
Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen 10.1

10 Wiederholungsanweisungen

repeat/until-Schleifen
while-Schleifen
for-Schleifen
Break und Continue

Gliederung

10.1 Die repeat/until-Schleife ...2

10.2 Die while-Schleife ..4

10.3 Die for-Schleife...7

10.4 Break und Continue
Vorzeitiger Abbruch und Wiederholungen von Schleifen...............11

10.2 Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen

Pascal kennt drei Wiederholungsanweisungen (Schleifen):
• repeat/until
• while
• for

Die repeat/until-Schleife und die while-Schleife werden dann eingesetzt, wenn die
Anzahl der Wiederholungen vor Ausführung der Schleife nicht bekannt ist; die for-
Schleife dagegen dann, wenn die Anzahl der Wiederholungen bekannt ist. Bei den
ersten beiden Schleifentypen wird die Wiederholung von einer Bedingung abhängig
gemacht.

10.1 Die repeat/until-Schleife

Bei repeat/until wird die Schleife solange wiederholt, bis eine am Ende des Schleifen-
körpers stehende Bedingung wahr (True) wird. Diese Schleife wird somit mindestens
einmal durchlaufen.

Format: repeat
 Anweisung_1; ──┐
 Anweisung_2; │
 ├── Schleifenkörper
 Anweisung_n; ──┘
 until Bedingung;

Bedingung Beliebig komplexer boolescher Ausdruck
Anweisung Beliebige Anweisung

Der Schleifenkörper kann beliebig viele Anweisungen enthalten (0, 1, 2, ... n). Im
Gegensatz zu while- und for-Schleifen ist bei repeat/until keine Blockung mit
begin/end notwendig, wenn der repeat/until-Schleifenkörper mehr als eine Anweisung
enthält.

Wenn die Bedingung nie wahr werden kann, dann hat man in sehr lobenswerter
Weise eine Endlosschleife programmiert; das Programm "hängt sich auf". Solange man
sich in der Entwicklungsumgebung von Turbo-Pascal befindet, kann man einen Ret-
tungsversuch mit "Strg+UntBr" unternehmen. Weitere Brutalo-Methoden: Unter DOS
mit "Strg+Alt+Entf" Warmstart durchführen oder unter Windows Anwendung beenden.
Im Worst-Case Rechner ausschalten und neu starten (Kaltstart). Auch bei der while-
Schleife besteht die Gefahr einer Endlosschleife!

Der Schleifenkörper kann beliebige Anweisungen enthalten; somit z.B. auch weitere
repeat/until-Schleifen oder andere Schleifen.

Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen 10.3

Beispiele:

.....
x :=; { Real }
.....
repeat
 x := x + 0.4711;
until x > 47.11; { Wiederholung bis x > 47.11 }
.....
.....
repeat
until True; { Leerschleife, 1 "Durchlauf" }
.....
repeat
until False; { Endlosschleife !!!!! }
..... { "False" kann nie "True" werden }
.....

Graphische Darstellung der repeat/until-Schleife:

a) im Programmablaufplan (PAP) b) im Struktogramm

Konkrete Anwendungen der repeat/until-Schleife zeigt das folgende Demo-Programm:

program Pas10011; { Demo: repeat/until-Schleife }

uses
 CRT;

var
 i, Summe: Integer;
 Zeichen: Char;

begin
 ClrScr;
{ ------------------- Beispiel 1: ---------------------------- }
 Write('Beispiel 1: Drücke eine der Tasten "j" oder "n": ');

Anweisung(en)

until Bedingung

Anweisung(en)

Bedingung
neinja

10.4 Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen

{ ------------------- Beispiel 1: ---------------------------- }
 Write('Beispiel 1: Drücke eine der Tasten "j" oder "n": ');
 repeat
 Zeichen := ReadKey;
 until (Zeichen = 'j') or (Zeichen = 'n');
 WriteLn(Zeichen);

 { ------------------- Beispiel 2: ---------------------------- }
 Write(#13#10, 'Beispiel 2: Drücke beliebige Taste: ');
 repeat
 until KeyPressed;
 WriteLn;

 { ------------------- Beispiel 3: ---------------------------- }
 Write(#13#10, 'Beispiel 3: ');
 i := 1;
 Summe := 0; { Initialwert 0 für Summation }
 repeat
 Write(i, ' '); { ¦Beispiel 3: 1 2 3 4 5 }
 Summe := Summe + i;
 Inc(i);
 { Bei "repeat/until-" Schleifen ist keine Blockung mit
 "begin/end" notwendig, wenn der Schleifenkörper mehr
 als eine Anweisung enthält, im Gegensatz zu "while-"
 und "for-" Schleifen. }
 until (i > 10) or (Summe >= 14);
 WriteLn(' Die Summe: ', Summe);
 { ¦Beispiel 3: 1 2 3 4 5 Die Summe: 15 }
 { -- }

 Write(#13#10, 'Beenden mit Taste "Esc": ');
 repeat
 until ReadKey = #27;
end.

10.2 Die while-Schleife

Format 1: while Bedingung do
 Anweisung;

Format 2: while Bedingung do
 begin
 Anweisung_1; ──┐
 Anweisung_2; │
 ├── Schleifenkörper
 Anweisung_n; ──┘
 end;

Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen 10.5

Bedingung Beliebig komplexer boolescher Ausdruck
Anweisung Beliebige Anweisung

Wenn der while-Schleifenkörper mehr als eine Anweisung enthält, ist unbedingt eine
Blockung mit begin/end notwendig. Man beachte das resevierte Wort do nach der
"Bedingung".

Wie bei der repeat/until-Schleife besteht auch bei der while-Schleife die große Gefahr,
daß man eine Endlosschleife erhält, nämlich dann, wenn die Bedingung immer wahr
bleibt. Siehe die entsprechenden Ausführungen bei der repeat/until-Schleife.

Die while-Schleife kann beliebige Anweisungen enthalten, darunter natürlich auch
weitere while- oder andere Schleifen.

Beispiele:

.....
x := 47.11;
.....
while x < 4711 do
 x := x + 0.4711;
.....
.....
while False do; { Leerschleife, kein "Durchlauf" }
.....
.....
while True do; { Endlosschleife !!!!! }
..... { "True" kann nie "False" werden }
.....

Graphische Darstellung der while-Schleife:

a) im Programmablaufplan b) im Struktogramm

Anweisung(en)

Bedingung
neinja

Anweisung(en)

while Bedingung

10.6 Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen

Das folgende Demo-Programm zeigt verschiedene Anwendungen der while-Schleife:

program Pas10021; { Demo: while-Schleifen }

uses
 CRT; { Für: ClrScr, Delay, KeyPressed und ReadKey }

var
 x, Delta_x : Real; { Man ändere später auf "Double", siehe unten }
 Zeichen: Char;
 Zahl: Integer;

begin
 ClrScr;

 { ------------------- Beispiel 1: -------------------------------- }
 WriteLn(#13#10, 'Beispiel 1');
 x := 0.6;
 Delta_x := 0.1; { Wenn "while-" und "for-" Schleifen mehr }
 while x <= 1.0 do { als eine Anweisung im Schleifenkörper, dann }
 begin { ist unbedingt mit "begin/end" zu blocken. }
 Write(x:6:2); { ¦ 0.60 0.70 0.80 0.90 1.00 }
 x := x + Delta_x; { Läuft bei "Real" nur bis 0.90, }
 end; { erst mit "Double" bis 1.00 !!! }
 WriteLn;

 { ------------------- Beispiel 2: -------------------------------- }
 WriteLn(#13#10, 'Beispiel 2');
 Zeichen := 'a';
 while Zeichen <= 'e' do
 begin
 Write(Zeichen); { ¦abcde }
 Inc(Zeichen);
 end;
 WriteLn(#13#10, Zeichen); { ¦f }

 { ------------------- Beispiel 3: -------------------------------- }
 WriteLn(#13#10, 'Beispiel 3');
 Zahl := 4711;
 while Zahl > 4711 do { Diese Schleife wird mit den vor- }
 Inc(Zahl); { liegenden Daten übersprungen }
 WriteLn(Zahl); { ¦4711 }

 { ------------------- Beispiel 4: Tastaturpuffer leeren ---------- }
 WriteLn(#13#10, 'Beispiel 4');
 Delay(1000); { Warteschleife 1000 ms, nur für Demo }
 while KeyPressed do { Wenn kein Leeren des Tastaturpuffers, }
 Zeichen := ReadKey; { dann können Tastaturspielereien bei }
 { längeren Programmlaufzeiten zu uner- }
 { wünschten Programmabläufen führen }
 Write('Eingabe "0" oder "1": ');
 repeat
 Zeichen := ReadKey;
 until (Zeichen = '0') or (Zeichen = '1');
 if Zeichen = '0'
 then WriteLn(#13#10, '0: Sie haben 1 Mio DM Bankschulden')
 else WriteLn(#13#10, '1: Sie haben 1 Mio DM im Lotto gewonnen');

 { ------------------- Beispiel 5: Tastaturpuffer nicht leeren ---- }

Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen 10.7

 WriteLn(#13#10, 'Beispiel 5');
 Delay(1000); { Warteschleife 1000 ms, nur für Demo }
 Write('Eingabe "0" oder "1": ');
 repeat
 Zeichen := ReadKey; { So nicht !!!!!!!!!!!!!!!! }
 until (Zeichen = '0') or (Zeichen = '1');
 if Zeichen = '0'
 then WriteLn(#13#10, '0: Sie haben 1 Mio DM Bankschulden')
 else WriteLn(#13#10, '1: Sie haben 1 Mio DM im Lotto gewonnen');

 { -- }
 Write(#13#10#7, 'Beenden mit Taste "Esc": ');
 while KeyPressed do
 Zeichen := ReadKey;
 repeat
 until ReadKey = #27;
end.

10.3 Die for-Schleife

Die for-Schleife (auch Zählschleife genannt) wird dann eingesetzt, wenn die Anzahl der
Wiederholungen bekannt ist.

Die for-Schleife benutzt eine Laufvariable, die von einem Anfangswert schrittweise bis
zu einem Endwert erhöht (inkrementiert) wird oder von einem Endwert schrittweise bis
zu einem Anfangswert erniedrigt (dekrementiert) wird.

Format 1: for Laufvariable := Anfangswert to Endwert do
 Anweisung;

Format 2: for Laufvariable := Anfangswert to Endwert do
 begin
 Anweisung_1; ──┐
 Anweisung_2; │
 ├── Schleifenkörper
 Anweisung_n; ──┘
 end;

Format 3: for Laufvariable := Endwert downto Anfangswert do
 Anweisung; { Wenn mehrere Anweisungen: "begin/end" }

Laufvariable Variable mit ordinalem Datentyp
Anfangswert, Beliebiger Ausdruck (Konstante, Variable, Term) mit gleichem
Endwert ordinalen Datentyp wie Laufvariable.
Anweisung Beliebige Anweisung

Wenn der for-Schleifenkörper mehr als eine Anweisung enthält, ist unbedingt eine
Blockung mit begin/end notwendig.

10.8 Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen

Man beachte die resevierten Wört do bzw. downto nach "Endwert" bzw. "Anfangs-
wert".

• Beim Format 1 und 2 der for-Schleife wird die Laufvariable nach jedem Durchlauf
um eine ordinale Einheit erhöht (positive Schrittweite, aufsteigende Schleife). Wenn
der Endwert erreicht ist, wird die Schleife ein letztes mal durchlaufen.

• Beim Format 3 ist der Vorgang ähnlich; der Unterschied besteht lediglich darin, daß
die Schleife vom Endwert bis zum Anfangswert abgearbeitet wird (negative
Schrittweite, absteigende Schleife).

Wenn der Anfangswert gleich oder größer ist als der Endwert, dann werden die Anwei-
sungen in der Schleife nicht ausgeführt. Die for-Schleife verhält sich in dieser Hinsicht
ähnlich wie die while-Schleife.

Die for-Schleifen sind ein Spezialfall der while-Schleifen und können immer durch
diese ersetzt werden; dennoch sollte man es nicht tun, da for-Schleifen wesentlich
schneller abgearbeitet werden.

Die for-Schleife ist nicht nur für Integer-Typen, sondern für alle Ordinaltypen definiert
(Integer, Byte, Word, ShortInt, LongInt, Char, Boolean, Aufzählungstypen und Teil-
bereichstypen).

Der Datentyp Real ist bekanntlich nicht ordinal und kann somit nicht für Laufvariable,
Anfangswert und Endwert in Pascal-for-Schleifen verwendet werden, im Gegensatz zu
BASIC und PostScript.

Die Laufvariable kann im Schleifenkörper verändert werden, z.B. mit:

"Laufvariable := Laufvariable + 3;"

Anfangswert und Endwert können dagegen im Schleifenkörper nicht verändert werden,
auch wenn sie als Variablen in der for-Schleife aufgeführt sind; der Compiler bringt
aber keine Fehlermeldung!

Da der Schleifenkörper wie bei allen Schleifen beliebige Anweisungen enthalten kann,
können for-Schleifen auch verschachtelt werden (for-Schleife in einer for-Schleife).
Beim Bearbeiten von Matrizen sind Doppel-for-Schleifen sehr praktisch.

Die Gefahr einer Endlosschleife besteht bei for-Schleifen praktisch nicht, es sei denn,
daß man bei einer aufsteigenden for-Schleife die Laufvariable im Schleifenkörper
dekrementiert oder bei einer absteigenden inkrementiert.

Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen 10.9

Graphische Darstellung der for-Schleife:

a) im Programmablaufplan b) im Struktogramm
(ähnlich wie while-Schleife)

Das folgende Demo-Programm zeigt verschiedene Anwendungen der for-Schleife:

program Pas10031; { Demo: for-Schleifen }
uses
 CRT;

const
 n = 4;
 iMin = 1;
 iMax = 10;

var
 i, j, Summe: Integer;
 Buchstabe: Char;
 Hund: Boolean;
 Farbe: (Blau, Gruen, Gelb, Rot); { Aufzählungstyp }

begin
 ClrScr;
{ --------------- Beispiel 1: for-Schleife mit Integer ----------- }
 Write(#13#10, 'Beispiel 1: ');
 for i := 5 to 10 do
 Write(i, ' '); { ¦Beispiel 1: 5 6 7 8 9 10 }
 WriteLn;

 { --------------- Beispiel 2: for-Schleife mit Integer ----------- }
 Write(#13#10, 'Beispiel 2: ');
 for i := 10 downto 5 do
 Write(i, ' '); { ¦Beispiel 2: 10 9 8 7 6 5 }
 WriteLn;

 { --------------- Beispiel 3: for-Schleife mit Integer ----------- }
 Summe := 0; { Initialwert 0 für Summation, für Produktbildung: . }
 for i := 1 to n do
 Summe := Summe + i; { Typischer Fall von Computermißbrauch }
 WriteLn(#13#10, 'Beispiel 3: Summe 1 bis ', n, ': ', Summe,
 '. Oder nach "n*(n + 1)/2": ', n*(n + 1) div 2);
 { ¦Beispiel 3: Summe 1 bis 4: 10. Oder nach "n*(n + 1)/2": 10 }
{ --------------- Beispiel 4: for-Schleife mit Integer ----------- }
 Write(#13#10, 'Beispiel 4: ');

i, Aw, Ew =

Anweisung(en)

for

Anweisung(en)

10.10 Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen

 for i := (iMin + iMax) div 2 to iMax - 1 do
 Write(i, ' '); { ¦Beispiel 4: 5 6 7 8 9 }
 WriteLn;

 { --------------- Beispiel 5: for-Schleife mit Integer ----------- }
 { Die Laufvariable darf in der Schleife verändert werden,
 nicht aber Anfangswert und Endwert }
 Write(#13#10, 'Beispiel 5: ');
 for i := 1 to 10 do
 begin
 Write(i, ' '); { ¦Beispiel 5: 1 3 5 7 9 }
 Inc(i); { Bei "Dec(i)" ergäbe sich }
 end; { eine Endlosschleife! }
 WriteLn;

 { --------------- Beispiel 6: for-Schleife mit Char -------------- }
 Write(#13#10, 'Beispiel 6: ');
 for Buchstabe := 'a' to 'k' do
 Write(Buchstabe); { ¦Beispiel 6: abcdefghijk }
 WriteLn;

{ --------------- Beispiel 7: for-Schleife mit Boolean ----------- }
 Write(#13#10, 'Beispiel 7: ');
 for Hund := True downto False do
 Write(Hund, ' '); { ¦Beispiel 7: TRUE FALSE }
 { Das ist der Beweis: Es gibt echte und falsche Hunde! }
 WriteLn;

 { --------------- Beispiel 8: for-Schleife mit Aufzählungstyp ---- }
 Write(#13#10, 'Beispiel 8: '); { Hinweis: Aufzählungstypen können }
 { nicht eingegeben oder ausgegeben werden }
 for Farbe := Blau to Rot do
 case Farbe of
 Blau: Write('blau '); { ¦Beispiel 8: blau }
 Gruen: Write('grün '); { ¦Beispiel 8: blau grün }
 Gelb: Write('gelb '); { ¦Beispiel 8: blau grün gelb }
 Rot: Write('rot '); { ¦Beispiel 8: blau grün gelb rot }
 end;
 WriteLn;

 { --------------- Beispiel 9: Doppel-for-Schleife mit Integer ---- }
 WriteLn(#13#10, 'Beispiel 9: Multiplikationstafel ',
 'mit Doppelschleife');
 Write(' ':6);
 for j := 1 to 5 do { einfache Schleife }
 Write(j:2, ': ');
 WriteLn;
 for i := 1 to 3 do { Zeile i. Äußere Schleife }
 begin { der Doppelschleife }
 Write(i:2, ': ');
 for j := 1 to 5 do { Spalte j. Innere Schleife }
 Write(i*j:4); { der Doppelschleife }
 WriteLn;
 end;
 WriteLn;
 { ¦Beispiel 9: Multiplikationstafel mit Doppelschleife }
 { ¦ 1: 2: 3: 4: 5: }
 { ¦ 1: 1 2 3 4 5 }
 { ¦ 2: 2 4 6 8 10 }
 { ¦ 3: 3 6 9 12 15 }

Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen 10.11

{ -- }
 Write(#13#10, 'Beenden mit beliebigem Tastendruck ... ');
 repeat { Besser: Vorher noch }
 until ReadKey <> ''; { Tastaturpuffer leeren }
end.

10.4 Vorzeitiger Schleifenabbruch mit Break
Wiederholung von Schleifen mit Continue

Zu Break:

Gelegentlich besteht das Problem, daß eine Schleife (repeat/until, while oder for) in Ab-
hängigkeit von einer Bedingung vorzeitig beendet werden soll. In den neueren Versio-
nen von Turbo-Pascal steht für dieses Problem mit der Standardprozedur Break eine ele-
gante Lösung zur Verfügung. Grundsätzlich kann dieses Problem bei allen Schleifen-
typen auch mit anderen Mitteln und auch ohne Verwendung des (verpönten) goto-
Sprungs gelöst werden. Die folgende Sequenz soll nur eine Vorstellung geben, wie die
Lösung ohne Break beispielsweise in einer for-Schleife aussehen könnte:

.....
for Laufvariable := Anfangswert to Endwert do

begin
{ Teil 1 des Schleifenkörpers }
.....
if Abbruchbedingung

then Laufvariable := Endwert
else begin

{ restlicher Schleifenkörper }
.....

end;
end;

{ Anweisung nach der Schleife }

Mit Break-Lösung sieht wesentlich eleganter aus:.
....
for Laufvariable := Anfangswert to Endwert do

begin
{ Teil 1 des Schleifenkörpers }
.....
if Abbruchbedingung

 then Break;
{ restlicher Schleifenkörper }
.....

end;
{ Anweisungung nach der Schleife }

Die Verwendung von Break ist nicht an eine Bedingung gebunden; ein "unbedingtes"
Break ergibt aber keinen praktischen Sinn. Das folgende Demo-Programm zeigt eine
konkrete Anwendung der Break-Prozedur in einer repeat/until-Schleife:

10.12 Dr. K. Haller Turbo-Pascal Kap. 10: Wiederholungsanweisungen

program Pas10041; { Demo: Vorzeitiger Schleifenabbruch mit "Break" }
uses { 27050493 }
 CRT;
const
 Esc = #27; { Zeichen #27: Escape }
var
 Ch: Char;
begin
 ClrScr;
 repeat
 Write('Eingabe Zeichen, Ende mit Taste "Esc": ');
 Ch := ReadKey;
 if Ch = Esc { Mit "Break" können alle Schleifen }
 then Break; { vorzeitig abgebrochen werden. }
 GotoXY(WhereX, WhereY);
 WriteLn('Eingabezeichen: ', Ch);
 until False; { Wäre ohne "Break" eine Endlosschleife }
 Write(#7);
end.

Zu Continue:

Gelegentlich besteht die Aufgabe, daß eine Schleife in Abhängigkeit einer Bedingung
nicht weiter abgearbeitet werden soll, sondern vom Anfang an wiederholt werden soll.
Auch dieses Problem kann mit normalen Pascal-Mitteln gelöst werden; mit der Stan-
dardprozedur "Continue" aber wesentlich eleganter. Wie Break kann auch Continue
ohne Bedingung verwendet werden, was aber keinen praktischen Sinn ergibt. Das fol-
gende Demo-Programm zeigt die Anwendung von Continue in einer repeat/until-
Schleife:
program Pas10042; { Demo: Schleifenwiederholung mit "Continue" }
uses { 37030492 }
 CRT;
var
 Ch: Char;
begin
 ClrScr;
 WriteLn('Demo "Continue": Das Programm nimmt alle Zeichen an,');
 WriteLn(' zeigt aber nur Großbuchstaben an');
 repeat
 Write(#13#10, 'Eingabe Zeichen, Ende mit Taste "Z": ');
 Ch := ReadKey;
 if not (Ch in ['A'..'Z']) { Mit "Continue" können alle Schleifen }
 then Continue; { von Anfang an wiederholt werden. }
 GotoXY(38, WhereY);
 WriteLn('Großbuchstabe: ', Ch);
 { Hier könnten }
 { noch viele }
 { Anweisungen stehen }
 until Ch = 'Z';
end.

70250401 Dr. K. Haller

