
Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets) 15-1

15 Der strukturierte Datentyp »set« (Mengen)

Gliederung

15.1 Allgemeines zu Mengen ...2

15.2 Mengen-Operatoren, Demo-Programm..3

15.3 Mengen-Prozeduren, Demo-Programm..7

15-2 Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets)

15.1 Allgemeines zu Mengen

Ein "set" ist eine Zusammenfassung von Elementen des gleichen Grundtyps, im Gegen-
satz zu Arrays aber ohne Rangordnung. Somit kann ein einzelnes Mengenelement auch
nicht über einen Index angesprochen werden. Die Reihenfolge der Elemente in der
Menge ist nicht definiert.

Ein Array: Eine Menge:

Der Grundtyp der Menge muß ein Ordinaltyp (Integer, Char, Boolean, Aufzählungstyp
oder Teilbereichstyp) sein. Die Deklaration einer Mengenvariablen lautet somit:

var
 Mengenvariable: set of Ordinaltyp;

Es empfiehlt sich, auch für Mengen mit "type" eigene Datentypen zu deklarieren.

Bei Turbo-Pascal liegt (wie bei vielen Pascal-Implementationen) aus technischen Grün-
den eine Einschränkung der zulässigen Ordinaltypen für Mengen vor: Der Ordinalwert
muß zwischen 0 und 255 liegen. Somit ist "set of Integer" oder "set of ShortInt" oder
"set of Word" in Turbo-Pascal nicht möglich, wohl aber "set of Byte" oder "set of Char".

Mengenvariablen können nicht direkt mit "Read" eingelesen oder "Write" ausgegeben
werden. Für Zuweisungen dient der üblichen Zuweisungsoperator ":=".

Zum Aufbau einer Menge aus Elementen dient als Mengenbildner (engl. constructor)
das eckige Klammernpaar. Eine Menge, die keine Elemente enthält, ist eine leere
Menge. Sie wird durch die Zeichenfolge "[]" ausgedrückt.

Beispiel für Deklaration und Mengenbildung:

var
 M1,
 M2: set of Char;
 M3: set of Byte;
begin
 M1 := ['a', 'e', 'i', 'o', 'u'];
 M2 := ['a'..'z', 'A'..'Z', '0'..'9'];
 M3 := [2, 5, 9, 11..47];
 M1 := []; { Leere Menge }
 M3 := [47..11]; { Ist auch eine leere Menge, da der untere Ordi- }
 { nalwert des Bereiches größer ist als der obere Ordinalwert }

Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets) 15-3

15.2 Mengen-Operatoren

Es stehen verschiedene Mengen-Operatoren zur Verfügung, mit denen z.B. geprüft
werden kann, ob ein Element in einer Menge enthalten ist, oder mit denen zwei Mengen
miteinander verknüpft werden können, um z.B. die Schnittmenge zu bestimmen.

Für die folgende Darstellung aller Mengenoperatoren seien M1 und M2 Mengen des
gleichen Grundtyps und E sei ein Element:

Op Beispiel
Ergebnis-
Datentyp Erklärungen

in E in M1 Boolean Operator "in" für Prüfung, ob Element E in der Menge M1 ent-
halten ist.

= M1 = M2 Boolean Operator "=" für Prüfung auf Gleichheit der Mengen M1 und M2.

<> M1 <> M2 Boolean Operator "<>" für Prüfung auf Ungleichheit.

<= M1 <= M2 Boolean Operator "<=" für Prüfung auf Untermenge.
Das Ergebnis ist dann True, wenn alle Elemente von M1 in M2
enthalten sind.

>= M1 >= M2 Boolean Operator ">=" für Prüfung auf Obermenge.
Das Ergebnis ist dann True, wenn alle Elemente von M2 in M1
enthalten sind.

+ M1 + M2 set Operator "+" für Bildung der Vereinigungsmenge. Wirkung
ähnlich wie logisches "or".

- M1 - M2 set Operator "-" für Bildung der Differenzmenge.

* M1 * M2 set Operator "*" für Bildung der Schnittmenge. Wirkung ähnlich wie
logisches "and".

Die Mengendisjunktion (kein gemeinsames Element) kann getes-
tet werden, wenn man die Schnittmenge auf Gleichheit mit der
leeren Menge prüft:

if (M1 * M2 = []) then ...
Ist die Schnittmenge leer, d.h. ergibt der Vergleich True, dann
sind M1 und M2 disjunkt, haben also kein gemeinsames Element.

Die Disjunktion ist nicht zu verwechseln mit der Ungleichheit,
die dann schon vorliegt, wenn sich die beiden Mengen auch nur
bei einem Element unterscheiden.

Das folgende Demo-Programm demonstriert die Behandlung von Mengen:

{$R- Bereichsüberprüfung (Range) ausschalten }
{ Für diese Demo ausnahmsweise zweckmäßiger }
program Pas15021; { Strukturierter Datentyp "set" }

uses
 CRT;

const
 Farbe1 = White;
 Farbe2 = LightGreen;

type

15-4 Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets)

 MengentypKleinbuchstaben = set of 'a'..'z';
 { Teilbereich von "Char" }
 MengentypFarben = set of (Cyan, Magenta, Gelb, Black, Lila, Pink);
 { Aufzählungstyp }
var
 Buchstaben,
 Vokale,
 Konsonanten: MengentypKleinbuchstaben;
 Farben: MengentypFarben;

 GeradeZiffern,
 UngeradeZiffern,
 Ziffern: set of 0..9; { Direkte Deklaration einer Menge }
 { "set", hier Teilbereich von "Byte" }

 i, x, Ze: Byte;
 Zeichen: Char;

function ZiffernzeichenZuInteger(Ch: Char): Byte;
begin
 ZiffernzeichenZuInteger := Ord(Ch) - Ord('0');
end;

begin
 TextBackground(Blue); TextColor(Farbe1); ClrScr;

 WriteLn('------ Demo Datentyp "set" -------', #13#10);

 { Mengen bilden mit "[]" und Mengenvariablen initialisieren: }
 Farben := [Lila, Pink]; { Keine weitere Behandlung dieser Menge }
 { mit Aufzählungstyp }

 Ziffern := [1..3]; { oder: Ziffern := [1, 2, 3]; }

 { Mengenoperator "in", Byte-Menge: }
 TextColor(Farbe1);
 Ze := WhereY;
 repeat
 GotoXY(1, Ze); ClrEol; GotoXY(1, Ze);
 Write('Eingabe Ziffer 1 bis 3: ');
 x := ZiffernzeichenZuInteger(ReadKey);
 WriteLn(x);
 until x in Ziffern; { Mengenoperator "in" }

 { oder: }
 TextColor(Farbe2);
 Ze := WhereY;
 repeat
 GotoXY(1, Ze); ClrEol; GotoXY(1, Ze);
 Write('Oder so: Eingabe Ziffer 1 bis 3: ');
 x := ZiffernzeichenZuInteger(ReadKey);
 WriteLn(x);
 until x in [1..3];

 TextColor(Farbe1);

Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets) 15-5

 Ze := WhereY;
 Ziffern := [2..5, 9, 7]; { Mengenvariable anders belegen }
 { Die alten Werte sind, wie bei einer "normalen" }
 { Variablen auch, nicht mehr existent }
 repeat
 GotoXY(1, Ze); ClrEol; GotoXY(1, Ze);
 Write('Eingabe Ziffer 2..5, 7, 9: ');
 x := ZiffernzeichenZuInteger(ReadKey);
 WriteLn(x);
 until x in Ziffern;

 { Mengenoperator "in", Char-Menge: }
 TextColor(Farbe2);
 Ze := WhereY;
 Buchstaben := ['h', 'i', 'l', 'f', 'e']; { Initialisierung }
 repeat
 GotoXY(1, Ze); ClrEol; GotoXY(1, Ze);
 { Großbuchstaben werden in diesem Beispiel nicht }
 { akzeptiert, da "Buchstaben" in der Variablen- }
 { deklaration als "set of 'a'..'z'" aufgeführt ist }
 Write('Eingabe ein Zeichen aus "hilfe": ');
 Zeichen := ReadKey;
 WriteLn(Zeichen);
 until Zeichen in Buchstaben;

 { Differenzmenge mit Operator "-": }
 Buchstaben := ['a'..'z'];
 Vokale := ['a', 'e', 'i', 'o', 'u'];

 Konsonanten := Buchstaben - Vokale; { Differenzmengenoperator "-" }

 { Mengenelement hinzufügen (Vereinigungsmenge) }
 { oder entfernen (Differenzmenge): }
 Konsonanten := Konsonanten + ['a']; { Logisch unsinnig }
 Konsonanten := Konsonanten - ['a']; { Wieder in Ordnung }
 { oder mit "Include" bzw. "Exclude" (siehe auch Kap. 15.3): }
 Include(Konsonanten, 'a'); { Logisch unsinnig }
 Exclude(Konsonanten, 'a'); { Wieder in Ordnung }

 TextColor(Farbe1);
 Ze := WhereY;
 repeat
 GotoXY(1, Ze); ClrEol; GotoXY(1, Ze);
 Write('Geben Sie einen Konsonanten ein: ');
 Zeichen := ReadKey;
 WriteLn(Zeichen);
 until Zeichen in Konsonanten;

 { Vereinigungsmenge mit Operator "+": }
 GeradeZiffern := [0, 2, 4, 6, 8];
 UngeradeZiffern := [1, 3, 5, 7, 9];
 Ziffern := GeradeZiffern + UngeradeZiffern;

 { Nochmal: Mengenoperator "in": }
 x := 2;
 TextColor(Farbe2);
 WriteLn(x, ' in geraden Ziffern: ', x in GeradeZiffern);

15-6 Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets)

 { ¦... TRUE }
 WriteLn(x, ' in ungeraden Ziffern: ', x in UngeradeZiffern);
 { ¦... FALSE }
 { Vergleichsoperatoren für Mengen: }
 TextColor(Farbe1);
 WriteLn;
 WriteLn('= ', GeradeZiffern = [0, 2, 4, 6, 8]); { ¦= TRUE }
 WriteLn('<> ', GeradeZiffern <> [0, 2, 4, 6, 8]); { ¦<> FALSE }
 WriteLn('<= ', GeradeZiffern <= Ziffern); { ¦<= TRUE }
 WriteLn('>= ', GeradeZiffern >= Ziffern); { ¦>= FALSE }

 { Nochmals Vereinigungs-/Differenzmenge und Vergleiche: }
 TextColor(Farbe2);
 WriteLn('+ ', (GeradeZiffern + UngeradeZiffern) = Ziffern);
 { ¦+ TRUE }
 WriteLn('- ', (Ziffern - GeradeZiffern) = UngeradeZiffern);
 { ¦- TRUE }
 { Test ob beide Mengen disjunkt: }
 WriteLn('* ', (GeradeZiffern * UngeradeZiffern) = []);
 { ¦* TRUE }
 WriteLn;

 { Mengenelemente abfragen: }
 TextColor(Farbe1);
 Ziffern := []; { leere Menge }
 for i := 1 to 4 do
 begin
 Write(i, ': Geben Sie ein Ziffernzeichen ein: ');
 x := ZiffernzeichenZuInteger(ReadKey);
 WriteLn(x);
 Ziffern := Ziffern + [x];
 { Vereinigungsmenge, Operator "+" }
 end;

 for i := 0 to 9 do
 begin
 Write(i, ':');
 if i in Ziffern
 then begin
 TextColor(Yellow);
 Write('J '); { "J" für "ja" }
 TextColor(Farbe1);
 end
 else Write('n '); { "n" für "nein" }
 end;

 { Wenn vorher eingegeben wird: "5", "3", "5" und "7", }
 { dann erhält man folgende Ausgabe: }
 { ¦0:n 1:n 2:n 3:J 4:n 5:J 6:n 7:J 8:n 9:n }

 TextColor(Farbe2);
 Write(#13#10, 'Ende mit Taste "Esc" ... ');
 repeat
 until ReadKey = #27;
end.

Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets) 15-7

15.3 Mengen-Prozeduren

Ab Turbo-Pascal 7.0 stehen die Mengen-Prozeduren

Exclude(M, E)
Include(M, E)

zur Verfügung. Sie entfernen ein Element E aus der Menge M bzw. fügen ein Element E
der Menge M hinzu. M muß eine Mengenvariable sein. Beide Prozeduren werden im fol-
genden Programm demonstriert. Das Entfernen kann aber auch mit dem Mengenopera-
tor "-", das Hinzufügen auch mit dem Mengenoperator "+" bewerkstelligt werden.

program Pas15031; { Ab Turbo-Pascal 7.0 stehen die Mengen-
 Prozeduren "Exclude(M, E)" und "Include(M, E)" zur Verfügung.
 Sie entfernen ein Element E aus der Menge M bzw. fügen ein
 Element E der Menge M hinzu. M muß eine Mengenvariable sein.
 Die gleichen Aufgaben können auch mit den Mengenoperatoren
 "-" und "+" gelöst werden. }

uses
 CRT;

var
 M: set of 'A'..'H';
 Zeichen: Char;

procedure TestenUndSchreiben;
var
 ElementVorhanden: Boolean;
begin
 ElementVorhanden := Zeichen in M;
 Write(Zeichen, ' ');
 if ElementVorhanden
 then TextColor(White)
 else TextColor(Yellow);
 WriteLn(ElementVorhanden);
 TextColor(White);
end;

begin
 TextBackground(Blue); TextColor(White); ClrScr;

 M := ['A'..'H'];

 GotoXY(5, 5);
 WriteLn('Menge M vorher'); WriteLn;
 for Zeichen := 'A' to 'M' do
 begin
 GotoXY(5, WhereY);
 TestenUndSchreiben;
 end;

15-8 Dr. K. Haller Turbo-Pascal Kap. 15: Mengen (Sets)

 GotoXY(30, 5);
 WriteLn('Demo "Exclude(M, E)"'); WriteLn;
 { Entfernen mit Mengenprozedur "Exclude": }
 Exclude(M, 'E');
 { Entfernen mit Mengenoperator "-": }
 M := M - ['F'];
 for Zeichen := 'A' to 'M' do
 begin
 GotoXY(30, WhereY);
 TestenUndSchreiben;
 end;

 GotoXY(55, 5);
 WriteLn('Demo "Include(M, E)"'); WriteLn;
 { Einfügen mit Mengenprozedur "Include": }
 Include(M, 'E');
 { Einfügen mit Mengenoperator "+": }
 M := M + ['F'];
 for Zeichen := 'A' to 'M' do
 begin
 GotoXY(55, WhereY);
 TestenUndSchreiben;
 end;

 repeat
 until KeyPressed;
end.

77010593 Dr. K. Haller

