Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-1

8 Datentypen, Operatoren und Standardroutinen.

Uberblick. Die Typen Integer, Real, Char und Boolean.
Prioritit. Die selbstdefinierten Typen.

Gliederung

8.1 Die Datentypen in Turbo-Pascal: Ein Uberblick..............cccccoevuee.... 2
8.2 Die Integer-Typen. Operatoren und Standardroutinen....................... 5
8.3 Die Real-Typen. Operatoren und Standardroutinen......................... 10
8.4 Der Typ Char. Operatoren und Standardroutinenc.......... 14
8.5 Der Typ Boolean. Operatoren und Standardroutinen....................... 17
8.6 Prioritit der OPeratorencccueeeveeeiieeeiiieerieeereeeree e eseeeeevee e 21
8.7 Selbstdefinierte Datentypen..........ccceeeveeviieeiieeniiccieecee e 21

8-2 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Vorbemerkungen:

Routine ist der Oberbegriff fiir Prozeduren und Funktionen. Routinen filhren gewisse
Aktivitdten aus. Eine Funktion liefert im Gegensatz zur Prozedur an die aufrufende
Stelle einen Wert zuriick, z.B. den Logarithmus einer Zahl. Der Wert kann beliebig
verwendet werden, z.B. auch in einem Ausdruck. Man unterscheidet zwischen
Standardroutinen (eingebaute Routinen), die Pascal in vordefinierter Form zur Verfi-
gung stellt und selbsterstellten Routinen. Letztere werden in einem eigenen Kapitel
behandelt. Prozeduren werden in Pascal wie Funktionen nur mit ihrem Namen auf-
gerufen.

Dieses Kapitel enthélt viele Details, die nicht alle sofort fiir die Behandlung der Folge-
kapitel gebraucht werden. Bei Bedarf wird in diesem Kapitel "nachgearbeitet".

8.1 Die Datentypen in Turbo-Pascal. Ein Uberblick

— | ntegertypen | nt eger
Short| nt
Longl nt
Byt e

Ordi nal typen — Wor d

— unstrukturierte Typen Char

Bool ean

Real t ypen Real

*) Diese Typen nur in Ver- Si ngl e
bindung mit mathematischem Doubl e

— Co-Prozessor oder dessen Ext ended

Emulation Conp

— strukturierte Typen string

* X X X

array
— record

— set

— file

— dynam sche Typen (Zei ger)

Datentypen konnen in Pascal direkt in der Variablen-Deklaration oder indirekt mit type
deklariert werden.

Beispiel fiir direkte Deklaration (vermeiden):
var

Temper at ur: Real ;

KundenNunmer : Wor d;

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-3

Beispiel fiir indirekte Deklaration (bevorzugen):

type

G ad = Real ;
Posi tiverl nteger = Wrd;

var
Temper at ur: G ad;
KundenNunmrer: Positiverl nt eger;

Die indirekte Deklaration mit type erhoht u.U. die Lesbarkeit des Programms und ist
vor allem dann angebracht, wenn der gleiche Typ fiir verschiedene Variablen gebraucht
wird und vor allem dann, wenn bestimmte Datentypen an Routinen iibergeben werden
miissen, wenn man nicht von den Offenen Arrays Bebrauch macht, die ab Turbo Pascal
7.0 (siche Kap. 11) zur Array- und String-Ubergabe verwendet werden konnen.

Turbo-Pascal kennt mehrere Integer- und Real-Datentypen, die Datentypen Char, Bool-
ean, string, array, record, set und file, sowie den dynamischen Datentyp (Zeigertyp).
Hinzu kommen noch die selbstdefinierten Datentypen (Aufzdhlungstypen und Teil-
bereichstypen).

Alle Integer- und Real-Datentypen, die Datentypen Char und Boolean zdhlen zu den
unstrukturierten (einfachen) Datentypen. Die Datentypen string, array, record, set und
file sind strukturierte Datentypen. Unstrukturiert heifit, da3 die Werte nicht weiter
unterteilt werden konnen. Beim strukturierten Datentyp liegt dagegen eine Ansammlung
von Werten vor.

Alle Integer-Typen, die Datentypen Char, Boolean und die selbstdefinierten Datentypen
(Aufzihlungstypen und Teilbereichstypen) sind ordinale Datentypen. Sie besitzen
endliche und nach einem Ordnungsschema geordnete Werte. Die Real-Typen sind keine
Ordinal-Typen! Auf ordinale Typen sind die Standardfunktionen Ord (Ordnungsnum-
mer), Pred (Predecessor, Vorginger) und Succ (Successor, Nachfolger) anwendbar.
Ordinale Typen konnen weiter in einer case-Selektion und als Laufvariable in einer for-
Anweisung verwendet werden. Auflerdem konnen nur ordinale Typen beim strukturier-
ten Datentyp array als Index verwendet werden.

Turbo-Pascal kennt fiinf Integer-Typen (Ganzzahl-Typen) und zwar:

« Integer
+ ShortInt
« Longint
+ Byte

« Word

Turbo-Pascal kennt fiinf Real-Typen (Komma-Typen) und zwar:
+ Real
« Single nur mit Coprozessor oder Emulation

8-4 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

+ Double nur mit Coprozessor oder Emulation
+ Extended nur mit Coprozessor oder Emulation
« Comp nur mit Coprozessor oder Emulation

Standard-Pascal kennt dagegen nur je einen Integer- und Real-Typ.

Wenn nichts anders ausgefiihrt ist, dann ist mit "Integer-Typ" die Gesamtheit aller
Turbo-Pascal-Integer-Typen gemeint. Entsprechendes gilt dann auch fiir "Real-Typ".

« Zum Datentypen Integer: Behandlung in den Unterpunkten 8.2
« Zum Datentyp Real: Behandlung im Unterpunkt 8.3
« Zum Datentyp Char: Behandlung im Unterpunkt 8.4
« Zum Datentyp Boolean: Behandlung im Unterpunkt 8.5

* Die strukturierten Datentypen:

- string Zeichenkette. In Standard-Pascal gibt es den Datentyp string nicht. Dort
ist eine Zeichenkette als array of Char zu betrachten. In Turbo-Pascal ist
die Lange der Zeichenkette auf maximal 255 Zeichen begrenzt. Wenn
keine Stringlédnge deklariert ist, wird der Maximalwert angenommen. Um
Speicherplatz zu sparen, sollte man die benétigte String-Lange

deklarieren. Ab Turbo-Pascal 7.0 kénnen mit der Unit Strings nullterminierte Strings
mit einer Linge von bis zu 2'° = 65536 Zeichen verwendet werden. In Delphi ist die
Stringlédnge nur noch durch die Speicherkapazitit gegrenzt.

Beispiel: s: string[25]

deklariert einen String s mit maximal 25 Zeichen Linge. Pro Zeichen
wird ein Byte benotigt. Hinzu (genauer davor) kommt ein Byte, in dem
die aktuelle Lénge des Strings gespeichert ist, das Langenbyte. Strings
werden im Kapitel 14 ausfiihrlicher behandelt.

- array Reihung gleicher Datentypen. Behandlung in einem Kapitel 12.

- record Verbunde, Reihung verschiedener Datentypen. Behandlung im Kapitel
16.
- set Mengen. Behandlung im Kapitel 15.

- file Dateien. Behandlung im Kapitel 18.

e Zu den dynamischen Datentypen:

Zeigertyp (Pointer). Ein Zeiger hat keinen Wert, sondern enthdlt die Speicheradresse
eines Wertes. Zeiger werden im Behandlung im Kapitel 19.

e Zu den selbstdefinierten Typen

Selbstdefinierte Typen (Aufzdhlungstypen und Teilbereichstypen) werden im Unter-
punkt 8.7 behandelt.

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-5

8.2 Integer-Typen. Operatoren und Standardroutinen

I nteger-Typ |Wert ebereich Spei cher bedar f
I nt eger -32768. . +32767 = -2®..+22 - 1 |2 Byte
Short | nt -128. . +127 = -2" ..+2" - 1|1 Byte
Longl nt -2147483648. . +2147483647 = -23. . +2% - 1 |4 Byte
Byt e 0..255 = 0..28 -1 1 Byte
Word 0. .65535 = 0..2°-1 2 Byte

Wenn nichts anderes ausgefiihrt ist, dann ist mit "Integer-Typ" die Gesamtheit aller fiinf
Integer-Typen von Turbo-Pascal gemeint.

Turbo-Pascal kennt zwei Integer-Konstanten:

. Max| nt mit Wert 32767
. MaxLongl nt mit Wert 2 147 483 647

Arithmetische Operatoren fiir Integer-Typen:

+ Addition
- Subtraktion und monadisches Minus
* Multiplikation

di v ganzzahlige Division. Beispiel: 10 div4 =2
nod Restwert der ganzzahligen Division (Modulo-Rechnung). Beispiel: 17 mod 5 =2
Man beachte, dafl der Schrigstrich (slash) "/" als Divisionsoperator fiir Realtypen dient.

Das Ergebnis ist dann immer ein Realtyp, auch wenn die Operanden Integer-Typen sind
und das Ergebnis ganzzahlig ist.

Die Vergleichsoperatoren fiir Integertypen:

= gleich

> grofler

< kleiner

>= grofer oder gleich
<= Kkleiner oder gleich

<> ungleich

Logische Operatoren fiir Integer-Typen:

Folgende logische Operatoren konnen auf Integer-Typen angewendet werden. Die Ver-
arbeitung erfolgt bitweise fiir das ganze Bit-Muster der Integer-Operanden.

Hinweis: Logische Operatoren liefern Integer-Zahlenwerte; die booleschen Operatoren
(not, and, or und xor) dagegen die Wahrheitswerte True oder False (Kap. 8.5).

8-6 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

not bitweise Negation

and bitweises UND

or bitweises ODER

xor bitweises Exklusiv-ODER (ausschlieBendes ODER, Antivalenz)
shl Bit-Muster um 7 bits nach links verschieben (shift left)

shr Bit-Muster um 7 bits nach rechts verschieben (shift right)

Die Wirkung der logischen Operatoren not, and, or und xor kann anschaulich mit
Wabhrheitstabellen dargestellt werden. Fiir "Bit gesetzt" steht "1" und fiir Bit nicht
gesetzt steht "0".

Wahrheitstabelle:
Bit X Bit Y| not X| Xand Y | Xor Y | X xor Y
0 0 1 0 0 0
0 1 1 0 1 1
1 0 0 0 1 1
1 1 0 1 1 0

Die Tabelle gilt ansonsten auch flir die Boolschen Operatoren not, and, or und xor,
wenn man "1" durch "True" und "0" durch "False" ersetzt.

Beispiel: 85 and 7

Bit-Mster fir 85: 0101 0101

Bit-Mster far 7: 0000 0111

Bit-Mister fiur (85 and 7): 0000 0101

Das Ergebni s-Bit-Mister hat das Dezi mal - Aqui val ent 5.
Somit: (85 and 7) > 5

Logische Operationen mit Integer-Typen werden {iberwiegend bei systemnaher Pro-
grammierung benotigt.

Mengen-Operator fiir Integer-Typen:

Der Mengen-Operator "in" (Vorgriff auf strukturierten Datentyp set, Kap. 15) kann auch
auf Integer-Typen angewendet werden.

Beispiel:

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-7

program Pas08021; { Denop: in" mt
uses
CRT;
var
z: Byte;
begin
r epeat
Wite(' Dricken Sie eine der Zifferntasten 3 bis 7: ');
ReadlLn(z);
until z in [3..7];

end.

Mengen- Oper at or I nteger Typen }

Standardfunktionen fiir Integer-Typen:

In der folgenden Tabelle sind die wichtigsten Standardfunktionen aufgefiihrt, die ent-
weder ein Integer-Argument oder ein Integer-Ergebnis haben. Manche der Funktionen
sind in gleicher Weise fiir Integer- und auch fiir Real-Argumente definiert oder auch fiir
alle Ordinaltypen. Der Ergebnistyp ist dann mit dem Typ des Arguments identisch. Das
Argument ist in der Tabelle mit dem Zeichen a symbolisiert. Die mathematischen Funk-
tionen wie Sin, Cos, ArcTan, Exp und Ln liefern ein Real-Ergebnis und sind primér
auch fiir Real-Argumente gedacht. Da Turbo-Pascal gegebenenfalls die Integer-Argu-
mente automatisch in Real umwandelt, konnen diese Funktionen auch fiir Integer-Argu-
mente benutzt werden.

Standard- Datentyp Datentyp

Funktion Argument Ergebnis Bemerkungen
Abs(a) Integer, Real Integer, Real Absolutwert

Pred(a) Integer, ordinal Integer, ordinal Vorginger, predecessor
Succ(a) Integer, ordinal Integer, ordinal Nachfolger, successor
Randon a) Word *) Word Zufallszahl 0..a-1

Sqr (a) Integer, Real Integer, Real Quadrat a*a

Odd(a) Integer Boolean Priifung auf ungerade
Lo(a) Word/Integer Byte Niederwertiges Byte

H (a) Word/Integer Byte Hoherwertiges Byte
Sgrt(a) Integer, Real Real (Quadrat-)Wurzel

Si n(a) Integer, Real Real Sinus,Winkel Bogenmal}
Cos(a) Integer, Real Real Cosinus

ArcTan(a) Integer, Real Real Arcustangens

Exp(a) Integer, Real Real Exponentialfunktion
Ln(a) Integer, Real Real natiirl. Logarithmus
Round(a) Real Integer ganzzahlige Rundung
Trunc(a) Real Integer ganzzahliger Teil

Chr (a) Byte Char Character, Zeichen

O d(a) Integer, ordinal Integer, ordinal Ordnungsnummer

8-8 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

*) Das Argument bei der Funktion "Random" ist optional und kann somit auch entfahlen. Die Funktion
liefert dann eine Real-Zufallszahl aus dem Bereich 0..<1; die Grenze 1 ist also nicht eingeschlossen.
Um unterschiedlichen Reihen von Zufallszahlen zu erhalten, mul3 der Zufallszahlen-Generator mit
der Standardprozedur "Randomize" initalisiert werden. Diese Initialisierung wird im Demopro-
gramm Pas08022.PAS gezeigt.

Im folgenden Demo-Programmen und auch in weiteren wird die Bildschirmausgabe
durch Kommentare im Quelltext simuliert. Der Senkrechtstrich soll den linken Bild-
schirmrand darstellen.

progr am Pas08022; { Demp: Operatoren und Funktionen
fdar | nteger-Typen }

uses
CRT,;
const
u = 4711,
v = 4712;
w = 4713;
x = 0;
y = 1
z = 2 { Al e Konstanten haben Typ (nornal en) I|nteger }
var
r: Real ;
Nor mal er | nt eger: | nteger;
Kur zer | nt eger: Shortlnt;
Byt el nt eger: Byt e;
Wor dI nt eger: Wor d;
begi n
CrsScr;

Nor mal er | nt eger := 0;

Kur zer | nt eger = 0;

Byt el nt eger = 0;

Wor dl nt eger = 0;

Random ze; { Prozedur zumlnitialisieren des Zufallszahl en-
Generators }

r :=x + (2 - y)*zl2; { Typ Real wegen Real-Division mt / }

WitelLn(' REAL: ', r); { |REAL: 1. 0000000000E+00 }

Witebln('+-*: ', u+ (1 - 2)*y);{ |[+*: 4710 } { Integer }

{ Es folgen di e speziellen |nteger-Qperatoren: }

Witeln('DIV: ', wdiv v); { |[DV: 1 }

WiteLn('MOD: ', w nod u); { |MOD: 2 }

WitelLn(' NOT: ', not x); { |NOT: -1 }

WitelLn(' NOT: ', not vy); { |NOT: -2 }

WitelLn(' NOT: ', not -2); { |NOT: 1 }

WiteLn('AND: ', y and z); { |AND: O }

WitelLn(' OR ", X oor y); { |OR 1 1

WiteLn('XOR ', X xor Yy); { [XOR 1 }

WitelLn('SHL: ', z shl 2); { |SHL: 8 } { 2bit links }

Witeln('SHR: ', z shr 1) { |SHR 1 } { 1 bit rechts }

{ Es folgt Denp der verschi edenen Integer-Typen nmt Operator "not" }

WiteLn('nINT: ', not Normalerlnteger); { |-1 } { negierte O }

WiteLn('kINT: ', not Kurzerlnteger); { |-1 } { negierte O }

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-9

WitelLn(' bl NT: not Bvtelnteaer): { 1255 } { neaierte O }
WiteLn('wi NT: ', not Wordl nteger); { 165535} { negierte O }
ReadLn;

{ Es folgen Funktionen mt Integer-Argunent und Integer-Ergebnis: }
WiteLn(' ABS: ', Abs(-u)); { |ABS: 4711 } { Auch f. Real }
WiteLn(' PRED: ', Pred(u)); { |PRED: 4710 } { Vorganger }
WitelLn(' SUCC. ', Succ(u)); { |sucC. 4712 } { Nachfol ger }
WitelLn(' RND: , Random(100*z));{ |RND: 73 } { 0..199 }
WitelLn(' SOQR , Sar(z)); { |SQx 4 }o{ QJadr at }

{ Es folgt Funkti on mt | nteger-Argunent und Bool ean- Er gebni s: }
WitelLn(' ODD: , Qdd(u)); { |ODD: TRUE } { ungerade }
WiteLn('ODD: ', Odd(u - 1)); { |ODD: FALSE }

{ Es fol gen Funkti onen m | nteger/Real - Argunent und Real - Ergebnis }
WitelLn(' SQRT: ', Sgrt(z):6:3); { |SQRT: 1.414 } { Quadr.-Wirzel}
WiteLn('SIN. ', Sin(z):6:3); { | SIN 0.909 } { Sinus, }
WitelLn('COS: ', Cos(z):6:3); { |COCs: -0.416 } { Cosinus, }
WiteLn('ATN: ', ArcTan(z):6:3);{ | ATN: 1.107 } { Arcustangens }
WiteLn(' EXP: ', Exp(y):6:3); { | EXP: 2.718 } { Exponential }
WitelLn('LN: , Ln(z):6:3); { | LN: 0.693 } { nat. Logar. }
{ Es fol gen Funkti onen mt Real - Argunent und I nteger-Ergebnis }
WitelLn(' RUND: ', Round(3.4)); { |RUND: 3 } { Rundung }
WiteLn(' RUND: ', Round(3.5)); { |RUND: 4 } { Rundung }
WitelLn(' RUND: ', Round(3.6)); { |RUND: 4 } { Rundung }
WiteLn(' RUND: ', Round(-3.4)) { |RUND: -3 } { Rundung }
WitelLn(' RUND: ', Round(-3.5)); { |RUND: -4 } { Rundung }
WitelLn(' RUND: ', Round(-3.6)); { |RUND: -4 } { Rundung }
WiteLn(' TRUNC. ', Trunc(-3.6)); { |TRUNC. -3} { ganzzahl. Teil }
{ Es folgt Funktion mit Char-Argunment und I|nteger-Ergebnis }
Witeln("ORD: ', Od('A)); { | 65 } { nach ASCII }
{ Es folgt Funktion mit Integer-Argunent und Char- Ergebnis }
WitelLn('CHR ', Chr(65)); { A } { nach ASCII }
WiteLn('CHR ', #65; { |A } { nach ASCII }
{ Es folgen die Integer-Konstanten }
WitelLn(' Maxl nt: ', Maxlnt); { | MaxI nt: 32767 }
WitelLn(' MaxLonglint: ', MaxLonglnt); { | MaxLonglnt: 2147483647 }
ReadLn;

end.

Zur Negierung von Integertypen (im Belsplel i) und Bytetypen (im Beispiel j):

i -128 | -127 | -126 312 -1 +1 | +2 +125 | +126 | +127

noti | +127 [+126 | +125 +2|+1] 0 -1 2| -3 -126 | -127 | -128
j 0 +1 | +2 +253 | +254 | +255

notj | +255 | +254 | +253 +2 +1 0

Standardprozeduren fiir Integer-Typen:

Turbo-Pascal besitzt viele Prozeduren mit Integer-Argumenten; sie werden bei den ein-
schldgigen Kapiteln behandelt.

8-10 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Wegen der besonderen Bedeutung werden an dieser Stelle nur die Standard-Prozeduren
Inc (inkrementiere, erhohe) und Dec (dekrementiere, erniedrige) vorgestellt. Beide
Prozeduren sind fiir alle ordinalen Typen zuléssig, also nicht nur fiir Integer.

Formate: | nc(x) Erhohe x um 1
I nc(x, n) Erhohexumn
Dec(x) Erniedrige x um 1

Dec(x, n) Erniedrige x umn

x ist eine Variable mit ordinalem Typ.
Der optionale Parameter 7 ist ein Integer-Ausdruck

Inc(x) ist ein etwas schnellerer Ersatz fiir die Anweisung X : = X + 1, aber erst bei
vielen Schleifendurchléufen.

8.3 Die Realtypen. Operatoren und Standardfunktionen

Realtypen werden durch eine Mantisse und einen Exponenten dargestellt. Turbo-Pascal
kennt fiinf Real-Typen, Standard-Pascal nur einen.

Real - VWért eber ei ch, Spei cher -

Typ und signifikante Stell enzahl bedar f

Real +2. 9E- 39. . +1. 7E+38, 11 bis 12 Stellen 6 Byte

Single +1. 5E- 45, . +3. 4E+38, 7 bis 8 Stellen 4 Byte

Doubl e | £5.0E-324..+1.7E+308, 15 bis 16 Stellen | 5 gﬁg

Conp +1.9E-4951. . +1. 1E+4932, 19 bis 20 Stellen 8 Byte
-9. 2E+18. . +9. 2E+18, 18 bis 19 Stellen

Allerdings sind die Real-Datentypen Single, Double, Extended und Comp nur mit dem
mathematischen Coprozessor verfiigbar. Diese haben die Bezeichnungen 18087, 180287
oder 180387, ab dem 180486 DX ist der Coprpzessor im Hauptprozessor integeriert,
somit auch beim Pentium und seinen Nachfolgern. Der Coprozessor kann aber auch
software-méfig emuliert werden, siche Compilerschalter E und N im Kap. 5.12.1 bzw.
Meniipunkt "Option/Compiler.../Gleitkommaberechnungen". Der Typ Comp ist streng
genommen kein Realtyp, muf} aber als solcher behandelt werden.

Real-Typen werden standardméBig in Gleitkomma-Schreibweise mit einer Schreibbreite
von 17 Zeichen (Datentyp Real) oder 23 Zeichen (Datentyp Double) ausgegeben, auch
wenn der Wert im Einzelfall ganzzahlig ist. Mit Hilfe einer Formatierung kdnnen Real-
Typen aber auch in Fixkomma-Schreibweise ausgegeben werden, siche Kapitel 7.1. Die
Anzahl der Nachkommastellen kann gewihlt werden. Im Gegensatz zu Integerdaten
wird bei Realdaten fiir das positive Vorzeichen ein Leerzeichen gedruckt. Als Dezimal-
trennzeichen dient der Punkt und nicht das Komma. Die Eingabe von Realtypen kann
wahlweise in Gleitkomma- oder in Fixkomma-Schreibweise erfolgen. Die fiihrende Null
vor dem Dezimalpunkt ist im Gegensatz zu einigen anderen Programmiersprachen in
Pascal bei Zuweisungen, Rechenoperationen und Ausgaben anzugeben; lediglich beim

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-11

Einlesen von der Tastatur mit Read bzw. ReadLn kann man schlampern und die
filhrende Null weglassen.

Die Zahl 47. 11 in Gleitkomma-Schreibweise (unterhalb der Abzdhlleiste):

12345678901234567890123 Nur Abzéhlleiste
4. 7110000000E+01 Ohne Coprozessor, Datentyp Real
4. 71099999999860E+0001 Mit Coprozessor, Datentyp Real
4. 71100000000000E+0001 Mit Coprozessor, Datentyp Double

Realtypen sind keine Ordinaltypen, da sie keine endliche Wertemenge umfassen. Die
Funktionen Ord, Pred, Succ sind somit nicht flir Realtypen zugelassen, ebenso nicht die
Prozeduren /nc und Dec.

Die Vergleichsoperatoren fiir Realtypen:

= gleich

> grofler

< kleiner

>= grofer oder gleich
<= kleiner oder gleich

<> ungleich

Bei Realtypen ist immer mit Fehlern zu rechnen, die z.B. bei der Differenzbildung von
groflen Zahlen betriachtlich sein konnen. Zudem koénnen gewisse Dezimalzahlen, wie
z.B. 0.1, nicht exakt im Dualsystem dargestellt werden, was auch zu Fehlern fiihren
kann. Deshalb sollte man Realtypen nie auf Gleichheit priifen, sondern auf >= oder <=.

Arithmetische Operatoren fiir Realtypen:

+ Addition

- Subtraktion und monadisches Minus
* Multiplikation

/ Division

Man beachte, dafl Pascal keinen Potenz-Operator besitzt.

Bei ganzzahligem Exponenten y (Integer-Typ) kann der Ausdruck xV z.B. mit Hilfe der
Standardfunktion Sqr (Quadratbildung) wie folgt dargestellt werden:

X2 ---> Sqr (x)

x3 ---> x* Sqr (x)

x4 ---> Sqr (Sqr (x))

X9 ---> x*Sqr (Sqr (x))

usw. Fiir hohere Potenzen sollte man aber eigene Funktionen programmieren. Fiir Poly-

nome wihle man die Darstellung nach HORNER, bei der nur Additionen und Multipli-
kationen vorkommen.

8-12 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Bei nichtganzzahligem Exponenten y (Realtyp) muB3 der Term xV mit den Standard-
funktionen "Exp" (Exponentialfunktion) und "Ln" (natiirlicher Logarithmus) wie folgt
dargestellt werden:

xy = ey In(x) = Exp(y * Ln(x))

wobei x > 0 sein muB. Auch diese Ersatzdarstellung hat ihre Tiicken im Fall x <= 0.
Eine universelle Losung, zumindest fiir Realtypen, ist in der selbstdefinierten Funktion
"Potenz" im Programm "Pas11021.PAS" im Kap. 11.02 angegeben.

Die Standardfunktionen fiir Realtypen:

Fast alle Standardfunktionen flir Realtypen sind auch fiir Integertypen zuldssig, da
Turbo-Pascal gegebenenfalls die Integertypen automatisch in Realtypen umwandelt.
Uber die Zuordnung Datentyp Argument zu Datentyp Ergebnis gibt die folgende Tabelle
Auskunft. Das Argument a kann ein beliebiger Real-Ausdruck oder (bei den meisten
Funktionen!) auch ein beliebiger Integer-Ausdruck sein. Siehe auch das frithere Demo-
Programm Pas08022.PAS.

Standard- Datentyp Datentyp

Funktion Argument Ergebnis Bemerkungen
Abs(a) Real, Integer Real, Integer Absolutwert
Random *) Real Zufallszahl 0..<1

Sqr (a) Real, Integer Real, Integer Quadrat a*a
Sqrt(a) Real, Integer Real (Quadrat-)Wurzel

Pi Real Kreiszahl 3.14159...
Sin(a) Real, Integer Real Sinus, Winkel Bogenmalf}
Cos(a) Real, Integer Real Cosinus

ArcTan(a) Real, Integer Real Arcustangens
Exp(a) Real, Integer Real Exponentialfunktion
Ln(a) Real, Integer Real natiirl. Logarithmus
Round(a) Real Integer ganzzahlige Rundung
Frac(a) Real Real Nachkommateil
Trunc(a) Real Integer ganzzahliger Teil

*) Die Funktion »Random« kann optional auch einen Integer-Ausdruck als Argument haben. Sie
liefert dann Integer-Zufallszahlen. Siehe Unterpunkt 8.2.

Um unterschiedliche Reihen von Zufallszahlen zu erhalten, mull der Zufallfszahlen-
Generator mit der Standardprozedur "Randomi ze" initialisiert werden. Diese Initiali-
sierung wird im friiheren Demo-Programm Pas08022.PAS gezeigt.

Die Funktion Ar cTan liefert den Hauptwert (Bereich: -Pi/2 ... +Pi/2)
Fiir die Umrechnung von Gradmal} in BogenmaR gilt bekanntlich:

W nkel _in_Grad = Wnkel _i n_Bogen/ Pi *180, mit Pi =1

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-13

Die mathematische Funktion Tangens ist standardmafBig nicht in Pascal enthalten. Der
Tangens des Winkels Alpha mul3 wie folgt berechnet werden:

Tan(Al pha) = Sin(Al pha) / Cos(Al pha) Alpha <> +Pi/2

Der Arcussinus ist standardméBig ebenfalls nicht in Pascal enthalten. Bei der Berech-
nung sind drei Félle zu unterscheiden:

— +Pi/2, wenn x = +1
Ar cussi nus von Xx: —+ -Pi/2, wenn x = -1

L. ArcTan(x / Sgrt(1l - Sgr(x))), wenn x <> #1
Der Arcuscosinus ist standardméBig ebenfalls nicht in Pascal enthalten. Bei der Be-
rechnung sind zwei Félle zu unterscheiden:

— +Pi, wenn x = -1

Arcuscosi nus von x: —
L 2*ArcTan(Sqgrt((1 - x)/(1 + x))), wenn x <> -1

Der dekadische Logarithmus ist ebenfalls nicht in Pascal enthalten. Fiir die Umrech-
nung gilt:

Ln(x) / Ln(10)

Fir die Kreiszahl Pi=3.14159.... steht in Turbo-Pascal die gleichnamige Stan-

dardfunktion zur Verfiigung, was in Standard-Pascal und einigen anderen Program-
miersprachen nicht der Fall ist. Mit einer Wertzuweisung an eine "Variable" Pi mit:

Pi :=4 * ArcTan(1)
kann man sich aber leicht behelfen. In Pascal besteht natiirlich auch die Mdglichkeit,

eine Konstante Pi mit dem Zahlenwert 3.14159... zu deklarieren. Wegen Fehlermog-
lichkeit vermeiden!

Zur Schreibweise von mathematischen Ausdriicken:

Bei der mathematischen Schreibweise wird das Multiplikationszeichen haufig nicht
angeschrieben. In Pascal muf} das aber unbedingt geschehen. In den Beispielen seien x,
y und z Variablen.

Mathematisch |In Pascal (und &hnl. Sprachen)
x+yz X + y*z

Y
YT X - ylz
Xy
S x*yl z oder X/ z*y
Xty

z (x +y)lz

8-14 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

xlylz oder X/ (y*z)

Das folgende Demo-Programm zeigt die Wirkung des mathematischen Coprozessors bei
Gleitkommaberechnungen in Abhédngigkeit der Compilerschalter N und E. Fiir die
Demo mul} aber ein Vorgriff auf die for-Schleife gemacht werden:

{ SN+, E+} { 4 Konbinationen "N-,E-", "N, E+", }
{ "N+, E-t,OUNE B
program Pas08031; { "Pas08031. PAS', Deno Coprozessor }
{ 37300398, Dr. K Haller }
uses
CRT, DCS; { Unit DOS wegen "GetTinme" }
const
i Max = 100000;
var
X, y, T: Double; { Hyer steht fallweise "Real" oder "Double" }
i Longl nt ;
hh, mm
ss, ss100: Word;
begi n
CrsScr;
Get Ti me(hh, mm ss, ss100);
T := hh*3600.0 + MM 60 + ss + ss100/100; { "3600.0" !!! }
for i :=1to iMx do
begi n
X := Sin(47.11);
y = Exp(47.11);
end;

Get Ti me(hh, mm ss, ss100);
T := hh*3600.0 + nm¥60 + ss + ss100/100 - T;

WitelLn(' Die Ausflihrungszeit: ', T:8:4);
ReadlLn;
*
| Compiler- | Zeit | Zeit | EXE-File | EXE-File |
| schalter | Real-Typ | Double-Typ | Real -Typ | Doubl e-Typ
[b ool ool sl el sl
| {SN-,E-} | 3.90 s | nicht nbgl. | 12090 Byte | nicht nbgl.
| {SN-,E+} | 3.90 s | nicht nogl. | 12090 Byte | nicht nobgl.
| {SN+,E-} | 0.99 s | 0.99 s | 12042 Byte | 11946 Byte
| {$N+, E+} | 0.99 s | 0.93 s | 21802 Byte | 21706 Byte

Di e Ausfihrungszeiten und EXE-Datei groRen gelten fir ein System
mt Prozessor Pentium 166 MHz und den hi er nicht aufgefihrten
wei teren Conpilerschaltern. Die Daten sind nur far diese Test-
umgebung gil ti g und kdénnen nicht einfach verall genei nert werden.

Di e Conpi | erschal ter-Konbi nati on {$N+, E+} ist auf allen Systenen

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-15

| auf f ahi g, egal ob Coprozessor vorhanden ist oder nicht.

Di e Conpil erschal ter-Konbi nati on {$N+, E-} ist nur auf Systenen
mt Coprozessoren | auffahig.

*)

end.

8.4 Der Typ Char. Operatoren und Standardfunktionen

Der Datentyp Char (Character, Zeichen) umfaflt alle vom Computer darstellbaren
Zeichen, also nicht nur Buchstaben, sondern auch Ziffern, Satz- und Sonderzeichen,
Graphikzeichen und Steuerzeichen. Letztere konnen aber nicht sichtbar dargestellt wer-
den, sondern sind fiir die Steuerung von Computerfunktionen vorgesehen. Jedes Zeichen
wird im Speicher mit 1 Byte = 8 bit dargestellt. Damit ergeben sich 2° = 256
verschiedene Bit-Muster, die den Zeichen mit den Ordnungsnummern von 0 bis 255
zugeordnet werden. Die Ordnungsnummern sind das Dezimal-Aquivalent der Bit-
Muster. Die Zuordnung (Codierung) ist im Prinzip willkiirlich, sinnvollerweise wird
man aber die Codierung so wihlen, dall die Buchstaben dem gewohnlichen Alphabet
entsprechend aufeinanderfolgen. Bei Ziffern wird man die gleiche Vorgehensweise
wéhlen. Bei Mikrocomputern ist fast ausschlieBlich die Codierung nach ASCII ge-
brauchlich (ASCII: American Standard Code for Information Interchange); allerdings
nicht mehr in der urspriinglichen 7-Bit-Form, sondern in der erweiterten 8-Bit-Form
(Zeichen 128 bis 255), fiir die es noch keine Norm, dafiir aber einen mittlerweile weit
verbreiteten "Industrie-Standard" gibt, den sogenannten "IBM-Zeichensatz fiir Mikro-
computer". Nach ASCII beginnen die GroBbuchstaben mit der Codenummer 65
(Zeichen A), die Kleinbuchstaben haben um 32 verschobene Codenummern, beginnen
also bei 97 (Zeichen a). Die Ziffernzeichen beginnen mit der "0" bei 48, in hex 30
(leicht merkar), das Leerzeichen hat die Codenummer 32. Die Zeichen fiir die Code-
nummern >= 128 sind nationale Sonderzeichen, Graphikzeichen und mathematische
Zeichen, z.B. nach dem "IBM-Zeichensatz". Weitere Details siche Kapitel 13. Den
IBM-Zeichensatz gibt es zudem in verschiedenen nationalen Ausgestaltungen, Im
Betriebssystem MS-DOS Codepages genannt. Fiir Deutschland empfiehlt sich die Code-
page 437 (auf dem Arbeitsblatt dargestellt) oder die Codepage 850.

Hinweis: Das Windows- und das Apple-Betriebsssytem arbeiten mit dem Ansi-Zeichen-
satz, der im Codebereich 0 bis 127 identisch ist mit dem Ascii-Zeichensatz, sich aber im
Codebereich >= 128 ginzlich vom IBM-Zeichensatz unterscheidet.

Operatoren fiir Char-Typen:

Char-Typen konnen mit Read bzw. ReadLn eingelesen und mit Write bzw. WriteLn
ausgegeben werden. Die Vergleichsoperatoren (= > < >= <= <>)undder
Mengenoperator in sind auch flir Char-Typen definiert, ebenso die Wertezuweisung. Es
gibt aber keine Operatoren fiir die Manipulation von Char-Typen.

8-16 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Schreibweise der Konstanten vom Typ Char:

Konstanten vom Typ Char sind in Hochkommas zu setzen. Wenn das Hochkomma
selbst als Zeichen gebraucht wird, dann muf3 es doppelt in Hochkommas geschrieben
werden. In Turbo-Pascal kdnnen Char-Konstanten auch durch die Codenummer des Zei-
chens und dem vorausgestellten Nummernzeichen # dargestellt werden.

Beispiele: A 'a' 4 vy ro .
In Turbo-Pascal auch: #65 #97 #55 #A43 #32 #39

Das vorletzte Zeichen ist ein Blank (Space, Leerzeichen), das letzte ein Hochkomma.
Standardfunktionen fiir Char-Typen:

« Die Standardfunktion Chr(a) liefert das Zeichen mit der Ordungsnummer a, wobei
a einen Byte-Ausdruck darstellt. In Turbo-Pascal statt Chr(a) auch zuléssig, wenn
a eine Byte-Konstante ist: #a

Beispiele:

Wite(Chr(65)):
Wit e(#66);

Wite(Chr(97)):;
Wite(Chr(98)):
Wite(Chr(48)):
Wite(Chr(49)):
Wite(Chr(32));
Wite(Chr(39)):

RrOoOoTo® W>

{ Blank, Space, Leerzeichen }
{ Hochkoma }

I }
I }
I }
I }
I }
I }
I }
| }

Lt Yt Yate Yate W W W WY

« Die Standardfunktion Ord(Ch) ist die Umkehrfunktion zu Chr(a). Ch ist eine
Konstante oder Variable vom Datentyp Char. Die Funktion Ord liefert bei Char-
Typen die Ordnungsnummer des Zeichens, also die Code-Nummer nach ASCII,
bzw. nach dem IBM-Zeichensatz. Das Ergebnis hat den Datentyp Byte und liegt
somit im Bereich von 0 bis 255.

Beispiele:
Wite(Ord("
Wite(Ord("
Wite(Ord("
Wite(Ord("
Wite(Ord("
Wite(Ord("
Wite(Od(' { Blank, Space, Leerzeichen }
Wite(Od('""")); { Hochkoma }

« Die Standardfunktionen Pred(Ch) (Vorgédnger) und Succ(Ch) (Nachfolger) sind
auch fiir Char-Typen definiert. Ist Ch eine Konstante oder Variable vom Datentyp
Char, dann hat das Ergebnis ebenfalls den Datentyp Char. Man beachte, dal der
Nachfolger des letzten Wertes und der Vorgédnger des ersten Wertes nicht definiert
sind.

.Reoomx
= e N e e

N N N e N e e
NO©OoOo~NO O

}
}
}
}
}
}
}
}

P Yarn Y Yae Late Tatn e Tade)
%w#b@@@@

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-17

Beispiele:

Wite(Pred('B)); { IA }
Wite(Pred('b")); { |a }
Wite(Pred('1')); { |0 }
Wite(Succ('A)); {|IB }
Wite(Succ('a')); { |b }
Wite(Succ('0')); {11 }

« Die Standardfunktion ReadKey liest ein Zeichen von der Tastatur (genauer: aus
dem Tastaturpuffer) ohne das Zeichen auf dem Bildschirm anzuzeigen. Diese
Funktion hat kein Argument. Sie bendtigt die Unit CRT. Weitere Details siche Kapi-
tel 7 "Ein- und Ausgaben".

« Die Standardfunktionen UpCase(Ch) (Upper Case) liefert den Grofbuchstaben des
Zeichens. Ch ist eine Konstante oder eine Variable vom Typ Char. Die Funktion
wirkt nur fiir den Klelnbuchstabenberelch 'a..'z". Alle anderen Zeichen werden nicht
verandert, somit leider auch nicht 'd@', '6' und 'i'. Fiir die Umwandlung in Klein-
buchstaben gibt es in Turbo-Pascal kelne Standardfunktion.

Beispiele:

Wite(UpCase('a'));
Wite(UpCase('b'));
Wite(UpCase('A));
Wite(UpCase('1'));
Wite(UpCase('&d'));
Wite(UpCase('A));
Wite(UpCase('+'));

late Yot Yate Vet Vo W W

+ >0 >W >
v e e M e e

Demo-Programm:

pr ogr am Pas08041, { Denpb: Typ Char, Ja-/Nei n-Ei ngabe }
uses

CRT; { Unit CRT wegen ReadKey }
var
Antwort: Char;
begi n
ClrScr;
r epeat
Wite(' Wederholung (j/n): ");
r epeat
Antwort := Chr(Ord('a') - Od('A) + Od(UpCase(ReadKey)));
{ Bleibt in der Schleife, bis 'j' oder 'J' oder 'n' oder 'N

von der Tastatur eingegeben wird. Die Zeichen werden in
Kl ei nbuchst aben ungewandel t.

Der Teil-Ausdruck "Ord('a') - Od('"A)" ergibt beim
ASCl | - Code den Wert 32.

}
until Antwort in ['j', 'n'];
{ oder: until (Antwort = "'j') or (Antwort ='n'); }
Witel n(Antwort);
until Antwort = 'n';

end.

8-18 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

8.5 Der Typ Boolean. Operatoren und Standardfunktionen

Boolesche Variablen und Ausdriicke konnen nur die vordefinierten Werte "True" oder
"False" annehmen.

Boolesche Ausdriicke werden vorrangig als Bedingung in if-Anweisungen, und als
Bedingung in den Schleifenanweisungen while und until verwendet.

Die Ergebnisse von Boolean-Ausdriicken konnen auBBerdem mit dem Zuweisungsoper-
ator := an boolesche Variablen zugewiesen werden.

Eine Eingabe von Boolean-Typen (z.B. mit Read) ist nicht mdglich, wohl aber eine
Ausgabe mit Write, wobei die Zeichenfolge "TRUE" bzw. "FALSE" ausgegeben wird.

Man unterscheidet einfache und zusammengesetzte boolesche Ausdriicke. Einfache
Ausdriicke enthalten nur Relationen. Zusammengesetzte Ausdriicke kénnen auller
Relationen auch die booleschen Operatoren not, and, or und xor enthalten.

Beispiele fiir einfache boolesche Ausdriicke mit Verwendung von if-Anweisungen
und bei Zuweisungen:

program....;
var
Not e: | nt eger;
Best anden: Bool ean;
Zei chen: Char ;
begi n
Not e R
Zeichen :=;

if Note =1 then;
e

L— Bool escher Ausdruck, nur True oder Fal se,
wenn True, dann wird fol gende Anwei sung ausgef thrt }

if Zeichen <> 'J' then;

Bestanden := (Note < 5);

{
L— Bool escher Ausdruck, nur True oder Fal se.
Zuwei sung an ei ne bool sche Vari abl e }
Wit e(Best anden) ; { | TRUE oder: |FALSE }
if Bestanden then; { N cht schdon und ineffizient: }
{ if Bestanden = True then }

end.

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-19

Operatoren fiir Boolean-Typen:

Die Boolean-Operatoren sind mit:

* not logische Negation

* and logisches UND

e or logisches ODER

* XoOr logisches Exklusiv-ODER (ausschlieBendes ODER, Antivalenz)

eine Untermenge der logischen Operatoren fiir Integer-Typen. Die Wirkung der boole-
schen Operatoren kann anschaulich mit Wahrheitstabellen dargestellt werden:

X Y not X Xand Y| X or Y X xor Y
Fal se False | True Fal se Fal se Fal se
Fal se True True Fal se True Tr ue
True Fal se | Fal se Fal se True Tr ue
True True Fal se True True Fal se

Beispiel fiir einen zusammengesetzten booleschen Ausdruck mit Zuweisung an eine
boolesche Variable mit dem Bezeichner "Test":

Test := (x = 3) and not (Zeichen ="'J") or (y < 4711);

Hat x den Wert 7, y den Wert 2 und Zeichen den Wert 'N', dann erhilt die boolesche
Variable Test den Wert True.

Die Prioritit aller Operatoren wird im Unterpunkt 8.6 erklirt. Es wurde aber im
Beispiel vorweggenommen, da3 unter den logischen Operatoren not die hochste Priori-
tit hat, in der Stufe 2 befindet sich das and, wogegen or und xor in der 3. Stufe sind.
Die relationalen Operatoren haben die geringste Prioritdt. Durch Klammerung mit run-
den Klammern kann aber jede gewiinschte Abarbeitungsreihenfolge erzwungen werden.

Zur Umformung von booleschen Ausdriicken:

not (not x) ist gleichwertig mit: x

not (x and y) ist gleichwertig mit: (not x) or (not y)
not (x ory) ist gleichwertig mit: (not x) and (not y)
not (x =vy) ist gleichwertig mit: x <>y

Zur Auswertung von zusammengesetzten booleschen Ausdriicken:
Ein zusammengesetzter boolescher Ausdruck, der z.B. die Form hat: bl and b2

wird standardméBig von Turbo-Pascal nicht vollstindig ausgewertet, wenn die Auswer-
tung von b/ den Wert False ergibt, da ja damit bereits das Gesamtergebnis False
feststeht.

Ein dhnlicher Fall liegt vor bei: blorb2

8-20 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Wenn hier b/ den Wert True hat, dann wird 52 nicht mehr ausgewertet, da das Gesamt-
ergebnis mit True ebenfalls bereits feststeht, unabhéngig von 52.

Dieses effiziente Kurzschlufiverfahren kann aber in Sonderfillen zu Problemen fiihren,
wenn z.B. b2 Aufrufe von selbstdefinierten Funktionen enthélt und in diesen Funktionen
Variablen manipuliert werden (bzw. in diesem Falle nicht), auf die an anderer Stelle des
Programms zugegriffen wird. Die Variablen kdnnen dann undefiniert sein.

In Turbo-Pascal kann man eine vollstindige Auswertung eines zusammengesetzten
booleschen Ausdruckes erzwingen. Dazu dient der Compilerbefehl {$B}. Dieser ist
standardméaBig auf {$B-} gesetzt (KurzschluB3verfahren). Mit {$B+} wird eine vollstin-
dige Auswertung eines booleschen Ausdruck erzwungen. Diese Compilerbefehle
werden in das Programm geschrieben werden und bei Bedarf lokal. Eine entsprechende
Einstellung ist auch iiber den Meniipunkt "Option/Compiler.../Boolesche Ausdriicke
vollstindig" in der IDE des Turbo-Pascal-Systems moglich, siehe Kap. 5.12.1.

Standardfunktionen fiir Boolean-Typen:

Da der Typ Boolean ordinal ist, kdnnen auf ihn die Standardfunktionen

+ Ord (Ordnungsnummer)
+ Pred (Predecessor, Vorginger) und
« Succ (Successor, Nachfolger)

angesetzt werden, wenn auch ohne groflen praktischen Nutzen. Die Ordnungsnummer
von "False" ist 0, die von "True" ist 1. Somit gilt:

+ True > False

+ Succ(False) =—> True

+ Pred(True) —> False

Weitere Standardfunktionen mit Boolean-Ergebnis:

+ Odd(a) Priifung auf ungerade. Liefert True, wenn die Auswertung des
Integer-Ausdrucks a eine ungerade Zahl ergibt, sonst False.
Beispiel: Odd(4711) liefert True.

+ KeyPressed Liefert True, wenn der Tastaturpuffer noch Zeichen enthilt, sonst
False. Diese Funktion hat kein Argument und benétigt die Unit
CRT.

« EoLn(f) End of Line. Liefert 7True, wenn der Positionszeiger innerhalb der

Datei f auf das Zeilenende zeigt oder das Dateiende erreicht ist,
sonst False.

« SeekEoLn(f) Liefert True, wenn sich zwischen dem Positionszeiger und dem
nichsten Zeilenende der Datei f noch lesbare Zeichen befinden,
sonst False.

« EoF(f) End of File. Liefert 7rue, wenn das Ende der Datei f erreicht ist
oder die Datei keine Daten enthélt oder wenn die Datei eine

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-21
Gerite-Datei ist, von der keine Daten gelesen werden konnen (z.B.
Drucker), sonst False.

« SeekEof(f) Liefert True, wenn sich zwischen dem Positionszeiger und dem

Ende der Datei fnoch lesbare Zeichen befinden, sonst False.

Demo-Programm:

program Pas08051; { Deno: Typ Bool ean, Prioritat der Operatoren }

uses
CRT;

var
X, Y,
Not e: | nt eger;
Zei chen: Char;
Test 1,
Test 2,
Best anden: Bool ean;

begin
CrsScr;
X = 7;
y =2
Not e = 2;
Zei chen ='N;
Bestanden := (Note < 5);
Test 1 = (x = 3) and not (Zeichen ="'J") or (y < 4711);
Test 2 = (x divy >3) and ((Zeichen <> '"J') xor (x >= 4711));
Witeln(Testl); { | TRUE }
Witel n(not Testl); { | FALSE }
Witel n(Test?2); { | FALSE }
Wi tel n(Bestanden xor Test2); { | TRUE }
Witel n(not True); { | FALSE }
Witel n(not False); { | TRUE }
Witeln(x in [3..5]); { | FALSE }
ReadLn;

end.

8.6 Die Prioritat der Operatoren

Die Prioritdt der arithmetischen und logischen Operatoren wird in der folgenden Liste
gezeigt. Eine andere Prioritdtsfolge kann durch Klammerung mit runden Klammern
erzwungen werden.

not @ 1. Stufe (unar, hochste Stufe)
[* div npbd and shl shr 2. Stufe (nmultiplizierend)

+ - or xor 3. Stufe (addierend)

= < > <> <= >= in 4. Stufe (relational)

8-22 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Das Symbol @ ist der Adress-Operator. Mit ihm kann die Adresse einer Variablen be-
stimmt werden und einem Zeiger zugeordnet werden. Siehe Kapitel {iber dynamische
Datentypen.

Die Symbole +, - und * dienen auch als Mengen-Operatoren; das Symbol + zudem
auch noch als String-Operator. Siehe die einschlagigen Kapitel.

8.7 Die selbstdefinierten Typen

Pascal hat gegeniiber den meisten anderen Programmiersprachen den Vorzug, daf} ei-
gene Datentypen definiert werden konnen. Die Deklaration eigener Typen kann eben-
falls wieder direkt bei der Variablendeklaration oder indirekt mit "type" erfolgen. Bei
eigenen Datentypen sollte man die indirekte Dekleration vorziehen. Sie ist sogar not-
wendig, wenn Variablen mit selbstdefinierten Typen als Parameter an Funktionen oder
Prozeduren iibergeben werden (Vorgriff), wenn auch diese Notwendigkeit ab Turbo-
Pascal 7.0 bei Verwendung der Offenen Arrays bei Array- und Stringiibergabe an
Routinen nicht mehr besteht (Vorgriff).

Die selbstdefinierten Datentypen unterteilen sich in
1. Aufzihlungstypen (enumerated types) und
2. Teilbereichstypen (Ausschnittstyp, subrange types).

Beide Datentypen sind ordinal, d.h. sie besitzen endliche und geordnete Werte. Die
Standardfunktionen Ord (Ordnungsnummer), Pred (Predecessor, Vorgédnger) und Succ
(Successor, Nachfolger) sind somit auch bei selbstdefinierten Typen anwendbar.

Dariiber hinaus sind mit "type" auch Umbennenungen von Standardtypen mdglich.
Beispiel:

type
Gad = Real;
var
Tenperatur: G ad,

1. Der Aufzihlungstyp:

Die moglichen Werte dieses Typs werden mit dem Komma als Trennzeichen in runde
Klammern geschrieben. Die Werte konnen nur durch Bezeichner dargestellt werden.
Die Schreibweise der Bezeichner beziiglich GroB3- und Kleinbuchstaben wird, wie bei
allen Bezeichnern, nicht beachtet und ist somit beliebig.

Beispiel:

type
Grundfarben = (Cyan, Magenta, Yellow, Bl ack);

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-23

var
Far be: G undf ar ben;

begin
Far be : = Magent a;

i f (Farbe = Magenta)
then Wite('Die Farbe ist Mgenta.');

en;j:
Wichtig: Aufziahlungstypen konnen weder eingegeben noch ausgegeben werden.

Im vorstehenden Beispiel wiirden die Anweisungen "Read(Farbe)" oder "Write(Farbe)"
die Fehlmeldung 64 "Cannot Read or Write variables of this type" zur Folge haben. Im
Dialogfenster "Auswerten und Andern" des integrierten Debuggers konnen an den
Haltepunkten mit Strg+F4 auch Aufzéhlungstypen abgefragt und gegebenenfall auch
gedndert werden.

Zuweisungen und Vergleichsoperatoren (=, >, <, >=, <=, <>) sind fiir Aufzdhlungstypen
zuldssig. Die Ordnungsnummer der Werte ergibt sich aus der Reihenfolge der
Auflistung. Der erste Wert hat die Ordungsnummer 0, der zweite die Ordnungsnummer
1 usw. Somit ist im Beispiel "Magenta" groBBer als "Cyan" und kleiner als "Yellow". Die
Ordungsnummer kann mit der Standardfunktion "Ord" ermittelt werden. Im vorstehen-
den Beispiel wiirde "Ord(Farbe)" bei "Magenta" den Wert 1 liefern.

Die Standardfunktionen »Pred« (Predecessor, Vorgianger) und »Succ« (Succesor, Nach-
folger) sind ebenfalls fiir Aufzdhlungstypen zuldssig. Zu beachten ist aber, da3 der
Nachfolger des letzten Wertes und der Vorgédnger des ersten Wertes nicht definiert sind

2. Der Teilbereichstyp:

Teilbereichstypen sind ein Riickgriff auf einen ordinalen Grundtyp. Der Grundtyp kann
ein vordefinierter Typ sein (alle Integer-Typen, Char und Boolean) oder ein bereits
deklarierter Aufzahlungstyp. Der Wertebereich des Teilbereichstypen ist gegeniiber dem
Grundtyp eingeschrinkt und kann somit an die Aufgabenstellung angepalit werden.

Real-Typen sind somit nicht fiir Teilbereichstypen zuldssig.

Die Definition erfolgt durch Nennung je einer Konstanten fiir die Untergrenze und fiir
die Obergrenze des Teilbereiches. Beide Werte sind mit zwei aufeinanderfolgenden
Punkten zu trennen.

Beispiel: "Wochentage" ist ein Aufzéhlungstyp, die anderen sind Teilbereichstypen. "Arbeitstage" ist
ein Teilbereichstyp des vorher deklarierten Aufzédhlungstyp "Wochentage".

type
Kont oNunmer nBer ei ch = 100000. . 999999;

8-24 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Kont oBer ei ch
Gr ossbuchst aben

- 6000. . 9000;
AL 2

Wochent age (Mon, Die, Mt, Don, Fre, Sam Son);
Ar bei t st age Mon. . Fre; { Grundtyp ist der vorher
dekl ari erte Aufzahl ungstyp »Wchent age«}

var

Kont oNumer : Kont oNumer nBer ei ch;

Kont o: Kont oBer ei ch;

Zei chen: G ossbuchst aben;

Tag: Ar bei t st age;

Die Eigenschaften des Teilbereichstyps sind beziiglich Operatoren, Funktionen und
Eingabe und Ausgabe identisch mit denen des Grundtyps. Zum Beispiel konnen Integer
und Character ein- und ausgegeben werden. Boolean kdnnen nur ausgegeben werden,;
bei Aufzidhlungstypen ist weder Eingabe noch Ausgabe moglich.

Bei Turbo-Pascal wird standardméBig nicht auf Einhaltung der Grenzen gepriift. Trotz
Deklaration von Teilbereichstypen konnen z.B. Werte eingegeben werden, die auBBerhalb
der Grenzen liegen. Um dies zu verhindern, mufl der Compiler mit dem Compilerschal-
ter {$R+} angewiesen werden, zusitzlichen Priifcode zu erzeugen, was auch in der IDE
mit dem Meniipunkt "Option/Compiler.../Bereichsiiberpriifung" global geschehen
kann. In diesem Fall gilt die Priifung fiir das gesamte Programm; die Ausfiihrungs-
geschwindigkeit kann abfallen. Bei einer fehlerhaften Eingabe bricht das Programm mit
der Fehlermeldung "Runtime error 201 at" (Range check error) ab, was mit Sicher-
heit besser ist als fehlerhaftes weiteres Ausfiihren. Da der Compilerschalter R lokal
wirkt, kann er auch wieder abgeschaltet werden und zwar mit {$R-}. Compilerschalter
sind im Kapitel 5.12.1 beschrieben.

Demo-Programm:

program Pas08071; { Deno: Aufzahl ungstypen und Teil berei chstypen.
Vorgriff auf "repeat/until", "case ... of"
und "if/then/el se"}
uses
CRT; { Unit CRT wegen CrScr und GotoXY }

type { I'ndirekte Deklaration von Aufzahlungs- und Teil bereichs-
typen mt "type" }

Wichentage = (Mon, Die, Mt, Don, Fre, Sam Son); { Aufz&hl ungstyp}
Arbeitstage = Mon..Fre; { Teil bereichstyp eines vorher deklarierten
Auf zahl ungst ypen }
Monat stage = 1..31; { Teil bereichstyp }
Not en = (Fuenf, Vier, Drei, Zwei, Eins); { Aufzahl ungstyp }
var

Zahl : 1..5; { direkte Dekl aration eines Teil berei chstypen }
Fr eude: (klein, maessig, mttel praechtig, gross);

{ direkte Dekl aration ei nes Aufzahl ungstypen }
Tag: Ar bei t st age;
Monat st ag: Mbonat st age;
Not e: Not en;

Best anden: Bool ean;

begi n

Dr. K. Haller Turbo-Pascal

Kap. 8: Datentypen

8-25

ClrScr;
r epeat
Got oXY(5, 2);

Wite('Ei ngabe einer Zahl fir

Readl n(zahl) ;
until Zahl in [1.
case Zahl of

1: begin Note :

2: begin Note :=

3. begin Note : =

4: begin Note :=

5. begin Note : =
end;

if Note > Vier

t hen Best anden :
el se Best anden :

- 5]

Ei ns; Freude :

{ Vorgri
{ Vorgri

Zwei ; Freude :
Drei; Freude :
Vier; Freude :
Fuenf; Freude :

L 1 I 1

Note (1 bis 5): ");

Sel ektion mit
gross;

gr oss;

m ttel praechti g;
maessi g;

kl ei n;

Mengenoperator "in"}

"case ...

end;
end;
end;
end;
end;

{ Man beachte di e Rei henfolge in der
Dekl arati on des Typen "Noten"}

True
Fal se;

if Freude >= nittel praechtig
then Witeln('Hurra !'!")
else Witeln("Na ja ..");

13;
Fre;

Monat st ag
Tag

if (Freude <= nmmessig) and (Mnatstag = 13) and (Tag
then Witeln(' Man ist ja nicht abergl aubisch,

Readln;
end.

= Fre)
aber !

)

of "}

30200302 Dr. K. Haller

	30200302 Dr. K. Haller

