Dr. K. Haller Turbo Pascal ~Kap. 14: Zeichenketten (Strings) 14-1

14 Der strukturierte Datentyp »string«

(Zeichenketten)

Gliederung

14.1 Deklaration €ines SISccceeceerrieeriieeniieeiiieeieereeesree e 2
14.2 Die Zuweisung und die Funktion Concat............cccceveecvvvecerennnnnee. 3
14.3 Die Funktion Lengthccoccueeevieeiiiiiiiiiiieiiieeiieeee e 3
14.4 Die FUNKtON COPy.....cccuieeiieeiieiiiieiieeeeese et 3
14.5 Die FUNKHON POS ...oeeeeiieiiieeiiieeiieeee ettt 4
14.6 Die Prozedur Delefe............coovuiviieoieiiiiiesieeieeeeeeteee e 4
14.7 Di€ Prozedur TRSEFtccccueeeviieiieieeieeeeeeeeeee et 4
14.8 Die Prozedur St7....cc.ooeiieiieieeieeeeeeeetee e 5
14.9 Die Prozedur Val..........cccoocoioeieiiieeiieieeceeeeeeee e 5
14.10 Der String als "array of Char"..........c.cccoveviiiiiiieeiiece e 7
14.11 Die Prozedur FillCRATcccueeeoeeeiiieiiieieeeeeeeeeee e 7
14.12 Vergleichsoperatoren fir Strings........cccveeeveervieeecererieeciie e 8
14.13 String und Character...........ceeevveeeiiieiiie et 8
14.14 Konventionelle Ubergabe von Strings an Routinen........................... 8
14.15 Ubergabe von offenen Strings an Routinencccocoeveveveveuennnen. 8

14.16 Lange Strings bis 64 KBYLE.......cccceeviiiiiiieiiicieeieeceecee e 9

14-2 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

Fiir die Behandlung von Strings stehen in Turbo-Pascal mehrere Prozeduren und Funk-
tionen zur Verfliigung, die der Einfachheit halber in einem Demo-Programm gezeigt
werden. Das Listing enthélt auch simulierte Bildschirmausgaben.

program Pas14000; { Standard-Strings in Turbo-Pascal }

uses
CRT;

{ 14.1: Deklaration eines Strings
Bei spi el :
var’

Bezei chner: string[50];

)

Der String kann in diesem Fall nax. 50 Zei chen unfassen. Die
aktuel |l e LAnge des Strings kann zwi schen 0 und 50 liegen. Im
Spei cher werden 50 + 1 = 51 Bytes reserviert. Die Zahl ung
beginnt bei 0. Das Byte 0 enthalt das Langenbyte, das die
aktuell e String-Lange représentiert. Der ASCII-Code (in Pascal
di e Ordnungsnumrer Ord()) des Zeichens i mLangenbyte ist die
aktuel l e Stringl ange.

0 1 4 5
012345678901 2 78901234567890

/|s|t|z|i|n|g mli|t 4|7 Z|e|i|c|h|e|n

—~ o~ o~
~

L Das Lingenbyte, Index 0

Bei spi el : I mLangenbyte steht das Zeichen '/'. Dann ist die

aktuel l e Lange des Strings: Od('/") ----> 47.
Ware die aktuelle Lange 42 Zeichen, stinde im
Langenbyte das Zeichen '*', da Ord('*") ----> 42.
}
type
Str24 = string[24];
var

sl: string[10]; { Dieser String kann bis 10 Zeichen | ang werden }
{ Die max. Lange in Turbo-Pascal 255 Zeichen }
{ Die max. Stringl &nge mul3 ei ne Konstante sein }

s2: string[10];

s3: Str24; { Ei gener Datentyp }

s4.: string[40];

yStr: string; { max. Léange 255 Zei chen, wenn kei ne Lange dekl. }

Ch: Char ;

i Byt e;

j: I nt eger;

y: Real ;
Fehl ercode: | nteger;

{ Siehe auch Kap. 8 betreffend Funktionen "Ord" und "Chr" }

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-3

procedure Konventionell eStringUebergabe(s: Str24);
{ Ni c ht: ...StringUebergabe(s: string[24]); }
begin { Siehe auch Kap. 14.14: Ubergabe von "offenen Strings" }
WiteLn(' Nr 14.14: ', s);
{} Nr 14.14: 4.71099999999860E+0001 }
end;

begi n
ClrScr;

{ 14.2: Die Funktion "Concat" (Stringverkniipfung)

Format: Concat (sl1l, s2, s3, ...)
sl, s2, s3, ...: Stringausdricke

}
sl :="'"Anton ';
s2 := 'Huber, ';
s3 : = ' Minchen'
s4 := Concat(sl, s2, s3);
WiteLn(' N 14.2a: ', s4);

{ } Nr 14.2a: Anton Huber, Minchen }
{ oder einfacher ... }
s4 := sl + s2 + s3;
WiteLn(' N 14.2b: ', s4);

{ } Nr 14.2b: Anton Huber, Minchen }

{ 14.3: Die Funktion "Length" (aktuelle Linge des Strings)
Format: Length(s)

s: Stringausdruck

Er gebni styp: Integer, Bereich 0..255 oder Typ Byte

}
WiteLn(' Nr 14.3: Di e Lange von sl1: ', Length(sl));
{} N 14.3: Di e Lange von sl: 6 }

{ 14.4: Die Funktion "Copy" (Teile eines Strings kopieren)

Format: Copy(s, position, anzahl)

S: Stringausdruck aus demein Teilstring
kopi ert werden soll

posi ti on: I nt eger ausdruck. Ab dieser Position sol
kopi ert werden.

anzahl : I nt eger ausdruck. Anzahl der Zeichen, die

in di e Kopi e iUbernommen werden sol | en

Bei spiel : +-+
123456789012 }

s3 : = "abcxyzhioj kl"';
s2 := Copy(s3, 4, 3);
WiteLn(' Nr 14. 4: ', 82);

{1} N 14.4: xyz }

144 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

{ 14.5: Die Funktion ""Pos" (Position eines Strings in einem anderen)
Format: Pos(suchstring, zu_durchsuchender_string)

Bei de Strings kénnen Ausdricke sein. Geliefert wird di e Posi-
tion des ersten Auftretens (Datentyp Byte, 0..255). Wenn der

Suchstring nicht enthalten ist, liefert "Pos" den Wert O.
Bei spi el
12345678901234567890 }
s3 := 'Anton Huber, Minchen';
WiteLn(' Nr 14.5: ', Pos('Huber', s3));

{} N 14.5: 7}

{ 14.6: Die Prozedur "Delete" (Zeichen im String loschen)
For mat : Del ete(s, position, anzahl)

S: Stringvari abl e

position: Integerausdruck. Ab dieser Position
(inklusiv) wird gel 6scht.

anzahl : I nt eger ausdruck. Anzahl der zu | dschenden
Zei chen.

Wenn "position" groRer ist als die aktuelle Lange
von "s", wird nichts gel dscht. Wenn die Sunme von
"position" und "anzahl" groRer ist als die aktuelle
Lange von "s", werden alle ab "position" (inklusiv)
st ehenden Zei chen gel 6scht.

Bei spi el
12345678901234567890
12345 }
s3 := 'Anton Huber, Minchen';
Del ete(s3, 7, 5);
WiteLn(' Nr 14.6: ', s83);

{} N 14.6: Anton , Minchen }

{ 14.7: Die Prozedur "Insert" (Zeichen in den String einfiigen)
For mat : Insert(quellstring, zielstring, position)

quel I string: Stringausdruck
zielstring: Stringvariable
posi ti on: I nt eger ausdruck, aber Bereich 1..255

Der "quellstring” wird in den "zielstring" ab "position" ein-
gef igt werden und zwar ab "position". Bereich 1..255, sonst
run time error)

Wenn der entstehende Zielstring | d&nger ist als die deklarierte
Lange, dann werden di e Uberfl Gissi gen Zei chen abgeschnitten

Wenn "position" | anger ist als die Lange des urspriunglichen
"zielstrings", dann wird der "quellstring" an den "zielstring"
angehangt .

Dr. K. Haller

Turbo Pascal

Kap. 14: Zeichenketten (Strings)

14-5

Bei spi el

12345678901234567890 }

s2 :
s3 :

I nsert (s2,
WitelLn('
{1

' Huber

Nr
Nr

" Ant on Minchen';
s3, 7);

. { Qellstring }
{ Zielstring }

14. 7: ', s83);

14. 7: Ant on Huber, Minchen }

{ 14.8: Die Prozedur "Str" (Umwandlung Zahl in Ziffernstring)

For mat : St

Str(4711: 8,
WiteLn(' Nr
{1 N

y = 47.11;

Str(y, s3);

WitelLn(' Nr
{1 N

Str(y:7:3,
WitelLn('
{1

Nr
Nr

s2); |

r(n,

s)

Nuneri scher Ausdruck nmit optional en Formatierungs-
par anet ern, siehe Beispiele
Stringvari abl e

14.8a: ', s1);
14. 8a: -4711 }

sl); { optional mt Formatierung,
14.8b: ', sl);
14. 8b: 4711 }

hier 8 }

14.8c: ', s3);
14.8c: 4.71099999999860E+0001 }

mt Dezi mal - Formatierung }

{ Coprozessor! }

opti ona
14.8d: ', s2);
14.8d: 47.110 }

{ 14.9: Die Prozedur "Val" (Umwandlung Ziffernstring in Zahl)

Val

S:
n
f:

For mat :

}

sl
Val (s1, v,

i f Fehl er code

then Wit

else Wit

sl
Val (s1, v,

(s, f)

Stri ngausdr uck
Nurneri sche Vari abl e
I ntegervariabl e fur

n,

Fehl ercode. Bei erfolgreicher
Konverti erung hat der Fehl ercode den Wert 0, sonst
die Position imString s, bei der die Inter-
pretation wegen nunerisch unzul assi ger Zei chen
abgebr ochen werden nmuf3te.

1= 47,11
Fehl er code) ;

0
eLn("’
{1

eLn("’

Nr
Nr

14.9a: '

v Y)
14.9a: 4. 71099999999860E+0001 }

{ Coprozessor! }

Nr 14.9a: Fehler an Position ', Fehl ercode);

i= '47,11';
Fehl er code) ;

14-6

Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

if Fehlercode =0
then WitelLn(y)
el se WiteLn(' Nr 14.9b: Fehler bei "', s1, '" an Position '
Fehl er code) ;
{ } Nr 14.9b: Fehler bei "47,11" an Position 3 }

{ Mt der Prozedur "Val" kann man in Verbi ndung nmit einer
repeat/until-Schleife Nunerik-Ei ngaben absi chern. Bekanntlich
bricht das Programm ab, wenn ei ne Nuneri k- Ei ngabe unzul assi ge
Zei chen enthalt. Um di eses zu vernei den, zieht nman den ge-
winscht en Wert zunéchst als String ein, wandelt dieses String
mt "Val" in einen nunerischen Wert um Der Vorgang wird in
der Schl eife sol ange wi ederholt, bis der Fehl ercode den
Wert O erhalt.

3

}

r epeat
WiteLn(' Nr 14.9c: Deno Numeri k- Absi cherung:');
Wite(Real typ zuerst fehlerhaft, ' +

‘dann richtig eingeben: ');
ReadLn(yStr); { String einziehen }
Val (yStr, y, Fehlercode);
until Fehl ercode = O;

(* Ene primtivere Miglichkeit der Numerikabsi cherung bi et et
der Conpilerschalter "{$l-}" in Verbindung mt der
St andar df unktion "I OResul t":

Wi."[e(' ... oder Numerikabsicherung mt "IOResult": ');
{$l -} { Automatische | nput/CQutput-Kontrolle abschalten }
r epeat
ReadlLn(y);
until I OResult = 0;
{$l+} { Autommatische | nput/CQutput-Kontrolle einschalten }
- -
14.10: Der String als "array of Char' betrachtet
}
sl = ' Huber';
s1[3] = '?";
WiteLn(' Nr 14.10a: ', sl);

{ } Nr 14.10a: Hu?er }

Wite(' N 14.10b: ');
{ ' Nr 14.10b: HuZ?er }
for i := 1 to Length(sl) do
Wite(s1[i]);
Wi teLn;

14.11: Die Prozedur "FillChar" (einen String bis zur deklarierten
Linge mit gleichen Zeichen fiillen)
Format: Fill Char(v, anzahl, zeichen)

V! Vari abl e, hier Stringvariable
anzahl: Wbrd- Ausdruck. Anzahl der Zeichen (Bytes)

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings)

14-7

zei chen: Char - Ausdr uck.
Bei spi el :

Der String "sl1" wurde eingangs mt max. 10 Zei chen ver-
einbart. Er soll ganz mt dem Zeichen '% (O dnungs-N 37)
geful It werden.

Di e dekl arierte Maxi mall ange incl. L&angenbyte kann nmit der
Funktion "SizeO ()" auch abgefragt werden. Di e Funktion
"SizeOF ()" liefert den Speicherbedarf des Arguments in Bytes
und hat den Datentyp Wrd. Das Argument kann jede beliebige
Vari abl en- Bezei chner oder ein Datentyp-Bezei chner sein.

}

Fill Char(sl, 10 + 1, "%); { 10 Zeichen + 1 Léngenbyte }
s1[0] := Chr(10); { Das Langenbyte imByte Nr. O bel egen }
WiteLn(' Nr 14.11a: ', s1, ' ', Length(sl));

{ | N 14.1la: 9%QB88886RARL 10 }
{ oder }

Fill Char(sl, SizeO(sl), '%);
s1[0] := Chr(SizeO(s1) - 1);
{ Das Langenbyte imByte Nr. O }

WiteLn(' Nr 14.11b: ', s1, ' ', Length(sl));
{ | Nr 14.11b: 93808886886 10 }
{ oder }
sl :="'"; { Leerstring, Lange 0 }
for i :=1to SizeO(sl) - 1 do
sl :=s1 + "'%;
WiteLn(' Nr 14.11c: ', s1, ' ', Length(sl));

{ ! Nr 14.11c: 9966808886 10 }

{ 14.12: Vergleichsoperatoren fiir Strings
Auf Strings kénnen di e Ublichen sechs Vergl ei chsoperat oren
= > < = &= <>
angewendet wer den.

Bei m Stringvergl eich werden di e Zei chen beider Strings von
I i nks begi nnend verglichen. D e O dnungsnumrer (ASCII-Nr)

wi rd zum Vergl ei ch der Zei chen herangezogen. Wenn erstmal s
ein Unterschied auftaucht, wird der String, der das Zeichen
mt der hoéheren O dnungsnumrer besitzt, als der "groRere”
String gewertet und der Vergleich beendet; die Lange der
Strings ist nicht malgebend.

}

sl := '"AntoNi us';
s2 := '"Anton';

if s1 > s2

then WiteLn(' N 14.12: String #1 groRer')

el se WiteLn(' Nr 14.12: String #2 groRer');

{ } Nr 14.12: String #2 groRer }
{ Ordnungsnummer von 'N: 78 }
{ Ordnungsnummer von 'n': 110 }

14-8 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

{ 14.13: String und Character

Lediglich ein String-El ement kann auf einen Character zuge-
wi esen werden, nicht aber ein String mt der Lange 1.

}

sl := 'Anton Huber';
Ch 1= 81[7]; { "Ch" eingangs als "Char"-Typ deklariert }
WiteLn(' N 14.13: ', Ch);

{ ! N 14.13: H }

{ 14.14: Konventionelle Ubergabe von Strings an Routinen

Bei der konventionellen Ubergabe eines Strings als Paraneter
an eine Prozedur oder Funktion nmuf3 bei der Dekl aration des
formal en Paraneters in der Routine ein (vorher mt "type"
dekl arierter) eigener String-Datentyp verwendet werden.

Es koénnen dann auch nur passende Strings Ubergeben werden,
was ei ne Ei nschrankung bedeutet, wenn man di e gl ei che Routine
mt verschieden deklarierten Strings benutzen michte.

Si ehe auch Kap. 14.14: Ubergabe von "of fenen Strings".

}

Konventi onel | eStri ngUeber gabe(s3);
| oo }
r epeat
until ReadKey <> ''

end.

14.15 Ubergabe von offenen String-Parametern an Routinen

Ab Turbo-Pascal 7.0 verschieden lang deklarierte Strings an die gleiche Prozedur oder

Funktion als Parameter iibergeben werden. Dazu stehen bei der Deklaration des forma-

len String-Paramters zwei Mdoglichkeiten zur Verfiigung:

* Verwendung des neuen Datentypbezeichners "OpenString" (kein reserviertes Wort).

* Mit dem reservierten Wort "string" in der Compilerschalter-Einstellung "{$P+}" oder
der entsprechenden Meniieinstellung "Option/Compiler../Offene Arraygrenzen".

Die Art der Ubergabe, mit Wert oder mit Adresse, ist davon nicht betroffen.

Das folgende Demo-Programm zeigt die Vorgehensweise.

Dr. K. Haller Turbo Pascal ~Kap. 14: Zeichenketten (Strings) 14-9

{$P+ Conpilerschalter fur offene Arrays und Strings }
{ Nicht notwendig bei Verwendung des neuen Bezei chners "OpenString" }
program Pas14151; { "Pasl14151. PAS': O fene Strings }

uses
CRT;

var
s3: string[3];
s6: string[6];

procedure OffeneStrings(var s: OpenString);
begi n { Hier Ubergabe mt Adresse "var" }

Wite(s);
s = '"Mier';
end;
begi n
CrScr;
s3 := 'ABC ; O feneStrings(s3); WitelLn(' ', s3, Length(s3));
s6 := 'ABCDEF' ; O feneStrings(s6); WiteLn(' ', s6, Length(s6));
{ | ABC Mei 3 }
{ | ABCDEF Meier5 }
r epeat
until KeyPressed;
end.

14.16 Lange Strings bis 64 KByte: Ein Uberblick

Die bisher behandelten (Standard-) Pascal-Strings hatten eine maximale Lénge von 255
Byte; limitiert durch das vorangestellte Langenbyte, das zugleich das Stringzeichen mit
dem Index 0 darstellt. Das erste "echte" Zeichen des Strings hatte somit den Index 1,
was sehr anschaulich ist.

Ab Version 7.0 werden von Turbo-Pascal zusétzlich Strings bis zu einer Linge von 64
KByte (65535 Byte) unterstiitzt. Diese Strings werden - wie in C - nullterminiert, d.h.
sie haben kein vorausgestelltes Langenbyte (es miilliten ansonsten 2 Byte) sein, sondern
werden am aktuellen Ende mit dem Nullbyte (Chr(0), #0) begrenzt, das automatisch
hinzugefiigt wird. Die Begrenzung auf 64 KByte ist nur durch das Betriebssystem MS-
DOS bzw. durch die alten 16-bit-Prozessoren gegeben. Das auf Pascal aufsetzende und
nur unter Windows auf Rechnern mit Prozessoren ab 180486 laufende grafische Ent-
wicklungssystem Borland Delphi ist auch die 64-KByte-Begrenzung nicht mehr gege-
ben; dort konnen die Strings im Rahmen des verfiigbaren Speichers beliebig lang sein
("... die ganze Bibel auf einen String ...").

14-10 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

Zuriick zu den 64-KByte-Strings:

Fiir die Behandlung von langen Strings wird die Unit "STRINGS" benétigt. Weiter wird
die Aktivierung der "Erweiterten Syntax" vorausgesetzt (entweder iiber Menii "Opti-
on/Compiler..." oder mit Compilerschalter "{$X+}" einzustellen). Damit kann bei allen
Funktionen (ausgenommen Funktionen aus der Unit "SYSTEM"), also nicht nur bei den
Langstring-Funktionen, auf den Riickgabewert verzichtet werden, d.h. im Bedarfsfall
konnen Funktionen wie Prozeduren verwendet werden.

Der String wird als "array[0..n] of Char" betrachtet. Somit hat das erste Zeichen des
Strings den Index 0, was gewohnungsbediirftig ist. Ansonsten werden die Strings nicht
statisch (wie alle bisher behandelten Variablen) behandelt, sondern dynamisch mittels
Zeigern.

Die Unit "STRINGS" enthélt mit "PChar" einen neuen Datentyp, der einen Zeiger
(Pointer auf Character) darstellt:

type
PChar: ~Char

Zeiger (Pointer) werden erst im Kap. 19 behandelt.

Die Unit "STRINGS" enthélt dariiber hinaus 21 Funktionen zur Behandlung von langen
Strings.

Die String-Funktionen der Unit "STRINGS"

Wenn das Ergebnis dieser Funktionen ein String ist (genauer String-Zeiger), ist er vom
Typ "PChar". Die Strings s, S1 und s2 seien ebenfalls vom Typ "PChar", die — wenn
nicht spater ausdriicklich von Variablen die Rede ist — auch String-Konstanten sein
konnen.

function StrCat(sl, s2: PChar): PChar;
Concate. Hangt einen Kopie des Quellstrings s2 an den Zielstringvariable s/ an.

function StrConp(sl, s2: PChar): Integer;
Compare. Vergleicht zwei Strings s/ und s2 und liefert bei Gleichheit den Wert 0,
bei s/ > 52 einen Wert groBer 0 (Differenz der Ascii-Codes beim ersten verschie-
den Zeichen) und bei s/ < s2 einen Wert kleiner 0 (ebenfalls Ascii-Code-
Differenz). Siehe auch Funktion StrIComp.

function StrCopy(sl, s2: PChar): PChar;
Kopiert den Quellstring 52 in die Zielstringvariable s/.

function StrDi pose(s: PChar);
Entfernt den String vom Heap.

function StrECopy(sl, s2: PChar): PChar;
Kopiert den Quellstring s2 in die Zielstringvariable s/ und liefert einen Zeiger auf
das Ende von s1.

function StrEnd(s: PChar): PChar;
Liefert einen Zeiger auf das Null-Byte, das die Stringvariable s terminiert.

Dr. K. Haller Turbo Pascal ~Kap. 14: Zeichenketten (Strings) 14-11

function StrlConp(sl, s2: PChar): |nteger;
Vergleicht zwei Strings ohne Beachtung von Grof3-/Kleinschreibung (I = Ignore).
Sonst wie Funktion StrComp.

function StrLCat(sl1l, s2: PChar; | Max: Wrd): PChar;
Hiangt maximal (/Max - StrLen(s 7)) Zeichen von s2 an die Stringvariable s/ an.
function StrLConp(sl, s2: PChar; |: Wrd): Integer;

Vergleicht die beiden Strings bis zur vorgegebenen Anzahl / der Zeichen. Sonst
wie StrComp.

function StrLCopy(sl, s2: PChar; | Max: Word): PChar;
Kopiert maximal /Max Zeichen von s2 in die Stringvariable s/.

function StrLen(s: PChar): Wrd;
Liefert die Anzahl der Zeichen von s.

function StrLl Copy(sl, s2: PChar; | Max: Wrd): I|nteger;
Vergleicht die beiden Strings bis zu /Max-Zeichen ohne Beriicksichtigung von
Grof-/Kleinschreibung. Sonst wie StrComp.

function StrLower(s: PChar): PChar;
Konvertiert den String s in Kleinbuchstaben. Siehe auch StrUpper.

function StrMve(sl, s2: PChar; n: Wrd): PChar;
Kopiert n-Zeichen von s2 in den Anfang der Stringvariablen s/.

function StrNew(s: PChar): PChar;
Legt eine Kopie von s auf dem Heap an. Siehe auch Dispose.

function StrPas(s: PChar): string;
Konvertiert einen nullterminierten String in einen Pascal-String. Siehe auch
StrPCopy.

function StrPCopy (sl: PChar, s2: string);
Konvertiert den Pascal-String s2 in die (nullterminierte) Stringvariable s/. Siehe
auch StrPas.

function StrPos(sl, s2: PChar): PChar;
Liefert einen Zeiger auf das erste Vorkommen von s2 in s/. Wenn s2 in s/ nicht
vorkommt, wir "nil" (not in list) geliefert.

function StrRScan(s: PChar; Ch: Char): PChar;
Liefert einen Zeiger auf das letzte Vorkommen des Zeichens Ch in s. Wenn Ch
nicht darin vorkommt, wird "nil" geliefert. Das terminierende Null-Byte wird als
Zeichen des Strings betrachtet.

function StrScan(s: PChar; Ch: Char): PChar;
Liefert einen Zeiger auf das erste Vorkommen des Zeichens Ch in s. Wenn Ch
nicht darin vorkommt, wird "nil" geliefert. Das terminierende Null-Byte wird als
Zeichen des Strings betrachtet.

function StrUpper(s: PChar): PChar;
Konvertiert den String s in GroB3buchstaben. Siehe auch StrLower.

14-12 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

Das folgende Kurz-Demo-Programm soll die grundsétzliche Handhabung der langen
Strings an ausgewihlten Beispielen demonstrieren. Fiir weitergehende Anwendung ist
die integrierte Hilfestellung heranzuziehen.

{$X+ Erweiterte Syntax fiur |ange Strings notwendig. }
{ Mt der erweiterten Syntax k 6 n n e n (nissen aber nicht) }
{ Funktionen, soweit sie nicht in der Standard-Unit "SYSTEM }
{ dekl ariert sind, wie Prozeduren verwendet werden. EsS wird dann }
{ der Rickgabewert ignoriert. }
program Pas14161; { "Pas14161. PAS', Denmp "l ange Strings" bis 64 KB }
{ mt Null-Term nierung, ab Turbo-Pascal 7.0 }
{ Dr. K Haller, FH Minchen, DR, 26240597 }
{ Achtung: Der vordefinierte Zeiger "PChar" (type PChar = ~Char) }
{ erl aubt den Zugriff auf |ange Strings, setzt aber }
{ voraus, dal die Option "Erweiterte Syntax", "$X+", }
{ ei ngestel It ist. }
uses
CRT, STRINGS; { Unit "Strings" nmit Typ "PChar" und 21 Funktionen }
{ fur lange Strings. Sie beginnen alle mt "Str..." }
var
i, I: Wrd;
S: array[0..6000] of Char;
sl,
S2: PChar ;
procedur e Tast endr uck;
begi n
ReadKey; { So nur mt erweiterter Syntax niglich, sonst z.B. }
CrsScr; { repeat until ReadKey <> "'
end; { o0.4., was auch bei erweiterter Syntax niglich ist. }
begi n

Text BackG ound(Bl ue) ;
Text Col or (Yel | ow) ;

ClrScr;

WitelLn(' Denp 1:');

sl 1= ' 2345678901234567890xxxxxxx Huber Anton AOQU aou R xxxx';
s1[0] :='1';

s2 L= YY'

WitelLn(sl, StrLen(sl));
WitelLn(s2, StrLen(s2));
Tast endr uck;

WiteLn(' Dempo 2');
StrCopy(s, sl);

for i :=1to 9 do
StrCat (s, s2);
s[9] :="'7";

WitelLn(s, StrLen(s));
Tast endr uck;

WitelLn(' Deno 3');

St r Upper (s);
WitelLn(s, StrLen(s));
Tast endr uck;

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings)

14-13

WitelLn(' Deno 4');
StrLower (s);
WitelLn(s, StrLen(s));
Tast endr uck;

WitelLn(' Denp 5');

for i :=1to StrLen(s) do
s[i-1] :=".";

WitelLn(s, StrLen(s));

Tast endr uck;

WitelLn(' Denp 6');
WitelLn(StrConp(' Meier',
Tast endr uck;

"Maier'));

WitelLn(' Deno 7'); { Liefert: 0}
WitelLn(StrConp(' Huber Anton', 'Huber' + '
Tast endr uck;

WitelLn(' Denp 8');

WiteLn(StrMve(s, 'Huber Toni', 10));

Tast endr uck;
end.

{ Liefert: 4 =

od(*e') - od('a')

'+ "Anton'));

}

{ "StrConp" liefert Ascii- }
{ Differenz beimersten Unterschied }

37260499 Dr. K. Haller

