
Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-1

14 Der strukturierte Datentyp »string«
(Zeichenketten)

Gliederung

14.1 Deklaration eines Strings ..2

14.2 Die Zuweisung und die Funktion Concat...3

14.3 Die Funktion Length ...3

14.4 Die Funktion Copy ..3

14.5 Die Funktion Pos ..4

14.6 Die Prozedur Delete ..4

14.7 Die Prozedur Insert ...4

14.8 Die Prozedur Str..5

14.9 Die Prozedur Val ...5

14.10 Der String als "array of Char"...7

14.11 Die Prozedur FillChar ..7

14.12 Vergleichsoperatoren für Strings..8

14.13 String und Character ...8

14.14 Konventionelle Übergabe von Strings an Routinen...........................8

14.15 Übergabe von offenen Strings an Routinen8

14.16 Lange Strings bis 64 KByte ..9

14-2 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

Für die Behandlung von Strings stehen in Turbo-Pascal mehrere Prozeduren und Funk-
tionen zur Verfügung, die der Einfachheit halber in einem Demo-Programm gezeigt
werden. Das Listing enthält auch simulierte Bildschirmausgaben.

program Pas14000; { Standard-Strings in Turbo-Pascal }

uses
 CRT;

 { 14.1: Deklaration eines Strings
 Beispiel:
 ...;
 var
 Bezeichner: string[50];
 ...;

 Der String kann in diesem Fall max. 50 Zeichen umfassen. Die
 aktuelle Länge des Strings kann zwischen 0 und 50 liegen. Im
 Speicher werden 50 + 1 = 51 Bytes reserviert. Die Zählung
 beginnt bei 0. Das Byte 0 enthält das Längenbyte, das die
 aktuelle String-Länge repräsentiert. Der ASCII-Code (in Pascal
 die Ordnungsnummer Ord()) des Zeichens im Längenbyte ist die
 aktuelle Stringlänge.

 0 1 4 5
 0 1 2 3 4 5 6 7 8 9 0 1 2 7 8 9 0 1 2 3 4 5 6 7 8 9 0
 ╔═╦═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═()═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╤═╗
 ║/║S│t│r│i│n│g│ │m│i│t│ │ │ () │ │4│7│ │Z│e│i│c│h│e│n│ │ │ ║
 ╚═╩═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═()═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╧═╝
 └──── Das Längenbyte, Index 0
 Beispiel: Im Längenbyte steht das Zeichen '/'. Dann ist die
 aktuelle Länge des Strings: Ord('/') ----> 47.
 Wäre die aktuelle Länge 42 Zeichen, stünde im
 Längenbyte das Zeichen '*', da Ord('*') ----> 42.
 }

type
 Str24 = string[24];

var
 s1: string[10]; { Dieser String kann bis 10 Zeichen lang werden }
 { Die max. Länge in Turbo-Pascal 255 Zeichen }
 { Die max. Stringlänge muß eine Konstante sein }
 s2: string[10];
 s3: Str24; { Eigener Datentyp }
 s4: string[40];
 yStr: string; { max. Länge 255 Zeichen, wenn keine Länge dekl. }

 Ch: Char;
 i: Byte;
 j: Integer;
 y: Real;
 Fehlercode: Integer;

{ Siehe auch Kap. 8 betreffend Funktionen "Ord" und "Chr" }

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-3

procedure KonventionelleStringUebergabe(s: Str24);
 { N i c h t: ...StringUebergabe(s: string[24]); }
begin { Siehe auch Kap. 14.14: Übergabe von "offenen Strings" }
 WriteLn(' Nr 14.14: ', s);
 {¦ Nr 14.14: 4.71099999999860E+0001 }
end;

begin
 ClrScr;

 { 14.2: Die Funktion "Concat" (Stringverknüpfung)
 Format: Concat(s1, s2, s3, ...)

 s1, s2, s3, ...: Stringausdrücke
 }

 s1 := 'Anton ';
 s2 := 'Huber, ';
 s3 := 'München';

 s4 := Concat(s1, s2, s3);

 WriteLn(' Nr 14.2a: ', s4);
 { ¦ Nr 14.2a: Anton Huber, München }
 { oder einfacher ... }

 s4 := s1 + s2 + s3;

 WriteLn(' Nr 14.2b: ', s4);
 { ¦ Nr 14.2b: Anton Huber, München }

 { 14.3: Die Funktion "Length" (aktuelle Länge des Strings)
 Format: Length(s)

 s: Stringausdruck

 Ergebnistyp: Integer, Bereich 0..255 oder Typ Byte
 }
 WriteLn(' Nr 14.3: Die Länge von s1: ', Length(s1));
 { ¦ Nr 14.3: Die Länge von s1: 6 }

 { 14.4: Die Funktion "Copy" (Teile eines Strings kopieren)
 Format: Copy(s, position, anzahl)

 s: Stringausdruck aus dem ein Teilstring
 kopiert werden soll.
 position: Integerausdruck. Ab dieser Position soll
 kopiert werden.
 anzahl: Integerausdruck. Anzahl der Zeichen, die
 in die Kopie übernommen werden sollen.

 Beispiel: +-+
 123456789012 }
 s3 := 'abcxyzhiojkl';
 s2 := Copy(s3, 4, 3);
 WriteLn(' Nr 14.4: ', s2);
 { ¦ Nr 14.4: xyz }

14-4 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

 { 14.5: Die Funktion "Pos" (Position eines Strings in einem anderen)
 Format: Pos(suchstring, zu_durchsuchender_string)

 Beide Strings können Ausdrücke sein. Geliefert wird die Posi-
 tion des ersten Auftretens (Datentyp Byte, 0..255). Wenn der
 Suchstring nicht enthalten ist, liefert "Pos" den Wert 0.

 Beispiel:
 12345678901234567890 }
 s3 := 'Anton Huber, München';
 WriteLn(' Nr 14.5: ', Pos('Huber', s3));
 { ¦ Nr 14.5: 7 }

 { 14.6: Die Prozedur "Delete" (Zeichen im String löschen)
 Format: Delete(s, position, anzahl)

 s: Stringvariable
 position: Integerausdruck. Ab dieser Position
 (inklusiv) wird gelöscht.
 anzahl: Integerausdruck. Anzahl der zu löschenden
 Zeichen.

 Wenn "position" größer ist als die aktuelle Länge
 von "s", wird nichts gelöscht. Wenn die Summe von
 "position" und "anzahl" größer ist als die aktuelle
 Länge von "s", werden alle ab "position" (inklusiv)
 stehenden Zeichen gelöscht.

 Beispiel:
 12345678901234567890
 12345 }
 s3 := 'Anton Huber, München';
 Delete(s3, 7, 5);
 WriteLn(' Nr 14.6: ', s3);
 { ¦ Nr 14.6: Anton , München }

 { 14.7: Die Prozedur "Insert" (Zeichen in den String einfügen)
 Format: Insert(quellstring, zielstring, position)

 quellstring: Stringausdruck
 zielstring: Stringvariable
 position: Integerausdruck, aber Bereich 1..255

 Der "quellstring" wird in den "zielstring" ab "position" ein-
 gefügt werden und zwar ab "position". Bereich 1..255, sonst
 run time error)

 Wenn der entstehende Zielstring länger ist als die deklarierte
 Länge, dann werden die überflüssigen Zeichen abgeschnitten.

 Wenn "position" länger ist als die Länge des ursprünglichen
 "zielstrings", dann wird der "quellstring" an den "zielstring"
 angehängt.

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-5

 Beispiel:
 12345678901234567890 }
 s2 := 'Huber, '; { Quellstring }
 s3 := 'Anton München'; { Zielstring }

 Insert(s2, s3, 7);
 WriteLn(' Nr 14.7: ', s3);
 { ¦ Nr 14.7: Anton Huber, München }

 { 14.8: Die Prozedur "Str" (Umwandlung Zahl in Ziffernstring)
 Format: Str(n, s)

 n: Numerischer Ausdruck mit optionalen Formatierungs-
 parametern, siehe Beispiele
 s: Stringvariable
 }

 j := -4711;
 Str(j, s1);
 WriteLn(' Nr 14.8a: ', s1);
 { ¦ Nr 14.8a: -4711 }

 Str(4711:8, s1); { optional mit Formatierung, hier 8 }
 WriteLn(' Nr 14.8b: ', s1);
 { ¦ Nr 14.8b: 4711 }

 y := 47.11;
 Str(y, s3);
 WriteLn(' Nr 14.8c: ', s3);
 { ¦ Nr 14.8c: 4.71099999999860E+0001 } { Coprozessor! }

 Str(y:7:3, s2); { optional mit Dezimal-Formatierung }
 WriteLn(' Nr 14.8d: ', s2);
 { ¦ Nr 14.8d: 47.110 }

 { 14.9: Die Prozedur "Val" (Umwandlung Ziffernstring in Zahl)
 Format: Val(s, n, f)

 s: Stringausdruck
 n: Numerische Variable
 f: Integervariable für Fehlercode. Bei erfolgreicher
 Konvertierung hat der Fehlercode den Wert 0, sonst
 die Position im String s, bei der die Inter-
 pretation wegen numerisch unzulässiger Zeichen
 abgebrochen werden mußte.
 }

 s1 := '47.11';
 Val(s1, y, Fehlercode);
 if Fehlercode = 0
 then WriteLn(' Nr 14.9a: ', y)
 { ¦ Nr 14.9a: 4.71099999999860E+0001 }
 { Coprozessor! }
 else WriteLn(' Nr 14.9a: Fehler an Position ', Fehlercode);

 s1 := '47,11';
 Val(s1, y, Fehlercode);

14-6 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

 if Fehlercode = 0
 then WriteLn(y)
 else WriteLn(' Nr 14.9b: Fehler bei "', s1, '" an Position ',
 Fehlercode);
 { ¦ Nr 14.9b: Fehler bei "47,11" an Position 3 }

 { Mit der Prozedur "Val" kann man in Verbindung mit einer
 repeat/until-Schleife Numerik-Eingaben absichern. Bekanntlich
 bricht das Programm ab, wenn eine Numerik-Eingabe unzulässige
 Zeichen enthält. Um dieses zu vermeiden, zieht man den ge-
 wünschten Wert zunächst als String ein, wandelt dieses String
 mit "Val" in einen numerischen Wert um. Der Vorgang wird in
 der Schleife solange wiederholt, bis der Fehlercode den
 Wert 0 erhält.
 }

 repeat
 WriteLn(' Nr 14.9c: Demo Numerik-Absicherung:');
 Write(' Realtyp zuerst fehlerhaft, ' +
 'dann richtig eingeben: ');
 ReadLn(yStr); { String einziehen }
 Val(yStr, y, Fehlercode);
 until Fehlercode = 0;

 (* Eine primitivere Möglichkeit der Numerikabsicherung bietet
 der Compilerschalter "{$I-}" in Verbindung mit der
 Standardfunktion "IOResult":
 ...;
 Write(' ... oder Numerikabsicherung mit "IOResult": ');
 {$I-} { Automatische Input/Output-Kontrolle abschalten }
 repeat
 ReadLn(y);
 until IOResult = 0;
 {$I+} { Automatische Input/Output-Kontrolle einschalten }
 ...;
 *)

 { 14.10: Der String als "array of Char" betrachtet
 }
 s1 := 'Huber';
 s1[3] := '?';
 WriteLn(' Nr 14.10a: ', s1);
 { ¦ Nr 14.10a: Hu?er }

 Write(' Nr 14.10b: ');
 { ¦ Nr 14.10b: Hu?er }
 for i := 1 to Length(s1) do
 Write(s1[i]);
 WriteLn;

 { 14.11: Die Prozedur "FillChar" (einen String bis zur deklarierten
 Länge mit gleichen Zeichen füllen)
 Format: FillChar(v, anzahl, zeichen)

 v: Variable, hier Stringvariable
 anzahl: Word-Ausdruck. Anzahl der Zeichen (Bytes)

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-7

 zeichen: Char-Ausdruck.

 Beispiel:

 Der String "s1" wurde eingangs mit max. 10 Zeichen ver-
 einbart. Er soll ganz mit dem Zeichen '%' (Ordnungs-Nr 37)
 gefüllt werden.

 Die deklarierte Maximallänge incl. Längenbyte kann mit der
 Funktion "SizeOf()" auch abgefragt werden. Die Funktion
 "SizeOf()" liefert den Speicherbedarf des Arguments in Bytes
 und hat den Datentyp Word. Das Argument kann jede beliebige
 Variablen-Bezeichner oder ein Datentyp-Bezeichner sein.
 }

 FillChar(s1, 10 + 1, '%'); { 10 Zeichen + 1 Längenbyte }
 s1[0] := Chr(10); { Das Längenbyte im Byte Nr. 0 belegen }
 WriteLn(' Nr 14.11a: ', s1, ' ', Length(s1));
 { ¦ Nr 14.11a: %%%%%%%%%% 10 }

 { oder }

 FillChar(s1, SizeOf(s1), '%');
 s1[0] := Chr(SizeOf(s1) - 1);
 { Das Längenbyte im Byte Nr. 0 }

 WriteLn(' Nr 14.11b: ', s1, ' ', Length(s1));
 { ¦ Nr 14.11b: %%%%%%%%%% 10 }

 { oder }

 s1 := ''; { Leerstring, Länge 0 }
 for i := 1 to SizeOf(s1) - 1 do
 s1 := s1 + '%';

 WriteLn(' Nr 14.11c: ', s1, ' ', Length(s1));
 { ¦ Nr 14.11c: %%%%%%%%%% 10 }

 { 14.12: Vergleichsoperatoren für Strings
 Auf Strings können die üblichen sechs Vergleichsoperatoren

 = > < >= <= <>

 angewendet werden.

 Beim Stringvergleich werden die Zeichen beider Strings von
 links beginnend verglichen. Die Ordnungsnummer (ASCII-Nr)
 wird zum Vergleich der Zeichen herangezogen. Wenn erstmals
 ein Unterschied auftaucht, wird der String, der das Zeichen
 mit der höheren Ordnungsnummer besitzt, als der "größere"
 String gewertet und der Vergleich beendet; die Länge der
 Strings ist nicht maßgebend.
 }

 s1 := 'AntoNius';
 s2 := 'Anton';

 if s1 > s2
 then WriteLn(' Nr 14.12: String #1 größer')
 else WriteLn(' Nr 14.12: String #2 größer');
 { ¦ Nr 14.12: String #2 größer }
 { Ordnungsnummer von 'N': 78 }
 { Ordnungsnummer von 'n': 110 }

14-8 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

 { 14.13: String und Character
 Lediglich ein String-Element kann auf einen Character zuge-
 wiesen werden, nicht aber ein String mit der Länge 1.
 }

 s1 := 'Anton Huber';
 Ch := s1[7]; { "Ch" eingangs als "Char"-Typ deklariert }
 WriteLn(' Nr 14.13: ', Ch);
 { ¦ Nr 14.13: H }

 { 14.14: Konventionelle Übergabe von Strings an Routinen
 Bei der konventionellen Übergabe eines Strings als Parameter
 an eine Prozedur oder Funktion muß bei der Deklaration des
 formalen Parameters in der Routine ein (vorher mit "type"
 deklarierter) eigener String-Datentyp verwendet werden.
 Es können dann auch nur passende Strings übergeben werden,
 was eine Einschränkung bedeutet, wenn man die gleiche Routine
 mit verschieden deklarierten Strings benutzen möchte.
 Siehe auch Kap. 14.14: Übergabe von "offenen Strings".
 }
 KonventionelleStringUebergabe(s3);

 { -- }
 repeat
 until ReadKey <> '';
end.

14.15 Übergabe von offenen String-Parametern an Routinen

Ab Turbo-Pascal 7.0 verschieden lang deklarierte Strings an die gleiche Prozedur oder
Funktion als Parameter übergeben werden. Dazu stehen bei der Deklaration des forma-
len String-Paramters zwei Möglichkeiten zur Verfügung:
• Verwendung des neuen Datentypbezeichners "OpenString" (kein reserviertes Wort).
• Mit dem reservierten Wort "string" in der Compilerschalter-Einstellung "{$P+}" oder

der entsprechenden Menüeinstellung "Option/Compiler../Offene Arraygrenzen".

Die Art der Übergabe, mit Wert oder mit Adresse, ist davon nicht betroffen.

Das folgende Demo-Programm zeigt die Vorgehensweise.

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-9

{$P+ Compilerschalter für offene Arrays und Strings }
{ Nicht notwendig bei Verwendung des neuen Bezeichners "OpenString" }
program Pas14151; { "Pas14151.PAS": Offene Strings }

uses
 CRT;

var
 s3: string[3];
 s6: string[6];

procedure OffeneStrings(var s: OpenString);
begin { Hier Übergabe mit Adresse "var" }
 Write(s);
 s := 'Meier';
end;

begin
 ClrScr;
 s3 := 'ABC'; OffeneStrings(s3); WriteLn(' ', s3, Length(s3));
 s6 := 'ABCDEF'; OffeneStrings(s6); WriteLn(' ', s6, Length(s6));
 { ¦ABC Mei3 }
 { ¦ABCDEF Meier5 }
 repeat
 until KeyPressed;
end.

14.16 Lange Strings bis 64 KByte: Ein Überblick

Die bisher behandelten (Standard-) Pascal-Strings hatten eine maximale Länge von 255
Byte; limitiert durch das vorangestellte Längenbyte, das zugleich das Stringzeichen mit
dem Index 0 darstellt. Das erste "echte" Zeichen des Strings hatte somit den Index 1,
was sehr anschaulich ist.

Ab Version 7.0 werden von Turbo-Pascal zusätzlich Strings bis zu einer Länge von 64
KByte (65535 Byte) unterstützt. Diese Strings werden - wie in C - nullterminiert, d.h.
sie haben kein vorausgestelltes Längenbyte (es müßten ansonsten 2 Byte) sein, sondern
werden am aktuellen Ende mit dem Nullbyte (Chr(0), #0) begrenzt, das automatisch
hinzugefügt wird. Die Begrenzung auf 64 KByte ist nur durch das Betriebssystem MS-
DOS bzw. durch die alten 16-bit-Prozessoren gegeben. Das auf Pascal aufsetzende und
nur unter Windows auf Rechnern mit Prozessoren ab i80486 laufende grafische Ent-
wicklungssystem Borland Delphi ist auch die 64-KByte-Begrenzung nicht mehr gege-
ben; dort können die Strings im Rahmen des verfügbaren Speichers beliebig lang sein
("... die ganze Bibel auf einen String ...").

14-10 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

Zurück zu den 64-KByte-Strings:

Für die Behandlung von langen Strings wird die Unit "STRINGS" benötigt. Weiter wird
die Aktivierung der "Erweiterten Syntax" vorausgesetzt (entweder über Menü "Opti-
on/Compiler..." oder mit Compilerschalter "{$X+}" einzustellen). Damit kann bei allen
Funktionen (ausgenommen Funktionen aus der Unit "SYSTEM"), also nicht nur bei den
Langstring-Funktionen, auf den Rückgabewert verzichtet werden, d.h. im Bedarfsfall
können Funktionen wie Prozeduren verwendet werden.

Der String wird als "array[0..n] of Char" betrachtet. Somit hat das erste Zeichen des
Strings den Index 0, was gewöhnungsbedürftig ist. Ansonsten werden die Strings nicht
statisch (wie alle bisher behandelten Variablen) behandelt, sondern dynamisch mittels
Zeigern.

Die Unit "STRINGS" enthält mit "PChar" einen neuen Datentyp, der einen Zeiger
(Pointer auf Character) darstellt:

type
 PChar: ^Char

Zeiger (Pointer) werden erst im Kap. 19 behandelt.

Die Unit "STRINGS" enthält darüber hinaus 21 Funktionen zur Behandlung von langen
Strings.

Die String-Funktionen der Unit "STRINGS"
Wenn das Ergebnis dieser Funktionen ein String ist (genauer String-Zeiger), ist er vom
Typ "PChar". Die Strings s, s1 und s2 seien ebenfalls vom Typ "PChar", die – wenn
nicht später ausdrücklich von Variablen die Rede ist – auch String-Konstanten sein
können.

function StrCat(s1, s2: PChar): PChar;
Concate. Hängt einen Kopie des Quellstrings s2 an den Zielstringvariable s1 an.

function StrComp(s1, s2: PChar): Integer;
Compare. Vergleicht zwei Strings s1 und s2 und liefert bei Gleichheit den Wert 0,
bei s1 > s2 einen Wert größer 0 (Differenz der Ascii-Codes beim ersten verschie-
den Zeichen) und bei s1 < s2 einen Wert kleiner 0 (ebenfalls Ascii-Code-
Differenz). Siehe auch Funktion StrIComp.

function StrCopy(s1, s2: PChar): PChar;
Kopiert den Quellstring s2 in die Zielstringvariable s1.

function StrDipose(s: PChar);
Entfernt den String vom Heap.

function StrECopy(s1, s2: PChar): PChar;
Kopiert den Quellstring s2 in die Zielstringvariable s1 und liefert einen Zeiger auf
das Ende von s1.

function StrEnd(s: PChar): PChar;
Liefert einen Zeiger auf das Null-Byte, das die Stringvariable s terminiert.

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-11

function StrIComp(s1, s2: PChar): Integer;
Vergleicht zwei Strings ohne Beachtung von Groß-/Kleinschreibung (I = Ignore).
Sonst wie Funktion StrComp.

function StrLCat(s1, s2: PChar; lMax: Word): PChar;
Hängt maximal (lMax - StrLen(s1)) Zeichen von s2 an die Stringvariable s1 an.

function StrLComp(s1, s2: PChar; l: Word): Integer;
Vergleicht die beiden Strings bis zur vorgegebenen Anzahl l der Zeichen. Sonst
wie StrComp.

function StrLCopy(s1, s2: PChar; lMax: Word): PChar;
Kopiert maximal lMax Zeichen von s2 in die Stringvariable s1.

function StrLen(s: PChar): Word;
Liefert die Anzahl der Zeichen von s.

function StrLICopy(s1, s2: PChar; lMax: Word): Integer;
Vergleicht die beiden Strings bis zu lMax-Zeichen ohne Berücksichtigung von
Groß-/Kleinschreibung. Sonst wie StrComp.

function StrLower(s: PChar): PChar;
Konvertiert den String s in Kleinbuchstaben. Siehe auch StrUpper.

function StrMove(s1, s2: PChar; n: Word): PChar;
Kopiert n-Zeichen von s2 in den Anfang der Stringvariablen s1.

function StrNew(s: PChar): PChar;
Legt eine Kopie von s auf dem Heap an. Siehe auch Dispose.

function StrPas(s: PChar): string;
Konvertiert einen nullterminierten String in einen Pascal-String. Siehe auch
StrPCopy.

function StrPCopy (s1: PChar, s2: string);
Konvertiert den Pascal-String s2 in die (nullterminierte) Stringvariable s1. Siehe
auch StrPas.

function StrPos(s1, s2: PChar): PChar;
Liefert einen Zeiger auf das erste Vorkommen von s2 in s1. Wenn s2 in s1 nicht
vorkommt, wir "nil" (not in list) geliefert.

function StrRScan(s: PChar; Ch: Char): PChar;
Liefert einen Zeiger auf das letzte Vorkommen des Zeichens Ch in s. Wenn Ch
nicht darin vorkommt, wird "nil" geliefert. Das terminierende Null-Byte wird als
Zeichen des Strings betrachtet.

function StrScan(s: PChar; Ch: Char): PChar;
Liefert einen Zeiger auf das erste Vorkommen des Zeichens Ch in s. Wenn Ch
nicht darin vorkommt, wird "nil" geliefert. Das terminierende Null-Byte wird als
Zeichen des Strings betrachtet.

function StrUpper(s: PChar): PChar;
Konvertiert den String s in Großbuchstaben. Siehe auch StrLower.

14-12 Dr. K. Haller Turbo-Pascal Kap. 14: Zeichenketten (Strings)

Das folgende Kurz-Demo-Programm soll die grundsätzliche Handhabung der langen
Strings an ausgewählten Beispielen demonstrieren. Für weitergehende Anwendung ist
die integrierte Hilfestellung heranzuziehen.

{$X+ Erweiterte Syntax für lange Strings notwendig. }
{ Mit der erweiterten Syntax k ö n n e n (müssen aber nicht) }
{ Funktionen, soweit sie nicht in der Standard-Unit "SYSTEM" }
{ deklariert sind, wie Prozeduren verwendet werden. Es wird dann }
{ der Rückgabewert ignoriert. }
program Pas14161; { "Pas14161.PAS", Demo "lange Strings" bis 64 KB }
 { mit Null-Terminierung, ab Turbo-Pascal 7.0 }
 { Dr. K. Haller, FH München, DR, 26240597 }
 { Achtung: Der vordefinierte Zeiger "PChar" (type PChar = ^Char) }
 { erlaubt den Zugriff auf lange Strings, setzt aber }
 { voraus, daß die Option "Erweiterte Syntax", "$X+", }
 { eingestellt ist. }
uses
 CRT, STRINGS; { Unit "Strings" mit Typ "PChar" und 21 Funktionen }
 { für lange Strings. Sie beginnen alle mit "Str..." }
var
 i, l: Word;
 s: array[0..6000] of Char;
 s1,
 s2: PChar;

procedure Tastendruck;
begin
 ReadKey; { So nur mit erweiterter Syntax möglich, sonst z.B. }
 ClrScr; { repeat until ReadKey <> '' }
end; { o.ä., was auch bei erweiterter Syntax möglich ist. }

begin
 TextBackGround(Blue);
 TextColor(Yellow);
 ClrScr;

 WriteLn('Demo 1:');
 s1 := ' 2345678901234567890xxxxxxx Huber Anton ÄÖÜ äöü ß xxxx';
 s1[0] := '1';
 s2 := 'yy';
 WriteLn(s1, StrLen(s1));
 WriteLn(s2, StrLen(s2));
 Tastendruck;

 WriteLn('Demo 2');
 StrCopy(s, s1);
 for i := 1 to 9 do
 StrCat(s, s2);
 s[9] := '?';
 WriteLn(s, StrLen(s));
 Tastendruck;

 WriteLn('Demo 3');
 StrUpper(s);
 WriteLn(s, StrLen(s));
 Tastendruck;

Dr. K. Haller Turbo Pascal Kap. 14: Zeichenketten (Strings) 14-13

 WriteLn('Demo 4');
 StrLower(s);
 WriteLn(s, StrLen(s));
 Tastendruck;

 WriteLn('Demo 5');
 for i := 1 to StrLen(s) do
 s[i-1] := '.';
 WriteLn(s, StrLen(s));
 Tastendruck;

 WriteLn('Demo 6'); { Liefert: 4 = Ord('e') - Ord('a') }
 WriteLn(StrComp('Meier', 'Maier')); { "StrComp" liefert Ascii- }
 Tastendruck; { Differenz beim ersten Unterschied }

 WriteLn('Demo 7'); { Liefert: 0 }
 WriteLn(StrComp('Huber Anton', 'Huber' + ' ' + 'Anton'));
 Tastendruck;

 WriteLn('Demo 8');
 WriteLn(StrMove(s, 'Huber Toni', 10));
 Tastendruck;
end.

37260499 Dr. K. Haller

