Zuweisung:
Student1.Nachname := 'Huber';
Student1.Vorname := 'Anton';
Student1.Jahr := 2000;
Student1.Note := 2.13;

└──── Der Trennpunkt

Die Reihenfolge des Zugriffs ist beliebig.

Ein Record kann also Felder mit praktisch beliebige Datentypen enthalten, so z.B. auch
"array" oder andere "record" und diese wiederum usw. Somit sind sehr komplexe Daten-
strukturen möglich.

16-4 Dr. K. Haller Turbo-Pascal Kap. 16: Records

Trotz dieser internen Datentypen-Vielfalt wird ein Record von außen als ein Datentyp
betrachtet. Somit kann z.B. auch ein Array mit Records gebildet werden.

Zur Erinnerung: Ein Array kann nur Objekte "gleichen" Datentyps enthalten.

Allerdings sind mit Records nicht möglich: Vergleiche (auch nicht mit typgleichen
Records), Ein- und Ausgaben mit kompletten Records. Diese Operationen sind nur feld-
weise möglich. Somit sind folgende Anweisungen nicht zulässig:

 if Student1 = Student2
 then
 WriteLn(Student1);

Zuweisungen von kompletten Records an typgleiche ist jedoch möglich. Damit erspart
man sich die aufwendigere feldweise Zuweisung. Beispiel:

Student2 := Student1;

Bei der Bearbeitung eines Records mit vielen Feldern erspart die with-Anweisung viel
Tipparbeit, wie folgendes Beispiel im Vergleich mit der früheren Sequenz andeutet:

with Student1 do
 begin
 Nachname := 'Huber';
 Vorname := 'Anton';
 Jahr := 2000;
 Note := 2.13;
 end;

Das folgende Programm demonstriert die Behandlung von Records in der bislang
erklärten Weise:

program Pas16021; { Turbo-Pascal, Kap. 16: Datentyp "record" }
 { Demo: Konstanter Record }
uses
 CRT;

const
 Studentenzahl = 3;

type
 TStudent = record { Typ-Bezeichner "TStudent" des Records }
 Nachname: string[13]; { Bezeichner Feld 1 }
 Vorname: string[10]; { Bezeichner Feld 2 }
 Jahr: 1970..2005; { Bezeichner Feld 3 }
 Note: Real; { Bezeichner Feld 4 }
 end; { Die Record-Deklaration muß mit "end" beendet werden }

var
 Student1, { Die beiden Variablen sind vom Typ "TStudent" }
 Student2: TStudent; { und nach obiger Typ-Vereinbarung Record- }
 { Variablen }
 Semester: array[1..Studentenzahl] of TStudent;
 { Ein Array von Records !!! }
 i: Byte;

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-5

procedure WriteXY(Sp, Ze: Byte; Meldung: string);
begin
 GotoXY(Sp, Ze);
 Write(Meldung);
end;

procedure Warte_auf_Tastendruck;
var
 Spalte, Zeile: Byte;
 Ch: Char;
begin
 Spalte := WhereX;
 Zeile := WhereY + 1;
 while Keypressed do { Für absolute Sicherheit }
 Ch := ReadKey; { den Tastaturpuffer leeren }
 TextColor(Yellow);
 WriteXY(30, 25, 'Drücke beliebige Taste: ');
 TextColor(White);
 Ch := ReadKey;
 GotoXY(Spalte, Zeile);
end;

begin
 TextBackground(Blue); TextColor(White); ClrScr;

 { +-- der Trennpunkt !!! }
 Student1.Nachname := 'Huber'; { Man beachte den Punkt zwischen }
 Student1.Vorname := 'Anton'; { dem Recordbezeichner "Student1" }
 Student1.Jahr := 2000; { und den Feldbezeichnern }
 Student1.Note := 2.13;

 WriteLn('--- 1. --------------');
 WriteLn(Student1.Nachname); { ¦Huber }
 WriteLn(Student1.Vorname); { ¦Anton }
 WriteLn(Student1.Jahr); { ¦2000 }
 WriteLn(Student1.Note:4:2); { ¦2.13 }

 Warte_auf_Tastendruck;

 Student2 := Student1; { Zuweisung eines Records an einen anderen. }
 { "Student2" hat offensichtlich durch }
 { Abschreiben oder Kopieren Unterschleif }
 { begangen und wird später disqualifiziert }

 Writeln('--- 2. --------------');
 WriteLn(Student2.Nachname); { ¦Huber }
 WriteLn(Student2.Vorname); { ¦Anton }
 WriteLn(Student2.Jahr); { ¦2000 }
 WriteLn(Student2.Note:4:2); { ¦2.13 }

 Warte_auf_Tastendruck;

 { Die "with"- Anweisung dient nur zur Vereinfachung: }

 with Student2 do { hier Record-Bezeichner mit "with" }
 begin

16-6 Dr. K. Haller Turbo-Pascal Kap. 16: Records

 Nachname := 'Meier'; { hier Zuweisung an Feld-Bezeichner }
 Vorname := 'Josef';
 Jahr := 1992;
 Note := 6.00; { Die unbotmäßige Rache des Dozenten }
 end;

 Writeln('--- 3. --------------');
 with Student2 do
 begin
 WriteLn(Nachname); { ¦Meier }
 WriteLn(Vorname); { ¦Josef }
 WriteLn(Jahr); { ¦2000 }
 WriteLn(Note:4:2); { ¦6.00 }
 end;

 Warte_auf_Tastendruck;

 with Student2 do { Kleiner Amtsirrtum: }
 begin { Der Abkupferer heißt in Wirklichkeit }
 Nachname := 'Mayer'; { "Mayer" und nicht "Meier". }
 Note := 5.00; { Die Note muß natürlich "5.00" lauten. }
 end;

 WriteLn('--- 4. --------------');
 WriteLn(Student2.Nachname); { ¦Mayer }
 WriteLn(Student2.Vorname); { ¦Josef }
 WriteLn(Student2.Jahr); { ¦2000 }
 WriteLn(Student2.Note:4:2); { ¦5.00 }
 { Diese Sequenz ist schöner mit "with" zu programmieren }

 Warte_auf_Tastendruck;
 { Ein Array mit Records ... }
 for i := 1 to Studentenzahl do { ... da kommt Freude auf }
 with Semester[i] do { ... aber leider auch nur kurz }
 begin { Das ganze Semester hat die }
 Nachname := 'Help'; { Studienarbeit von Frau J. Help }
 Vorname := 'Julia'; { kopiert. Für die Beherrschung }
 Jahr := 2000; { des MS-DOS-Befehls "copy" gibt }
 Note := 1.14; { in Pascal keinen Punkt! }
 end;

 WriteXY(40, 1, '--- 5. --------------');
 for i := 1 to Studentenzahl do
 with Semester[i] do
 begin
 WriteXY(40, 1 + i, Nachname + ' ' + Vorname + ' ');
 WriteLn(Jahr, Note:6:2);
 end;
 { Die Bildschirmausgabe: }
 { ¦Help Julia 2000 1.14 }
 { ¦Help Julia 2000 1.14 }
 { ¦Help Julia 2000 1.14 }

 WriteXY(40, i + 4, '--- Ende ------------');
 Warte_auf_Tastendruck;
end.

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-7

16.3 Zum varianten Record

Beim bisherigen Beispiel lag eine feste Feldaufteilung des Records vor. Um Speicher-
platz zu sparen, läßt es Pascal aber zu, daß komplementäre Felder ein und desselben
Records einen gemeinsamen Speicherplatz benutzen. Derartige Records nennt man
"variante" Records".

Komplementär bedeutet in diesem Zusammenhang, daß im varianten Record der
"variante" Teil entweder mit X belegt ist oder mit Y oder mit Z usw.; nie aber mit X, Y,
Z usw. gleichzeitig. Die Datentypen von X, Y, Z usw. können verschieden sein. Der
"variante" Teil kann aus einem oder mehreren Feldern bestehen.

Im allgemeinen wird ein derartiger Record aber auch einen "konstanten" Teil besitzen.
In diesem Fall ist der konstante Teil vor dem varianten Teil zu deklarieren.

Der variante Teil beginnt mit dem reservierten Wort "case". Die Feldbezeichner des
varianten Teils und die zugehörigen Datentypen müssen in runde Klammern gesetzt
werden. Besteht der variante Teil aus mehreren Feldern, dann ist das Semikolon als
Trennzeichen zu benutzen. Weitere Details siehe folgendens Programm:

program Pas16031; { Demo "varianter" Record }

uses
 CRT;

type
 Geschlecht = (Maennlich, Weiblich);
 Reize = (Manchmal_reizend, Ziemlich_reizend, Sehr_reizend);
 Haarfarben = (Blond, Lila, Rot, Schwarz);
 Autos = (Keines, Trabi, Golf, BMW_720,
 Mercedes_450_SE, Porsche_911);
 Personendaten = record
 Sex: Geschlecht; { Konstantes Feld 1, Bezeichner: "Sex" }
 Name: string[15]; { Konstantes Feld 2, Bezeichner: "Name" }
 Alter: 20..80; { Konstantes Feld 3, Bezeichner: "Alter" }
 case Geschlecht of
 Maennlich: (Vermoegen: Real; { Runde Klammern für }
 Auto: Autos; { die varianten Felder }
 Groesse: 150..220);
 Weiblich: (Reiz: Reize; { Hier ebenso }
 Haarfarbe: Haarfarben); { runde Klammern }
 end; { von "record" }

 { Der vorliegende variante Record "Personendaten" besitzt einen
 konstanten Teil mit drei Feldern. Der variante Teil besteht im
 Fall "Weiblich" aus zwei Feldern mit den Bezeichnern "Reiz" und
 "Haarfarbe" und im Fall "Maennlich" aus drei Feldern mit den
 Bezeichnern "Vermoegen", "Auto" und "Groesse". }

var
 Kandidat: array[1..7] of Personendaten; { Array von Records !!!! }
 i: Byte;

procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);
begin
 GotoXY(Spalte, Zeile);

16-8 Dr. K. Haller Turbo-Pascal Kap. 16: Records

 Write(Meldung);
end;

procedure Warte_auf_Tastendruck;
var
 Spalte, Zeile: Byte;
 Ch: Char;
begin
 Spalte := WhereX;
 Zeile := WhereY + 1;
 while Keypressed do { Für absolute Sicherheit }
 Ch := ReadKey; { den Tastaturpuffer leeren }
 WriteXY(10, 25, 'Drücke beliebige Taste: ');
 Ch := ReadKey;
 GotoXY(Spalte, Zeile);
end;

begin { --- }
 TextBackground(Blue); TextColor(White); ClrScr;

 Kandidat[1].Sex := Weiblich; { konstantes Feld 1 }
 Kandidat[1].Name := 'Julia Help'; { konstantes Feld 2 }
 Kandidat[1].Alter := 23; { konstantes Feld 3 }
 Kandidat[1].Reiz := Sehr_reizend; { variantes Feld 1 }
 Kandidat[1].Haarfarbe := Blond; { variantes Feld 2 }

 Kandidat[2].Sex := Maennlich; { konstantes Feld 1 }
 Kandidat[2].Name := 'Anton Huber'; { konstantes Feld 2 }
 Kandidat[2].Alter := 25; { konstantes Feld 3 }
 Kandidat[2].Vermoegen := -47.11; { variantes Feld 1 }
 Kandidat[2].Auto := Keines; { variantes Feld 2 }
 Kandidat[2].Groesse := 178; { variantes Feld 3 }

 Kandidat[3].Sex := Weiblich;
 Kandidat[3].Name := 'Helga Punk';
 Kandidat[3].Alter := 21;
 Kandidat[3].Reiz := Ziemlich_reizend;
 Kandidat[3].Haarfarbe := Lila;

 Kandidat[4].Sex := Weiblich;
 Kandidat[4].Name := 'Paula Putz';
 Kandidat[4].Alter := 48;
 Kandidat[4].Reiz := Manchmal_reizend;
 Kandidat[4].Haarfarbe := Schwarz;

 Kandidat[5].Sex := Maennlich;
 Kandidat[5].Name := 'Waldemar Bonze';
 Kandidat[5].Alter := 68;
 Kandidat[5].Vermoegen := 4.711E+7;
 Kandidat[5].Auto := Mercedes_450_SE;
 Kandidat[5].Groesse := 172;

 with Kandidat[6] do { Zur Abwechslung mal wieder mit "with": }
 begin
 Sex := Maennlich;
 Name := 'Klaus Yuppie';
 Alter := 32;
 Vermoegen := 1.0E+6;
 Auto := Porsche_911;
 Groesse := 182;
 end;

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-9

 Kandidat[7].Sex := Weiblich;
 Kandidat[7].Name := 'Claudia Meier';
 Kandidat[7].Alter := 20;
 Kandidat[7].Reiz := Sehr_reizend;
 Kandidat[7].Haarfarbe := Rot;

 WriteXY(10, 7, '------- Demo: Varianter Record ---------');
 WriteLn(#13#10);

 for i := 1 to 7 do
 begin
 if (Kandidat[i].Sex = Weiblich) and { Anspruchs- }
 (Kandidat[i].Reiz = Sehr_reizend) and { voller }
 (Kandidat[i].Alter < 30) and { Wunsch }
 (Kandidat[i].Haarfarbe = Blond) then { des Herrn }
 begin
 WriteXY(10, WhereY, 'Traumfrau: ');
 WriteLn(Kandidat[i].Name:16);
 end;

 if (Kandidat[i].Sex = Maennlich) and
 (Kandidat[i].Vermoegen >= 1.0E+6) then { Bescheiden }
 begin { der Wunsch }
 WriteXY(10, WhereY, 'Supermann: '); { der Dame }
 WriteLn(Kandidat[i].Name:16, ' DM ',
 Kandidat[i].Vermoegen:8:0);
 end;
 end;
 { Die Bildschirmausgabe bei obigen Daten: }
 { ¦... Traumfrau: Julia Help }
 { ¦... Supermann: Waldemar Bonze DM 47110000 }
 { ¦... Supermann: Klaus Yuppie DM 1000000 }

 Warte_auf_Tastendruck;
end.

16.4 Übergabe eines Records als Parameter

Für die Übergabe eines Records als formalen Parameter in einer Funktion oder Prozedur
ist unbedingt vorher mit "type" ein eigener Record-Typ zu deklarieren. Das folgende
Programm zeigt die Vorgehensweise:

program Pas16041; { Records. Im Gegensatz zu "Pas16021.PAS" hier }
 { zusätzlich auch direkte Deklaration eines Records in der }
uses { Variablendeklaration. Besser ist es mit "type" einen }
 CRT; { eigenen Record-Datentyp zu vereinbaren. Bei der Übergabe }
 { eines Records als Parameter einer Routine ist ein eigener }
 { Typbezeichner unbedingt notwendig! Strukturierte Typen }
 { können nur so übergeben werden. }
type
 TStudent = record { Indirekte Deklaration, eigener }
 Nachname: string[20]; { Datentyp. Die spätere Record- }
 Vorname: string[20]; { variable "Student2" bekommt }
 Jahr: 1970..2005; { diesen Typ und kann als Para- }
 Note: Real; { meter an eine Routine über- }
 end; { geben werden. }

16-10 Dr. K. Haller Turbo-Pascal Kap. 16: Records

var
 Student1: record { Direkte Deklaration. Kein }
 Nachname: string[20]; { eigener Datentyp. Diese }
 Vorname: string[20]; { Recordvariable kann n i c h t }
 Jahr: 1970..2005; { als Parameter an eine Routine }
 Note: Real; { übergeben werden. }
 end;
 Student2: TStudent;

procedure Demo(Student3: TStudent);
begin
 WriteLn(Student3.Nachname);
 WriteLn(Student3.Vorname);
 WriteLn(Student3.Jahr);
 WriteLn(Student3.Note:4:2);
end;

begin
 ClrScr;
 Student1.Nachname := 'Huber';
 Student1.Vorname := 'Anton';
 Student1.Jahr := 2000;
 Student1.Note := 2.13;

 WriteLn(Student1.Nachname);
 WriteLn(Student1.Vorname);
 WriteLn(Student1.Jahr);
 WriteLn(Student1.Note:4:2);
 WriteLn;

 Student2.Nachname := 'Help';
 Student2.Vorname := 'Julia';
 Student2.Jahr := 2000;
 Student2.Note := 1.47;

 WriteLn(Student2.Nachname);
 WriteLn(Student2.Vorname);
 WriteLn(Student2.Jahr);
 WriteLn(Student2.Note:4:2);
 WriteLn;

 Demo(Student2); { Nicht möglich: "Demo(Student1)", sonst }
 { Meldung "Typen nicht miteinander vereinbar" }
 { Die Ausgabe: 1 * Daten von "Anton Huber" }
 { 2 * Daten von "Julia Help" }

 repeat
 until KeyPressed;
end.

16. 5 Record mit weiterem Record und Array

program Pas16051; { Ein Record mit Unterrecord, }
 { der u.a. einen "array" enthält }
uses
 CRT;

const
 n = 2;

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-11

 kMax = 6;
 Dummy = 'Dummy';

type
 RekordTypB = record
 Kind: array[1..kMax] of string[20];
 Wunsch: (Pferd, Reise, Fernseher);
 end;
 RekordTypA = record
 Vater,
 Mutter: string[30];
 Kinder: RekordTypB;
 end;
var
 Familien: array[1..2] of RekordTypA;
 i, k: Byte;

begin
 ClrScr;

 Familien[1].Vater := 'Anton Huber';
 Familien[1].Mutter := 'Anna Huber';
 Familien[1].Kinder.Kind[1] := 'Max';
 Familien[1].Kinder.Kind[2] := 'Moritz';
 Familien[1].Kinder.Kind[3] := 'Julia';
 Familien[1].Kinder.Kind[4] := Dummy;
 Familien[1].Kinder.Wunsch := Pferd;

 Familien[2].Vater := 'Josef Meier';
 Familien[2].Mutter := 'Maria Meier';
 Familien[2].Kinder.Kind[1] := 'Kurt';
 Familien[2].Kinder.Kind[2] := 'Helga';
 Familien[2].Kinder.Kind[3] := Dummy;
 Familien[2].Kinder.Wunsch := Fernseher;

 for i := 1 to n do
 with Familien[i] do
 begin
 WriteLn('Vater: ', Vater);
 WriteLn('Mutter: ', Mutter);
 if Kinder.Kind[1] <> Dummy then
 begin
 Write('Wunsch der Kinder: ');
 case Kinder.Wunsch of
 Pferd: WriteLn('Ein Pferd');
 Fernseher: WriteLn('Einen Fernseher');
 Reise: WriteLn('Eine Reise');
 end;
 for k := 1 to kMax do
 if Kinder.Kind[k] <> Dummy
 then WriteLn('Kind ', k, ': ', Kinder.Kind[k])
 else Break; { k-Schleife vorzeitig beenden }
 end;
 WriteLn;
 end;

 { Die Bildschirmausgabe: }
 { ¦Vater: Anton Huber }
 { ¦Mutter: Anna Huber }

16-12 Dr. K. Haller Turbo-Pascal Kap. 16: Records

 { ¦Wunsch der Kinder: Ein Pferd }
 { ¦Kind 1: Max }
 { ¦Kind 2: Moritz }
 { ¦Kind 3: Julia }
 { ¦ }
 { ¦Vater: Josef Meier }
 { ¦Mutter: Maria Meier }
 { ¦Wunsch der Kinder: Einen Fernseher }
 { ¦Kind 1: Kurt }
 { ¦Kind 2: Helga }

 repeat
 until KeyPressed;
end.

80250407 Dr. K. Haller

