
Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen 9-1

9 Steueranweisungen

if ... then
if ... then ... else
case ... of
goto

Gliederung

9.1 Die einseitige Verzweigung if ... then ..2

9.2 Die zweiseitige Verzweigung if ... then ... else3

9.3 Verschachtelung von Verzweigungen ..5

9.4 Selektion mit case ... of ...6

9.5 Die Sprunganweisung goto...8

9-2 Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen

Der lineare Programmablauf kann durch Verzweigungen und durch Sprünge nach
vorwärts/rückwärts verändert werden.

9.1 Die einseitige Verzweigung if ... then

Zweck: Programmablauf in Abhängigkeit von einer Bedingung einseitig verzweigen.

Format 1: if bedingung
 then a1; Eine Anweisung a1
a2; Nächste Anweisung a2

Format 2: if bedingung then Mehr als eine Anweisung:
 begin Mit "begin" und "end"

a11; zu einem Anweisungs-
a12; block klammern
...; (compound statement)
a1n;

 end;
a2; Nächste Anweisung a2

bedingung: Boolescher Ausdruck. Wenn die Auswertung "True" ergibt, wird die
nach "then" stehende Anweisung a1 (bzw. der Anweisungsblock) ausgeführt, sonst
nicht. Anschließend wird mit der nach "if ... then" stehende Anweisung, die schematisch
mit a2 bezeichnet werden soll, fortgesetzt. Wenn die Bedingung nicht zutrifft, wird
gleich mit a2 fortgesetzt. a1 kann eine beliebige Anweisung sein und inbesondere auch
wieder "if ... then" enthalten. Mehr dazu im Kapitel 9.3.

Der boolesche Ausdruck kann beliebige relationale Operatoren (=, <, >, <=, >=, <>) und
logische Operatoren (not, and, or, xor) enthalten. Die Priorität der Operatoren ist in
Kapitel 8 behandelt (Stufe 1 = höchste Priorität: not, Stufe 2: and, Stufe 3: or, xor). Die
relationalen Operatoren haben die Prioritätsstufe 4. Eine andere Abarbeitung muß durch
Klammersetzung erzwungen werden.

1. Beispiel: if x = 4711 then WriteLn('Anton Huber');

 schöner: if (x = 4711) { In C Klammerung immer notwendig }
 then WriteLn('Anton Huber');

2. Beispiel: if (x = 4711) and (y <> 0) { Klammerung notwendig! }
 then WriteLn('Anton Huber');

Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen 9-3

Graphische Darstellung der einseitigen Verzweigung:

a) im Programmablaufplan b) im Struktogramm:
PAP (Flußdiagramm):

program Pas09011; { Demo: Einseitige Programmverzweigung if ..then }

uses
 CRT;
var
 i: Integer;

begin
 ClrScr;
 Write('Geben Sie die Geheimzahl ein: ');
 ReadLn(i);

 if i = 4711
 then WriteLn('Sie haben die Geheimzahl erraten!');

 WriteLn('Drücken Sie die Taste ENTER. Dann erpart man sich in ');
 Write('Turbo-Pascal das lästige Fenster-Umschalten.');
 ReadLn; { "ReadLn" Warten auf ENTER }
end.

9.2 Die zweiseitige Verzweigung if ... then ... else

Zweck: Programmablauf in Abhängigkeit von einer Bedingung zweiseitig verzweigen.

Format: if bedingung
 then a1True { Kein Semikolon vor diesem "else" }
 else a1False;
a2; { Nächste Anweisung }

Zu bedingung siehe 9.1.

Wenn die Auswertung der Bedingung "True" ergibt, wird a1True ausgeführt, anderen-
falls a1False. Wenn a1True oder a1False aus mehreren Anweisungen bestehen, dann

Bedingung

ja nein

Anweisung a1

Anweisung a2

Bedingung
ja nein

./.Anweisung a1

Anweisung a2

9-4 Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen

wie bei 9.1 mit "begin" und "end" zu einem Anweisungsblock klammern. Die Pro-
grammfortsetzung erfolgt nach der Verzweigung mit der folgenden Anweisung a2.

Man beachte, daß vor dem »else«-Zweig einer zweiseitigen Verzweigung kein Semi-
kolon stehen darf!

Graphische Darstellung der zweiseitigen Verzweigung:

a) im Programmablaufplan b) im Struktogramm:
PAP (Flußdiagramm):

program Pas09021; { Demo: Zweiseitige Programmverzweigung
 "if ... then ... else" }
uses
 CRT;
var
 i: Integer;

begin
 ClrScr;
 Write('Geben Sie die Geheimzahl ein: ');
 ReadLn(i);
 if i = 4711
 then WriteLn('Sie haben die Geheimzahl erraten!') { kein ";" }
 else begin
 WriteLn(#7); { Steuerzeichen #7: Bell }
 WriteLn('Sie haben die Geheimzahl vergessen!');
 WriteLn('Das nächste mal zerstöre ich alle Dateien!');
 WriteLn;
 end;
 WriteLn('Drücken Sie die Taste ENTER. Dann erpart man sich in ');
 Write('Turbo-Pascal das lästige Fenster-Umschalten.');
 ReadLn; { "ReadLn" wartet auf ENTER }

Bedingung
ja nein

Anweisung
a1False

Anweisung
a1True

Anweisung
a2

Bedingung

ja nein

Anweisung
a1False

Anweisung
a1True

Anweisung
a2

Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen 9-5

end.

9.3 Verschachtelung von Verzweigungen

Da die Anweisung nach then bzw. nach else beliebig sein kann und insbesondere auch
wieder eine Bedingung enthalten kann, können ein- und zweiseitige Verzweigungen
können beliebig verschachtelt werden.

Dabei gilt: Jedes else bezieht sich auf das jeweils letzte if, zu dem noch kein else-
Zweig angegeben ist.

Die folgenden Graphiken zeigen beispielhaft eine derartige Situation als Programmab-
laufplan und als Struktogramm und die programmtechnische Lösung in schematischer
Pascal-Schreibweise.

Dabei steht "b" allgemein für eine beliebige Bedingung, "a" allgemein für eine beliebige
Anweisung, "j" bzw. "ja" für "True" und "n" bzw. "nein" für "False"

a) im Programmablaufplan b) im Struktogramm:
PAP (Flußdiagramm):

c) in schematischer Pascal-Programmierung:

if b1
 then if b2
 then a1
 else a2
 else if b3
 then
 else a3;
a4;

a1 a3a2

a4

b2 b3

b1
ja nein

n njj

b1

ja nein

b3
ja nein

b2
ja nein

a4

a2 a3./.a1

9-6 Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen

Wie das schematische Beispiel mit der Bedingung b3 zeigt, kann auch der then-Zweig
entfallen. Klarer wäre aber die Programmierung mit einer Negierung der Bedingung b3
wie folgt:

if b1
 then if b2
 then a1
 else a2
 else if not b3
 then a3;
a4;

program Pas09031; { Demo: Verschachtelung von Verzweigungen }
uses
 CRT;

const
 a1 = 'a1';
 a2 = 'a2';
 a3 = 'a3';
 a4 = 'a4';

var
 B1, B2, B3: Boolean;

begin
 ClrScr;
 B1 := False; { nur für Demo }
 B2 := True;
 B3 := False;

 { ---- Version 1 ------- }
 if B1
 then if B2
 then WriteLn(a1)
 else WriteLn(a2)
 else if B3
 then { then-Zweig leer, unschön! }
 else WriteLn(a3);

 { ---- Version 2 (Bedingung B3 negiert, ---> klarer ------}
 if B1
 then if B2
 then WriteLn(a1)
 else WriteLn(a2)
 else if not B3
 then WriteLn(a3);
 WriteLn(a4);
 ReadLn;
end.

9.4 Selektion mit "case ... of"

Anweisungsfolgen wie z.B.

Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen 9-7

if x = 1 then anweisung1;
if x = 2 then anweisung2;
if x = 3 then anweisung3;
...
if x = N then anweisungN;

sind aufwendig in der Schreibweise und ineffizient, da jeder Fall abgeprüft werden muß.
Die Umstellung auf zweiseitige Verzweigung führt leicht zu unübersichtlichen Ver-
schachtelungen.

Eine effiziente und klare Programmierung gestattet in diesen Fällen die Selektionsan-
weisung "case ... of".

Zweck: Auswahl eines Falles aus mehreren Möglichkeiten

Format: case ordinalausdruck of
 konstante1: anweisung1;
 konstante2: anweisung2;
 ;
 konstanteN: AnweisungN;
[else anweisung_fuer_restliche_Faelle]; { optional }
end;

Das eingangs geschilderte Problem kann dann wie folgt effizient gelöst werden:

case x of
 1: anweisung1;
 2: anweisung2;
 3: anweisung3;
 ...
 N: anweisungN;
end;

Wenn ein Fall erkannt und abgearbeitet ist, werden die restlichen Fälle nicht mehr
geprüft; die case-Anweisung wird verlassen.

Als Selektor dient ein Ordinal-Ausdruck, dessen Ordinalwert zwischen -32768 und
+32767 liegen muß.

Der Datentyp des Selektors kann somit sein: Integer, ShortInt, Byte, Char und Boolean.
Teilbereichstypen und Aufzählungstypen sind zulässig, soweit sie der genannten Ordi-
nalwert-Forderung genügen. Ausdrücke mit den Datentypen Word und LongInt sind
somit nicht als Selektor zulässig. Die Typen String, Real usw. sind nicht ordinal und
somit auch nicht zulässig.

Der else-Zweig ist optional. Die eckigen Klammern in der Formatbeschreibung dienen
nur als Hinweis auf die Option; sie dürfen im gegebenen Fall nicht eingegeben werden.
Vor diesem "case/else" darf ein Semikolon stehen, bekanntlich aber nicht vor dem
"else" einer "if/then/else-Konstruktion.

Jede Anweisung kann eine einfache Anweisung (nur eine Anweisung) sein oder ein mit
begin und end geklammerter Anweisungsblock mit zwei oder beliebig vielen Anwei-

9-8 Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen

sungen. Beim optionalen else-Zweig kann die Klammerung entfallen; man sollte sie der
Einheitlichkeit wegen dennoch vornehmen.

Statt einer Konstanten ist auch eine Konstanten-Liste oder ein Konstanten-Bereich und
auch eine Kombination zulässig. Die Listenelemente sind mit einem Komma vonein-
ander zu trennen. Ein Bereich wird durch den Kleinstwert und dem Größtwert darge-
stellt, dazwischen sind zwei Punkte zu setzen.

program Pas09041; { Demo: Selektion mit "case ... of"
uses
 CRT;
const
 Escape = #27; { #27: Ordnungsnummer für ESC nach ASCII }
var
 Zeichen: Char;

begin
 ClrScr;
 repeat
 Write('Drücke eine Taste (Abbruch mit Taste "Esc": ');
 Zeichen := ReadKey;
 if Zeichen = #13
 then Write(' ') { sonst unschöner Zeilenvorschub }
 else Write(Zeichen);
 case Zeichen of
 '+': WriteLn(' Plus-Zeichen');
 '-': WriteLn(' Minus-Zeichen');
 '!', '?': WriteLn(' Ausrufe- oder Fragezeichen');
 'a'..'z': WriteLn(' Kleinbuchstabe');
 'A'..'Z': WriteLn(' Großbuchstabe');
 '0'..'9': WriteLn(' Ziffernzeichen');
 #13: WriteLn(' Taste RETURN');
 Escape: WriteLn(' Taste ESC'); { <--- Semikolon hier

vor diesem "else" zulässig,
aber nicht notwendig.
Bei "if then/else" dagegen
kein Semikolon vor "else" }

else WriteLn(' Ein sonstiges Zeichen ');
 end; { von "case ... of" }
 until Zeichen = Escape;
end.

9.5 Die Sprunganweisung "goto"

Zweck: Unbedingter oder bedingter Sprung zu einer mit einem Label (Marke)
gekennzeichneten Programmstelle.

Format 1: goto marke; unbedingter Sprung
Format 2: if bedingung then goto marke; bedingter Sprung

Programmsprünge sind in Turbo-Pascal nur innerhalb des gleichen Programmblocks
möglich. Man kann also nicht vom Hauptprogramm in eine Routine springen oder um-
gekehrt und das ist gut so! Mit den Strukturierungsmöglichkeiten von Pascal sollten
Programmsprünge nur für Testzwecke oder zur Behandlung von Fehlersituationen

Dr. K. Haller Turbo-Pascal Kap. 9: Steueranweisungen 9-9

benutzt werden. Die Sprünge können sowohl nach vorwärts, als auch rückwärts gerich-
tet sein.

Die Sprungmarken müssen in der Label-Deklaration aufgeführt sein. Die Labelbezeich-
ner können beliebige Bezeichner, aber auch Ganzzahlen aus dem Bereich 0 bis 9999
sein. An der Sprungstelle muß dem Labelbezeichner unbedingt ein Doppelpunkt nach-
gesetzt werden. Nichtbenutzte Labels werden vom Compiler nicht beanstandet.

program Pas09051; { Demo "goto-Anweisung" }
 { GOTO-Programme sind verdammenswert! }
uses
 CRT;

label
 Fall1, Fall2, Ende;

var
 x: Integer;

begin
 ClrScr;
 Write('Eingabe Integer-Zahl: ');
 ReadLn(x);

 if (x = 4711)
 then goto Fall1 { Bedingter Sprung }
 else goto Fall2;

 Fall1: { Doppelpunkt nach einem Label }
 WriteLn('x hat den Wert 4711');
 goto Ende; { Unbedingter Sprung }

 Fall2: { Das 2. Label }
 WriteLn('x hat nicht den Wert 4711');
 goto Ende; { Überflüssige "goto"-Anweisung }

 Ende: { Das 3. Label }

 ReadLn; { Wartet auf Tastendruck ENTER }
end.

70200308 Dr. K. Haller

