Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-1

16 Der strukturierte Datentyp "record"

Gliederung

16.1 Kurze Wiederholung zu Datentypen.........cccveeeieeeiieeeciieeniieecieeeiee e 2
16.2 Allgemeines zum Datentyp reCOrd........cceevvviieriieriiieeiiieeiieerieeeieeeiee e 2
16.3 Demonstration varianter Recordccoccvvvviiiiiniiiiiiiic e 7
16.4 Ubergabe eines Records als Parameter.............ococovvvvveevevevevevevevenenenennan, 10

16.5 Record mit weiterem Record und Array.........cccceeevieeeiieeniiieeniieeieeeee, 11

16-2 Dr. K. Haller Turbo-Pascal Kap. 16: Records

16.1 Kurze Wiederholung zu "Datentypen"

A) Unstrukturierte Datentypen

A.1 Ordinal-Typen: Integer, ShortInt, Byte, LongInt, Char, Boolean, Teilbereichstypen
und Aufzidhlungstypen.

A.2 Real-Typen: Real, Single, Double, Extended und Comp. Mit Ausnahme von
"Real" wird bei den anderen Real-Typen ein mathematischer Coprozessor vor-
ausgesetzt oder dessen softwaremiflige Emulation.

Symbolische Darstellung von unstrukturierten Typen:

L1 OO I

B) Strukturierte Datentypen

B.1 array: Zusammenfassung von Objekten gleichen Typs, z.B. "array of Integer",
"array of Real", "array of Boolean" usw.

Symbolische Darstellung eines Arrays:
et 1 T T T T T T T T T 1

B.2 string: Spezielle Zusammenfassung von Char, "array of Char")

Symbolische Darstellung eines Strings:
N O O B B |

Das erste Byte des Strings (hat die Zahlnummer Null) enthélt das Langenbyte der
aktuellen Stringlénge.

B.3 set: Zusammenfassung von Ordinaltypen ohne Rangfolge = Menge, wobei die
Ordinalwerte zwischen 0 und 255 liegen miissen, z.B. "set of Char", "set of Byte",
"set of Boolean", usw.

Symbolische Darstellung einer Menge:

]]

]]
- (I

16.2 Allgemeines zum strukturierten Datentyp "record"

Ein "record" ist eine Zusammenfassung von Objekten, die im Gegensatz zu "array",
"string" und "set" verschiedene Datentypen enthalten konnen, aber dennoch mit einem
gemeinsamen (Haupt-) Namen, dem Record-Bezeichner, angesprochen werden.

Symbolische Darstellung des Records:

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-3

In der kommerziellen Datenverarbeitung bezeichnet man einen "record" mit "Datensatz"
oder kurz "Satz". Die Eindeutschung von "record" wird oft aber auch mit "Verbund"
vorgenommen.

Die einzelnen Teile eines Records nennt man Felder oder Komponenten. Jedes Feld hat
einen eigenen (Zusatz-) Bezeichner.

Der Zugriff auf ein Feld eines Records erfolgt durch Angabe des Record-Bezeichners
und des Feld-Bezeichners. Beide Bezeichner sind mit einem Trennpunkt voneinander zu
trennen. Beispiel:

Der Record-Bezeichner: St udent 1

Der Feld-Bezeichner: Not e

Der Zugrift somit: St udent 1. Not e
Der Trennpunkt ———

Die noch zu erkldrende "with"-Anweisung dient zur Vereinfachung des Zugriffs.

Die Feld-Bezeichner ist ein selbstindiger Bezeichner und kollidiert somit bei richtiger
Verwendung nicht mit anderen Bezeichnern des Programms. Dennoch sollte man
Namensgleichheit vermeiden.

Zur Veranschaulichung: Ein Record mit dem Namen "St udent 1":

Huber Anton 2000 2.13

Nachname Vorname Jahr [Note
1234567890123 |1234567890|2 B. |6 Byte

Das erste Feld soll mit "Nachname" bezeichnet werden. Es enthélt einen String mit max.
13 Zeichen. Der Bezeichner des zweiten Feldes soll "Vorname" lauten; dieses Feld ent-
hilt ebenfalls einen String. Das dritte Feld enthélt das AbschluB3jahr, das kurz "Jahr"
genannt werden soll. Der Datentyp wird zweckmaBigerweise als Integer-Teilbereich (2
Byte) vereinbart. Das vierte Feld soll die AbschluBnote enthalten und mit "Note"
bezeichnet werden. Dafiir sei der Datentyp Real vorgesehen (6 Byte).

Die Zugriffsmoglichkeiten bei einer Zuweisung:

St udent 1. Nachnanme : = ' Huber';
St udent 1. Vor name = '"Anton';
St udent 1. Jahr = 2000;
St udent 1. Not e = 2.13;

L—— Der Trennpunkt
Die Reihenfolge des Zugriffs ist beliebig.

Ein Record kann also Felder mit praktisch beliebige Datentypen enthalten, so z.B. auch
"array" oder andere "record" und diese wiederum usw. Somit sind sehr komplexe Daten-
strukturen moglich.

16-4 Dr. K. Haller Turbo-Pascal Kap. 16: Records

Trotz dieser internen Datentypen-Vielfalt wird ein Record von auflen als ein Datentyp
betrachtet. Somit kann z.B. auch ein Array mit Records gebildet werden.

Zur Erinnerung: Ein Array kann nur Objekte "gleichen" Datentyps enthalten.

Allerdings sind mit Records nicht moglich: Vergleiche (auch nicht mit typgleichen
Records), Ein- und Ausgaben mit kompletten Records. Diese Operationen sind nur feld-
weise moglich. Somit sind folgende Anweisungen nicht zuléssig:
—+—Studentt—=-Student 2

ther———
~ Witeln(Student1);
Zuweisungen von kompletten Records an typgleiche ist jedoch moglich. Damit erspart
man sich die aufwendigere feldweise Zuweisung. Beispiel:

Student 2 : = Student 1;

[a)

Bei der Bearbeitung eines Records mit vielen Feldern erspart die with-Anweisung viel
Tipparbeit, wie folgendes Beispiel im Vergleich mit der fritheren Sequenz andeutet:

with Studentl do
begi n
Nachnanme : = ' Huber';
Vor nane = "Anton';
Jahr = 2000;
Not e = 2.13;
end;

Das folgende Programm demonstriert die Behandlung von Records in der bislang
erklarten Weise:

program Pas16021; { Turbo-Pascal, Kap. 16: Datentyp "record" }

{ Denb: Konstanter Record }
uses
CRT;
const
St udent enzahl = 3;
type
TSt udent = record { Typ-Bezei chner "TStudent" des Records }
Nachname: string[13]; { Bezeichner Feld 1 }
Vor name: string[10]; { Bezeichner Feld 2 }
Jahr: 1970. . 2005; { Bezeichner Feld 3 }
Not e: Real ; { Bezeichner Feld 4 }
end; { Die Record-Deklaration mu3 mt "end" beendet werden }
var
St udent 1, Di e beiden Variablen sind vom Typ "TStudent" }

{
{ und nach obi ger Typ-Verei nbarung Record-
{ Vari abl en

St udent 2: TSt udent ; }
}

Senest er:

array[1. . Student enzahl] of TStudent;
{ Ein Array von Records !!
Byt e;

b}

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-5

procedure WiteXY(Sp, Ze:
begin

Got oXY(Sp, Ze);

Wite(Ml dung);

end;

Byte; Meldung: string);

procedure Warte_auf _Tast endr uck;

var
Spalte, Zeile: Byte;
Ch: Char ;
begin
Spal te : = WereX;
Zeile := WereY + 1;
whi | e Keypressed do { Fur absolute Sicherheit }
Ch : = ReadKey; { den Tastaturpuffer |eeren }

Text Col or (Yel | ow) ;

WiteXY(30, 25, 'Drucke beliebige Taste: ');
Text Col or (Wi te);
Ch : = ReadKey;
Got oXY(Spalte, Zeile);
end;
begin
Text Background(Bl ue); TextCol or(Wiite); CrScr;
+-- der Trennpunkt !I! }
St udent 1. Nachnanme := 'Huber'; { Man beachte den Punkt zw schen }
St udent 1. Vor nane = '"Anton'; { dem Recordbezei chner "Studentl1l" }
St udent 1. Jahr = 2000; { und den Fel dbezei chnern }
St udent 1. Not e = 2.13;
WiteLn('--- 1. -------------- ")
WitelLn(Studentl. Nachnane); { | Huber }
Wi telLn(Student 1. Vornane); { Anton }
WitelLn(Studentl. Jahr); { 2000 }
WitelLn(Studentl. Note: 4:2); { }2.13 }

Wart e _auf Tast endruck;

Student 2 : = Student 1;

Witeln('--- 2.
WitelLn(Student2. Nachnane);
Wi telLn(Student 2. Vornane) ;
WitelLn(Student 2. Jahr);
WitelLn(Student2. Note: 4:2);

Wart e auf Tast endruck;
{ Die "with"-

with Student2 do
begin

Zuwei sung ei nes Records an ei nen anderen.
" St udent 2"
Abschr ei ben oder
begangen und wird spater disqualifiziert

hat of fensichtlich durch
Kopi eren Unterschl eif

o e

Anwei sung di ent nur zur Vereinfachung: }

{ hier Record-Bezeichner mt "with" }

16-6

Dr. K. Haller Turbo-Pascal

Kap. 16: Records

Nachnanme := 'Meier';
Vor nane = 'Josef"';
Jahr = 1992;
Not e = 6. 00;
end;
Witeln('--- 3. ----emoaannan-
with Student2 do
begin
Wit eLn(Nachnane) ;
Wi teLn(Vornane);
WiteLn(Jahr);
WitelLn(Note:4:2);
end;
Wart e auf Tast endruck;
with Student2 do {
begin {
Nachname := ' Mayer'; {
Not e = 5.00; {
end;
WiteLn('--- 4. -----mceananna-

WitelLn(Student2. Nachnane);
Wi telLn(Student 2. Vornane) ;
WitelLn(Student 2. Jahr);
WitelLn(Student 2. Note: 4:2);
{ Di ese Sequenz ist schoner

Wart e auf Tast endruck;

{ Ein Array mt Records ...
for i := 1 to Studentenzahl
with Senmester[i] do
begin
Nachnanme := 'Hel p';
Vor name ="'Julia;
Jahr = 2000;
Not e = 1. 14;
end;
WiteXY(40, 1, '--- 5.

for i := 1 to Studentenzahl
with Senmester[i] do
begin
WiteXY(40, 1 + i,
WiteLn(Jahr,
end;

{ Die Bildschirmusgabe:
{ 'Help Julia 2000 1.14
{ 'Help Julia 2000 1.14
{ 'Help Julia 2000 1.14
WiteXY(40, i + 4, '--- Ende

Wart e auf Tast endruck;
end.

{

{

Nachnanme +
Not e: 6: 2) ;

hi er Zuwei sung an Fel d-Bezei chner }

Di e unbot nalRi ge Rache des Dozenten }

| Mei er
| Josef
| 2000
1 6.00

o

Kl ei ner Antsirrtum

Der Abkupferer hei 3t in Wrklichkeit
"Mayer" und nicht "Meier".

Die Note muR natirlich "5.00" |auten.

{ | Mayer
{ }Josef
{ 12000
{
t

o e

1 5.00
"With" zu progranm eren }

}
do { da kommt Freude auf

{ aber | eider auch nur kurz
{ Das ganze Senester hat die

{ Studienarbeit von Frau J. Help
{ kopiert. Fur die Beherrschung
{ des Ms-DOS-Befehls "copy" gibt
{

in Pascal kei nen Punkt!

do

+ Vor name +

S E:

e o

e e o e e

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-7

16.3 Zum varianten Record

Beim bisherigen Beispiel lag eine feste Feldaufteilung des Records vor. Um Speicher-
platz zu sparen, 148t es Pascal aber zu, da3 komplementdre Felder ein und desselben
Records einen gemeinsamen Speicherplatz benutzen. Derartige Records nennt man
"variante" Records".

Komplementdr bedeutet in diesem Zusammenhang, dafl im varianten Record der
"variante" Teil entweder mit X belegt ist oder mit Y oder mit Z usw.; nie aber mit X, Y,
Z usw. gleichzeitig. Die Datentypen von X, Y, Z usw. konnen verschieden sein. Der
"variante" Teil kann aus einem oder mehreren Feldern bestehen.

Im allgemeinen wird ein derartiger Record aber auch einen "konstanten" Teil besitzen.
In diesem Fall ist der konstante Teil vor dem varianten Teil zu deklarieren.

Der variante Teil beginnt mit dem reservierten Wort "case". Die Feldbezeichner des
varianten Teils und die zugehdrigen Datentypen miissen in runde Klammern gesetzt
werden. Besteht der variante Teil aus mehreren Feldern, dann ist das Semikolon als
Trennzeichen zu benutzen. Weitere Details siche folgendens Programm:

program Pas16031; { Deno "varianter" Record }

uses
CRT;
type
Geschl echt = (Maennlich, Weiblich);
Rei ze = (Manchmal _reizend, Ziemich reizend, Sehr_reizend);
Haarfarben = (Blond, Lila, Rot, Schwarz);
Aut os = (Keines, Trabi, Colf, BMN720,

Mer cedes_450_SE, Porsche_911);
Per sonendaten = record
Sex: Geschl echt ; { Konstantes Feld 1, Bezeichner: "Sex" }
Nane: string[15]; { Konstantes Feld 2, Bezeichner: "Nanme" }
Al ter: 20. . 80; { Konstantes Feld 3, Bezeichner: "Alter" }
case Ceschl echt of
Runde Kl anmern far }
}
}
}

Maennl i ch: (Vernoegen: Real; {
Aut o: Aut os; { die varianten Fel der
G oesse: 150. . 220);
Wi blich: (Reiz: Rei ze; { Hier ebenso
{

Haar f ar be: Haarf ar ben); runde Kl amrern

end; { von "record" }

{ Der vorliegende variante Record "Personendaten” besitzt einen
konstanten Teil mt drei Feldern. Der variante Teil besteht im

Fall "Weiblich" aus zwei Feldern nmit den Bezei chnern "Reiz" und
"Haarfarbe" und imFall "Maennlich" aus drei Feldern mit den
Bezei chnern "Vernoegen", "Auto" und "G oesse". }
var
Kandi dat: array[l..7] of Personendaten; { Array von Records !!!! }
i: Byt e;
procedure WiteXY(Spalte, Zeile: Byte; Ml dung: string);
begin

Got oXY(Spalte, Zeile);

16-8 Dr. K. Haller Turbo-Pascal Kap. 16: Records

Wite(Ml dung);

begi n
Sex = Maennlich;
Narme = 'Kl aus Yuppie';
Al ter = 32;
Ver noegen : = 1. 0E+6;
Aut o = Porsche_ 911,
G oesse = 182;

end;

end,;

procedure Warte_auf _Tast endruck;

var
Spalte, Zeile: Byte;
Ch: Char ;

begi n
Spal te : = WereX;
Zeile = WereY + 1;
whi | e Keypressed do { Fur absol ute Sicherheit }

Ch : = ReadKey; { den Tastaturpuffer leeren }

WiteXY(10, 25, 'Dricke beliebige Taste: ');
Ch : = ReadKey;
Got oXY(Spal te, Zeile);

end;

9EEi M {{ eccocooooes }
Text Background(Bl ue); TextCol or(Wiite); CrScr;
Kandi dat [1] . Sex = Wi blich; { konstantes Feld 1}
Kandi dat [1] . Nane = '"Julia Help'; { konstantes Feld 2 }
Kandi dat[1] . Al ter = 23; { konstantes Feld 3}
Kandi dat [1] . Rei z = Sehr_rei zend; { variantes Feld 1}
Kandi dat [1] . Haar f ar be : = Bl ond; { variantes Feld 2}
Kandi dat [2] . Sex = Maennl i ch; { konstantes Feld 1 }
Kandi dat [2] . Nare = ' Anton Huber'; { konstantes Feld 2 }
Kandi dat[2] . Al ter = 25; { konstantes Feld 3 }
Kandi dat [2] . Ver nbegen : = -47. 11, { variantes Feld 1}
Kandi dat[2] . Auto = Kei nes; { variantes Feld 2 }
Kandi dat [2] . G oesse = 178; { variantes Feld 3}
Kandi dat [3] . Sex = Wi bl i ch;
Kandi dat [3] . Nare = ' Hel ga Punk';
Kandi dat[3] . Al ter = 21;
Kandi dat [3] . Rei z = Zienmich_reizend;
Kandi dat [3] . Haarfarbe : = Lil a;
Kandi dat [4] . Sex = Wi bl i ch;
Kandi dat [4] . Nane = 'Paula Putz';
Kandi dat[4] . Al ter = 48;
Kandi dat [4] . Rei z = Manchnal _rei zend;
Kandi dat [4] . Haar f arbe : = Schwar z;
Kandi dat [5] . Sex = Maennl i ch;
Kandi dat [5] . Nare = ' Wal demar Bonze';
Kandi dat[5] . Al ter = 68;
Kandi dat [5] . Ver nbegen : = 4. 711E+7;
Kandi dat [5] . Aut o = Mercedes_450_SE;
Kandi dat [5] . G- oesse = 172;
wi t h Kandi dat[6] do { Zur Abwechslung mal wi eder mt "with": }

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-9

Kandi dat [7] . Sex = Wei blich;
Kandi dat [7] . Nare = 'Claudia Mier'’
Kandidat[7] . Al ter = 20;
Kandi dat[7] . Rei z .= Sehr _reizend;
Kandi dat [7] . Haarf arbe := Rot;
Witexy(10, 7, '------- Deno: Varianter Record --------- ")
Wi telLn(#13#10);
for i :=1to 7 do
begin
if (Kandidat[i]. Sex = Weiblich) and { Anspruchs- }
(Kandidat[i].Reiz = Sehr_reizend) and { voller }
(Kandidat[i].Alter < 30) and { Winsch }
(Kandidat[i].Haarfarbe = Bl ond) then { des Herrn }
begin
WiteXY(10, WereY, 'Traunfrau: ');
WiteLn(Kandidat[i]. Name: 16);
end,
if (Kandidat[i]. Sex = Maennlich) and
(Kandi dat[i].Vernoegen >= 1. 0E+6) then { Bescheiden }
begin { der Winsch }
WiteXY(10, WhereY, 'Supermann: '); { der Dane }
WiteLn(Kandidat[i].Nanme:16, ' DM',
Kandi dat[i]. Ver noegen: 8: 0) ;
end;
end;
{ Die Bildschirmusgabe bei obi gen Daten: }
{1 Traunf r au: Julia Help }
{ ... Supermann: WAl denar Bonze DM 47110000 }
{ ... Supermann: Kl aus Yuppie DM 1000000 '}
Wart e auf Tast endruck;
end

16.4 Ubergabe eines Records als Parameter

Fiir die Ubergabe eines Records als formalen Parameter in einer Funktion oder Prozedur
ist unbedingt vorher mit "type" ein eigener Record-Typ zu deklarieren. Das folgende
Programm zeigt die Vorgehensweise:

program Pas16041; { Records. |Im Gegensatz zu "Pas16021. PAS" hi er

{ zuséatzlich auch direkte Deklaration eines Records in der
Vari abl endekl aration. Besser ist es nmit "type" einen
ei genen Record-Datentyp zu verei nbaren. Bei der Ubergabe

uses {
{
{ eines Records als Paranmeter einer Routine ist ein eigener
{
{

CRT;

Typbezei chner unbedi ngt notwendi g! Strukturierte Typen
kénnen nur so Ubergeben werden
type
TStudent = record { Indirekte Deklaration, eigener
Nachnane: string[20]; { Datentyp. Die spatere Record-
Vornane: string[20]; { variable "Student2" bekomt
Jahr: 1970..2005; { diesen Typ und kann als Para-
Not e: Real ; { meter an eine Routine uber-
end; { geben werden. }

e " e v " " e " N

16-10 Dr. K. Haller Turbo-Pascal Kap. 16: Records
var
Student 1: record { Direkte Deklaration. Kein }
Nachnanme: string[20]; { eigener Datentyp. Diese }
Vor nane: string[20]; { Recordvariable kann ni c ht }
Jahr: 1970..2005; { als Paraneter an eine Routine }
Not e: Real ; { Ubergeben werden. }
end,

St udent 2: TSt udent ;

procedure Deno(Student3: TStudent);
begin
Wi telLn(Student 3. Nachnane) ;
Wi telLn(Student 3. Vor nane) ;
WitelLn(Student 3. Jahr);
WitelLn(Student 3. Note: 4:2);

end;

begi n
ClrScr;
St udent 1. Nachnane : = ' Huber';
St udent 1. Vor nane = 'Anton';
St udent 1. Jahr = 2000;
St udent 1. Not e = 2.13;

WitelLn(Student1l. Nachnane);
Wi telLn(Student 1. Vornane);
WitelLn(Studentl. Jahr);
WitelLn(Studentl. Note: 4:2);
WitelLn;

St udent 2. Nachnane : = 'Hel p';
St udent 2. Vor nane = '"Julia';
St udent 2. Jahr = 2000;

St udent 2. Not e = 1.47,

WitelLn(Student2. Nachnane);
Wi telLn(Student 2. Vornane) ;
WitelLn(Student 2. Jahr);
WitelLn(Student2. Note: 4:2);
WitelLn;

Deno(Student?2); { N cht mdbglich: "Denmp(Studentl)", sonst }
{ Mel dung "Typen nicht mteinander vereinbar" }

{ Die Ausgabe: 1 * Daten von "Anton Huber" }

{ 2 * Daten von "Julia Help" }

r epeat
until
end.

KeyPr essed;

16. 5 Record mit weiterem Record und Array

program Pas16051; { Ein Record mt Unterrecord, }
{ der u.a. einen "array" enthalt }
uses
CRT;

const

Dr. K. Haller Turbo-Pascal Kap. 16: Records 16-11

kMax = 6;
Dummy = ' Dumy' ;
type
Rekor dTypB = record
Ki nd: array[1. . kMax] of string[20];
Winsch: (Pferd, Reise, Fernseher);
end;
Rekor dTypA = record
Vat er,
Mutter: string[30];
Ki nder: RekordTypB;
end;
var
Fami lien: array[l..2] of RekordTypA;
i, k: Byt e;
begin
CrsScr;
Fam | ien[1]. Vater = ' Anton Huber';
Fam lien[1].Mitter = ' Anna Huber';
Fam lien[1].Kinder.Kind[1] :="'Max";
Fam lien[1l].Kinder.Kind[2] := '"Mritz';
Fam lien[1].Kinder.Kind[3] := 'Julia;
Fam | i en[1] . Ki nder. Ki nd[4] : = Dunmy;
Fam | i en[1] . Ki nder. Winsch = Pferd;
Fam | i en[2]. Vater = 'Josef Meier';
Fam lien[2].Mitter = "Maria Meier';
Fam lien[2].Kinder.Kind[1] := 'Kurt"';
Fam lien[2].Kinder.Kind[2] :="'Helga;
Fam | i en[2] . Ki nder. Ki nd[3] : = Dumy;
Fam | i en[2] . Ki nder. Winsch = Fernseher;
for i :=1to n do
with Famlien[i] do
begin
WiteLn(' Vater: ', Vater);
WiteLn(' Mutter: ', Mitter);
i f Kinder.Kind[1] <> Dunmy then
begin
Wite(' Winsch der Kinder: ');
case Kinder.Wnsch of
Pf er d: WiteLn('Ein Pferd');
Fernseher: WiteLn(' Ei nen Fernseher');
Rei se: WiteLn(' Ei ne Reise');
end;
for k :=1 to kMax do
i f Kinder.Kind[k] <> Dummy
then WiteLn('Kind ', k, ': ', Kinder.Kind[k])
el se Break; { k-Schleife vorzeitig beenden }
end;
WitelLn;
end;

{ Die Bildschirmausgabe:
{ Vater: Anton Huber
{ Mutter: Anna Huber

e

16-12 Dr. K. Haller Turbo-Pascal Kap. 16: Records

nsch der Kinder: En Pferd

nd 1: Max

nd 2: Mritz

nd 3: Julia

ter: Josef Meier

tter: Maria Mier

nsch der Kinder: Ei nen Fernseher
nd 1: Kurt

1 Kind 2: Hel ga

r epeat
until KeyPressed;
end.

zg25 Z55%

{1
{1
{1
{1
{1
{1
{1
{1
{1
{

" e M o My o Ay o e

80250407 Dr. K. Haller

