
Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-1

8 Datentypen, Operatoren und Standardroutinen.
Überblick. Die Typen Integer, Real, Char und Boolean.
Priorität. Die selbstdefinierten Typen.

Gliederung

8.1 Die Datentypen in Turbo-Pascal: Ein Überblick................................2

8.2 Die Integer-Typen. Operatoren und Standardroutinen.......................5

8.3 Die Real-Typen. Operatoren und Standardroutinen.........................10

8.4 Der Typ Char. Operatoren und Standardroutinen14

8.5 Der Typ Boolean. Operatoren und Standardroutinen.......................17

8.6 Priorität der Operatoren ..21

8.7 Selbstdefinierte Datentypen..21

8-2 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Vorbemerkungen:

Routine ist der Oberbegriff für Prozeduren und Funktionen. Routinen führen gewisse
Aktivitäten aus. Eine Funktion liefert im Gegensatz zur Prozedur an die aufrufende
Stelle einen Wert zurück, z.B. den Logarithmus einer Zahl. Der Wert kann beliebig
verwendet werden, z.B. auch in einem Ausdruck. Man unterscheidet zwischen
Standardroutinen (eingebaute Routinen), die Pascal in vordefinierter Form zur Verfü-
gung stellt und selbsterstellten Routinen. Letztere werden in einem eigenen Kapitel
behandelt. Prozeduren werden in Pascal wie Funktionen nur mit ihrem Namen auf-
gerufen.

Dieses Kapitel enthält viele Details, die nicht alle sofort für die Behandlung der Folge-
kapitel gebraucht werden. Bei Bedarf wird in diesem Kapitel "nachgearbeitet".

8.1 Die Datentypen in Turbo-Pascal. Ein Überblick

 ┌─ Integertypen ─┬─ Integer
 │ ├─ ShortInt
 │ ├─ LongInt
 │ ├─ Byte
 ┌─ Ordinaltypen ──┤ └─ Word
 │ │
 ┌─ unstrukturierte Typen ─┤ ├────────────────── Char
 │ │ │
 │ │ └────────────────── Boolean
 │ │
 │ └─ Realtypen ──────────────────────┬─ Real
 │ *) Diese Typen nur in Ver- ├─ Single *)
 │ bindung mit mathematischem ├─ Double *)
──┤ Co-Prozessor oder dessen ├─ Extended *)
 │ Emulation └─ Comp *)
 │
 ├─ strukturierte Typen ──────────────────────────────────────┬─ string
 │ │
 │ ├─ array
 │ │
 │ ├─ record
 │ │
 │ ├─ set
 │ │
 │ └─ file
 └─ dynamische Typen (Zeiger)

Datentypen können in Pascal direkt in der Variablen-Deklaration oder indirekt mit type
deklariert werden.

Beispiel für direkte Deklaration (vermeiden):
....
var
 Temperatur: Real;
 KundenNummer: Word;
....

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-3

Beispiel für indirekte Deklaration (bevorzugen):
....
type
 Grad = Real;
 PositiverInteger = Word;

var
 Temperatur: Grad;
 KundenNummer: PositiverInteger;
....

Die indirekte Deklaration mit type erhöht u.U. die Lesbarkeit des Programms und ist
vor allem dann angebracht, wenn der gleiche Typ für verschiedene Variablen gebraucht
wird und vor allem dann, wenn bestimmte Datentypen an Routinen übergeben werden
müssen, wenn man nicht von den Offenen Arrays Bebrauch macht, die ab Turbo Pascal
7.0 (siehe Kap. 11) zur Array- und String-Übergabe verwendet werden können.

Turbo-Pascal kennt mehrere Integer- und Real-Datentypen, die Datentypen Char, Bool-
ean, string, array, record, set und file, sowie den dynamischen Datentyp (Zeigertyp).
Hinzu kommen noch die selbstdefinierten Datentypen (Aufzählungstypen und Teil-
bereichstypen).

Alle Integer- und Real-Datentypen, die Datentypen Char und Boolean zählen zu den
unstrukturierten (einfachen) Datentypen. Die Datentypen string, array, record, set und
file sind strukturierte Datentypen. Unstrukturiert heißt, daß die Werte nicht weiter
unterteilt werden können. Beim strukturierten Datentyp liegt dagegen eine Ansammlung
von Werten vor.

Alle Integer-Typen, die Datentypen Char, Boolean und die selbstdefinierten Datentypen
(Aufzählungstypen und Teilbereichstypen) sind ordinale Datentypen. Sie besitzen
endliche und nach einem Ordnungsschema geordnete Werte. Die Real-Typen sind keine
Ordinal-Typen! Auf ordinale Typen sind die Standardfunktionen Ord (Ordnungsnum-
mer), Pred (Predecessor, Vorgänger) und Succ (Successor, Nachfolger) anwendbar.
Ordinale Typen können weiter in einer case-Selektion und als Laufvariable in einer for-
Anweisung verwendet werden. Außerdem können nur ordinale Typen beim strukturier-
ten Datentyp array als Index verwendet werden.

Turbo-Pascal kennt fünf Integer-Typen (Ganzzahl-Typen) und zwar:
• Integer
• ShortInt
• LongInt
• Byte
• Word

Turbo-Pascal kennt fünf Real-Typen (Komma-Typen) und zwar:
• Real
• Single nur mit Coprozessor oder Emulation

8-4 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

• Double nur mit Coprozessor oder Emulation
• Extended nur mit Coprozessor oder Emulation
• Comp nur mit Coprozessor oder Emulation

Standard-Pascal kennt dagegen nur je einen Integer- und Real-Typ.

Wenn nichts anders ausgeführt ist, dann ist mit "Integer-Typ" die Gesamtheit aller
Turbo-Pascal-Integer-Typen gemeint. Entsprechendes gilt dann auch für "Real-Typ".

• Zum Datentypen Integer: Behandlung in den Unterpunkten 8.2
• Zum Datentyp Real: Behandlung im Unterpunkt 8.3
• Zum Datentyp Char: Behandlung im Unterpunkt 8.4
• Zum Datentyp Boolean: Behandlung im Unterpunkt 8.5

•••• Die strukturierten Datentypen:

- string Zeichenkette. In Standard-Pascal gibt es den Datentyp string nicht. Dort
ist eine Zeichenkette als array of Char zu betrachten. In Turbo-Pascal ist
die Länge der Zeichenkette auf maximal 255 Zeichen begrenzt. Wenn
keine Stringlänge deklariert ist, wird der Maximalwert angenommen. Um
Speicherplatz zu sparen, sollte man die benötigte String-Länge
deklarieren. Ab Turbo-Pascal 7.0 können mit der Unit Strings nullterminierte Strings
mit einer Länge von bis zu 216 = 65536 Zeichen verwendet werden. In Delphi ist die
Stringlänge nur noch durch die Speicherkapazität gegrenzt.

Beispiel: s: string[25]

deklariert einen String s mit maximal 25 Zeichen Länge. Pro Zeichen
wird ein Byte benötigt. Hinzu (genauer davor) kommt ein Byte, in dem
die aktuelle Länge des Strings gespeichert ist, das Längenbyte. Strings
werden im Kapitel 14 ausführlicher behandelt.

- array Reihung gleicher Datentypen. Behandlung in einem Kapitel 12.

- record Verbunde, Reihung verschiedener Datentypen. Behandlung im Kapitel
16.

- set Mengen. Behandlung im Kapitel 15.

- file Dateien. Behandlung im Kapitel 18.

•••• Zu den dynamischen Datentypen:

Zeigertyp (Pointer). Ein Zeiger hat keinen Wert, sondern enthält die Speicheradresse
eines Wertes. Zeiger werden im Behandlung im Kapitel 19.

•••• Zu den selbstdefinierten Typen

Selbstdefinierte Typen (Aufzählungstypen und Teilbereichstypen) werden im Unter-
punkt 8.7 behandelt.

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-5

8.2 Integer-Typen. Operatoren und Standardroutinen

Integer-Typ Wertebereich Speicherbedarf
Integer
ShortInt
LongInt
Byte
Word

-32768..+32767 = -215..+215 - 1
-128..+127 = -27 ..+27 - 1
-2147483648..+2147483647 = -231..+231 - 1
0..255 = 0..28 - 1
0..65535 = 0..216 - 1

2 Byte
1 Byte
4 Byte
1 Byte
2 Byte

Wenn nichts anderes ausgeführt ist, dann ist mit "Integer-Typ" die Gesamtheit aller fünf
Integer-Typen von Turbo-Pascal gemeint.

Turbo-Pascal kennt zwei Integer-Konstanten:

• MaxInt mit Wert 32767
• MaxLongInt mit Wert 2 147 483 647

Arithmetische Operatoren für Integer-Typen:

+ Addition
- Subtraktion und monadisches Minus
* Multiplikation
div ganzzahlige Division. Beispiel: 10 div 4 = 2
mod Restwert der ganzzahligen Division (Modulo-Rechnung). Beispiel: 17 mod 5 = 2

Man beachte, daß der Schrägstrich (slash) "/" als Divisionsoperator für Realtypen dient.
Das Ergebnis ist dann immer ein Realtyp, auch wenn die Operanden Integer-Typen sind
und das Ergebnis ganzzahlig ist.

Die Vergleichsoperatoren für Integertypen:

= gleich
> größer
< kleiner
>= größer oder gleich
<= kleiner oder gleich
<> ungleich

Logische Operatoren für Integer-Typen:

Folgende logische Operatoren können auf Integer-Typen angewendet werden. Die Ver-
arbeitung erfolgt bitweise für das ganze Bit-Muster der Integer-Operanden.

Hinweis: Logische Operatoren liefern Integer-Zahlenwerte; die booleschen Operatoren
(not, and, or und xor) dagegen die Wahrheitswerte True oder False (Kap. 8.5).

8-6 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

not bitweise Negation
and bitweises UND
or bitweises ODER
xor bitweises Exklusiv-ODER (ausschließendes ODER, Antivalenz)
shl Bit-Muster um n bits nach links verschieben (shift left)
shr Bit-Muster um n bits nach rechts verschieben (shift right)

Die Wirkung der logischen Operatoren not, and, or und xor kann anschaulich mit
Wahrheitstabellen dargestellt werden. Für "Bit gesetzt" steht "1" und für Bit nicht
gesetzt steht "0".

Wahrheitstabelle:

Bit X Bit Y not X X and Y X or Y X xor Y
 0 0 1 0 0 0
 0 1 1 0 1 1
 1 0 0 0 1 1
 1 1 0 1 1 0

Die Tabelle gilt ansonsten auch für die Boolschen Operatoren not, and, or und xor,
wenn man "1" durch "True" und "0" durch "False" ersetzt.

Beispiel: 85 and 7

Bit-Muster für 85: 0101 0101
Bit-Muster für 7: 0000 0111

Bit-Muster für (85 and 7): 0000 0101
Das Ergebnis-Bit-Muster hat das Dezimal-Äquivalent 5.
Somit: (85 and 7) ════> 5

Logische Operationen mit Integer-Typen werden überwiegend bei systemnaher Pro-
grammierung benötigt.

Mengen-Operator für Integer-Typen:

Der Mengen-Operator "in" (Vorgriff auf strukturierten Datentyp set, Kap. 15) kann auch
auf Integer-Typen angewendet werden.

Beispiel:

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-7

program Pas08021; { Demo: Mengen-Operator "in" mit Integer Typen }
uses
 CRT;
var
 z: Byte;
begin
 repeat
 Write('Drücken Sie eine der Zifferntasten 3 bis 7: ');
 ReadLn(z);
 until z in [3..7];
end.

Standardfunktionen für Integer-Typen:

In der folgenden Tabelle sind die wichtigsten Standardfunktionen aufgeführt, die ent-
weder ein Integer-Argument oder ein Integer-Ergebnis haben. Manche der Funktionen
sind in gleicher Weise für Integer- und auch für Real-Argumente definiert oder auch für
alle Ordinaltypen. Der Ergebnistyp ist dann mit dem Typ des Arguments identisch. Das
Argument ist in der Tabelle mit dem Zeichen a symbolisiert. Die mathematischen Funk-
tionen wie Sin, Cos, ArcTan, Exp und Ln liefern ein Real-Ergebnis und sind primär
auch für Real-Argumente gedacht. Da Turbo-Pascal gegebenenfalls die Integer-Argu-
mente automatisch in Real umwandelt, können diese Funktionen auch für Integer-Argu-
mente benutzt werden.

Standard- Datentyp Datentyp
Funktion Argument Ergebnis Bemerkungen
Abs(a) Integer, Real Integer, Real Absolutwert
Pred(a) Integer, ordinal Integer, ordinal Vorgänger, predecessor
Succ(a) Integer, ordinal Integer, ordinal Nachfolger, successor
Random(a) Word *) Word Zufallszahl 0..a-1
Sqr(a) Integer, Real Integer, Real Quadrat a*a

Odd(a) Integer Boolean Prüfung auf ungerade

Lo(a) Word/Integer Byte Niederwertiges Byte
Hi(a) Word/Integer Byte Höherwertiges Byte

Sqrt(a) Integer, Real Real (Quadrat-)Wurzel
Sin(a) Integer, Real Real Sinus,Winkel Bogenmaß
Cos(a) Integer, Real Real Cosinus
ArcTan(a) Integer, Real Real Arcustangens
Exp(a) Integer, Real Real Exponentialfunktion
Ln(a) Integer, Real Real natürl. Logarithmus
Round(a) Real Integer ganzzahlige Rundung
Trunc(a) Real Integer ganzzahliger Teil

Chr(a) Byte Char Character, Zeichen
Ord(a) Integer, ordinal Integer, ordinal Ordnungsnummer

8-8 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

*) Das Argument bei der Funktion "Random" ist optional und kann somit auch entfahlen. Die Funktion
liefert dann eine Real-Zufallszahl aus dem Bereich 0..<1; die Grenze 1 ist also nicht eingeschlossen.
Um unterschiedlichen Reihen von Zufallszahlen zu erhalten, muß der Zufallszahlen-Generator mit
der Standardprozedur "Randomize" initalisiert werden. Diese Initialisierung wird im Demopro-
gramm Pas08022.PAS gezeigt.

Im folgenden Demo-Programmen und auch in weiteren wird die Bildschirmausgabe
durch Kommentare im Quelltext simuliert. Der Senkrechtstrich soll den linken Bild-
schirmrand darstellen.

program Pas08022; { Demo: Operatoren und Funktionen
 für Integer-Typen }
uses
 CRT;
const
 u = 4711;
 v = 4712;
 w = 4713;
 x = 0;
 y = 1;
 z = 2; { Alle Konstanten haben Typ (normalen) Integer }

var
 r: Real;
 NormalerInteger: Integer;
 KurzerInteger: ShortInt;
 ByteInteger: Byte;
 WordInteger: Word;

begin
 ClrScr;
 NormalerInteger := 0;
 KurzerInteger := 0;
 ByteInteger := 0;
 WordInteger := 0;

 Randomize; { Prozedur zum Initialisieren des Zufallszahlen-
 Generators }

 r := x + (2 - y)*z/2; { Typ Real wegen Real-Division mit / }
 WriteLn('REAL: ', r); { │REAL: 1.0000000000E+00 }
 WriteLn('+-*: ', u + (1 - z)*y);{ │+-*: 4710 } { Integer }

 { Es folgen die speziellen Integer-Operatoren: }
 WriteLn('DIV: ', w div v); { │DIV: 1 }
 WriteLn('MOD: ', w mod u); { │MOD: 2 }
 WriteLn('NOT: ', not x); { │NOT: -1 }
 WriteLn('NOT: ', not y); { │NOT: -2 }
 WriteLn('NOT: ', not -2); { │NOT: 1 }
 WriteLn('AND: ', y and z); { │AND: 0 }
 WriteLn('OR: ', x or y); { │OR: 1 }
 WriteLn('XOR: ', x xor y); { │XOR: 1 }
 WriteLn('SHL: ', z shl 2); { │SHL: 8 } { 2 bit links }
 WriteLn('SHR: ', z shr 1); { │SHR: 1 } { 1 bit rechts }

 { Es folgt Demo der verschiedenen Integer-Typen mit Operator "not" }
 WriteLn('nINT: ', not NormalerInteger); { │-1 } { negierte 0 }
 WriteLn('kINT: ', not KurzerInteger); { │-1 } { negierte 0 }

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-9

 WriteLn('bINT: ', not ByteInteger); { │255 } { negierte 0 }
 WriteLn('wINT: ', not WordInteger); { │65535} { negierte 0 }

 ReadLn;

{ Es folgen Funktionen mit Integer-Argument und Integer-Ergebnis: }
 WriteLn('ABS: ', Abs(-u)); { │ABS: 4711 } { Auch f. Real }
 WriteLn('PRED: ', Pred(u)); { │PRED: 4710 } { Vorgänger }
 WriteLn('SUCC: ', Succ(u)); { │SUCC: 4712 } { Nachfolger }
 WriteLn('RND: ', Random(100*z));{ │RND: 73 } { 0..199 }
 WriteLn('SQR: ', Sqr(z)); { │SQR: 4 } { Quadrat }
{ Es folgt Funktion mit Integer-Argument und Boolean-Ergebnis: }
 WriteLn('ODD: ', Odd(u)); { │ODD: TRUE } { ungerade }
 WriteLn('ODD: ', Odd(u - 1)); { │ODD: FALSE }

 { Es folgen Funktionen m. Integer/Real-Argument und Real-Ergebnis }
 WriteLn('SQRT: ', Sqrt(z):6:3); { |SQRT: 1.414 } { Quadr.-Wurzel}
 WriteLn('SIN: ', Sin(z):6:3); { |SIN: 0.909 } { Sinus, }
 WriteLn('COS: ', Cos(z):6:3); { |COS: -0.416 } { Cosinus, }
 WriteLn('ATN: ', ArcTan(z):6:3);{ |ATN: 1.107 } { Arcustangens }
 WriteLn('EXP: ', Exp(y):6:3); { |EXP: 2.718 } { Exponential }
 WriteLn('LN: ', Ln(z):6:3); { |LN: 0.693 } { nat. Logar. }

 { Es folgen Funktionen mit Real-Argument und Integer-Ergebnis: }
 WriteLn('RUND: ', Round(3.4)); { |RUND: 3 } { Rundung }
 WriteLn('RUND: ', Round(3.5)); { |RUND: 4 } { Rundung }
 WriteLn('RUND: ', Round(3.6)); { |RUND: 4 } { Rundung }
 WriteLn('RUND: ', Round(-3.4)); { |RUND: -3 } { Rundung }
 WriteLn('RUND: ', Round(-3.5)); { |RUND: -4 } { Rundung }
 WriteLn('RUND: ', Round(-3.6)); { |RUND: -4 } { Rundung }
 WriteLn('TRUNC: ', Trunc(-3.6)); { |TRUNC: -3 } { ganzzahl. Teil }

 { Es folgt Funktion mit Char-Argument und Integer-Ergebnis }
 WriteLn('ORD: ', Ord('A')); { |65 } { nach ASCII }

 { Es folgt Funktion mit Integer-Argument und Char-Ergebnis }
 WriteLn('CHR: ', Chr(65)); { |A } { nach ASCII }
 WriteLn('CHR: ', #65; { |A } { nach ASCII }

 { Es folgen die Integer-Konstanten }
 WriteLn('MaxInt: ', MaxInt); { |MaxInt: 32767 }
 WriteLn('MaxLongInt: ', MaxLongInt); { |MaxLongInt: 2147483647 }
 ReadLn;
end.

Zur Negierung von Integertypen (im Beispiel i) und Bytetypen (im Beispiel j):
i -128 -127 -126 -3 -2 -1 0 +1 +2 +125 +126 +127

not i +127 +126 +125 +2 +1 0 -1 -2 -3 -126 -127 -128
j 0 +1 +2 +253 +254 +255

not j +255 +254 +253 +2 +1 0

Standardprozeduren für Integer-Typen:

Turbo-Pascal besitzt viele Prozeduren mit Integer-Argumenten; sie werden bei den ein-
schlägigen Kapiteln behandelt.

8-10 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Wegen der besonderen Bedeutung werden an dieser Stelle nur die Standard-Prozeduren
Inc (inkrementiere, erhöhe) und Dec (dekrementiere, erniedrige) vorgestellt. Beide
Prozeduren sind für alle ordinalen Typen zulässig, also nicht nur für Integer.

Formate: Inc(x) Erhöhe x um 1
 Inc(x, n) Erhöhe x um n
 Dec(x) Erniedrige x um 1
 Dec(x, n) Erniedrige x um n

x ist eine Variable mit ordinalem Typ.
Der optionale Parameter n ist ein Integer-Ausdruck

Inc(x) ist ein etwas schnellerer Ersatz für die Anweisung x := x + 1, aber erst bei
vielen Schleifendurchläufen.

8.3 Die Realtypen. Operatoren und Standardfunktionen

Realtypen werden durch eine Mantisse und einen Exponenten dargestellt. Turbo-Pascal
kennt fünf Real-Typen, Standard-Pascal nur einen.

 Real-
 Typ

 Wertebereich,
 und signifikante Stellenzahl

 Speicher-
 bedarf

 Real
 Single
 Double
 Extended
 Comp

 ±2.9E-39..±1.7E+38, 11 bis 12 Stellen
 ±1.5E-45..±3.4E+38, 7 bis 8 Stellen
 ±5.0E-324..±1.7E+308, 15 bis 16 Stellen
 ±1.9E-4951..±1.1E+4932, 19 bis 20 Stellen
 -9.2E+18..+9.2E+18, 18 bis 19 Stellen

 6 Byte
 4 Byte
 8 Byte
 10 Byte
 8 Byte

Allerdings sind die Real-Datentypen Single, Double, Extended und Comp nur mit dem
mathematischen Coprozessor verfügbar. Diese haben die Bezeichnungen i8087, i80287
oder i80387, ab dem i80486 DX ist der Coprpzessor im Hauptprozessor integeriert,
somit auch beim Pentium und seinen Nachfolgern. Der Coprozessor kann aber auch
software-mäßig emuliert werden, siehe Compilerschalter E und N im Kap. 5.12.1 bzw.
Menüpunkt "Option/Compiler.../Gleitkommaberechnungen". Der Typ Comp ist streng
genommen kein Realtyp, muß aber als solcher behandelt werden.

Real-Typen werden standardmäßig in Gleitkomma-Schreibweise mit einer Schreibbreite
von 17 Zeichen (Datentyp Real) oder 23 Zeichen (Datentyp Double) ausgegeben, auch
wenn der Wert im Einzelfall ganzzahlig ist. Mit Hilfe einer Formatierung können Real-
Typen aber auch in Fixkomma-Schreibweise ausgegeben werden, siehe Kapitel 7.1. Die
Anzahl der Nachkommastellen kann gewählt werden. Im Gegensatz zu Integerdaten
wird bei Realdaten für das positive Vorzeichen ein Leerzeichen gedruckt. Als Dezimal-
trennzeichen dient der Punkt und nicht das Komma. Die Eingabe von Realtypen kann
wahlweise in Gleitkomma- oder in Fixkomma-Schreibweise erfolgen. Die führende Null
vor dem Dezimalpunkt ist im Gegensatz zu einigen anderen Programmiersprachen in
Pascal bei Zuweisungen, Rechenoperationen und Ausgaben anzugeben; lediglich beim

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-11

Einlesen von der Tastatur mit Read bzw. ReadLn kann man schlampern und die
führende Null weglassen.

Die Zahl 47.11 in Gleitkomma-Schreibweise (unterhalb der Abzählleiste):
12345678901234567890123 Nur Abzählleiste
 4.7110000000E+01 Ohne Coprozessor, Datentyp Real
 4.71099999999860E+0001 Mit Coprozessor, Datentyp Real
 4.71100000000000E+0001 Mit Coprozessor, Datentyp Double

Realtypen sind keine Ordinaltypen, da sie keine endliche Wertemenge umfassen. Die
Funktionen Ord, Pred, Succ sind somit nicht für Realtypen zugelassen, ebenso nicht die
Prozeduren Inc und Dec.

Die Vergleichsoperatoren für Realtypen:
= gleich
> größer
< kleiner
>= größer oder gleich
<= kleiner oder gleich
<> ungleich

Bei Realtypen ist immer mit Fehlern zu rechnen, die z.B. bei der Differenzbildung von
großen Zahlen beträchtlich sein können. Zudem können gewisse Dezimalzahlen, wie
z.B. 0.1, nicht exakt im Dualsystem dargestellt werden, was auch zu Fehlern führen
kann. Deshalb sollte man Realtypen nie auf Gleichheit prüfen, sondern auf >= oder <= .

Arithmetische Operatoren für Realtypen:
+ Addition
- Subtraktion und monadisches Minus
* Multiplikation
/ Division

Man beachte, daß Pascal keinen Potenz-Operator besitzt.

Bei ganzzahligem Exponenten y (Integer-Typ) kann der Ausdruck xy z.B. mit Hilfe der
Standardfunktion Sqr (Quadratbildung) wie folgt dargestellt werden:

x2 ---> Sqr(x)
x3 ---> x*Sqr(x)
x4 ---> Sqr(Sqr(x))
x5 ---> x*Sqr(Sqr(x))

usw. Für höhere Potenzen sollte man aber eigene Funktionen programmieren. Für Poly-
nome wähle man die Darstellung nach HORNER, bei der nur Additionen und Multipli-
kationen vorkommen.

8-12 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Bei nichtganzzahligem Exponenten y (Realtyp) muß der Term xy mit den Standard-
funktionen "Exp" (Exponentialfunktion) und "Ln" (natürlicher Logarithmus) wie folgt
dargestellt werden:

 xy = ey ln(x) = Exp(y * Ln(x))

wobei x > 0 sein muß. Auch diese Ersatzdarstellung hat ihre Tücken im Fall x <= 0.
Eine universelle Lösung, zumindest für Realtypen, ist in der selbstdefinierten Funktion
"Potenz" im Programm "Pas11021.PAS" im Kap. 11.02 angegeben.

Die Standardfunktionen für Realtypen:

Fast alle Standardfunktionen für Realtypen sind auch für Integertypen zulässig, da
Turbo-Pascal gegebenenfalls die Integertypen automatisch in Realtypen umwandelt.
Über die Zuordnung Datentyp Argument zu Datentyp Ergebnis gibt die folgende Tabelle
Auskunft. Das Argument a kann ein beliebiger Real-Ausdruck oder (bei den meisten
Funktionen!) auch ein beliebiger Integer-Ausdruck sein. Siehe auch das frühere Demo-
Programm Pas08022.PAS.

Standard- Datentyp Datentyp
Funktion Argument Ergebnis Bemerkungen
Abs(a) Real, Integer Real, Integer Absolutwert
Random *) Real Zufallszahl 0..<1
Sqr(a) Real, Integer Real, Integer Quadrat a*a
Sqrt(a) Real, Integer Real (Quadrat-)Wurzel
Pi Real Kreiszahl 3.14159...
Sin(a) Real, Integer Real Sinus, Winkel Bogenmaß
Cos(a) Real, Integer Real Cosinus
ArcTan(a) Real, Integer Real Arcustangens
Exp(a) Real, Integer Real Exponentialfunktion
Ln(a) Real, Integer Real natürl. Logarithmus
Round(a) Real Integer ganzzahlige Rundung
Frac(a) Real Real Nachkommateil
Trunc(a) Real Integer ganzzahliger Teil

*) Die Funktion »Random« kann optional auch einen Integer-Ausdruck als Argument haben. Sie
liefert dann Integer-Zufallszahlen. Siehe Unterpunkt 8.2.

Um unterschiedliche Reihen von Zufallszahlen zu erhalten, muß der Zufallfszahlen-
Generator mit der Standardprozedur "Randomize" initialisiert werden. Diese Initiali-
sierung wird im früheren Demo-Programm Pas08022.PAS gezeigt.

Die Funktion ArcTan liefert den Hauptwert (Bereich: -Pi/2 ... +Pi/2)

Für die Umrechnung von Gradmaß in Bogenmaß gilt bekanntlich:

Winkel_in_Grad = Winkel_in_Bogen/Pi*180, mit Pi = π

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-13

Die mathematische Funktion Tangens ist standardmäßig nicht in Pascal enthalten. Der
Tangens des Winkels Alpha muß wie folgt berechnet werden:

Tan(Alpha) = Sin(Alpha) / Cos(Alpha) Alpha <> ±Pi/2

Der Arcussinus ist standardmäßig ebenfalls nicht in Pascal enthalten. Bei der Berech-
nung sind drei Fälle zu unterscheiden:

 ┌─ +Pi/2, wenn x = +1
Arcussinus von x: ─┼─ -Pi/2, wenn x = -1
 └─ ArcTan(x / Sqrt(1 - Sqr(x))), wenn x <> ±1

Der Arcuscosinus ist standardmäßig ebenfalls nicht in Pascal enthalten. Bei der Be-
rechnung sind zwei Fälle zu unterscheiden:

 ┌─ +Pi, wenn x = -1
Arcuscosinus von x: ─┤
 └─ 2*ArcTan(Sqrt((1 - x)/(1 + x))), wenn x <> -1

Der dekadische Logarithmus ist ebenfalls nicht in Pascal enthalten. Für die Umrech-
nung gilt:

Ln(x) / Ln(10)

Für die Kreiszahl Pi = 3.14159.... steht in Turbo-Pascal die gleichnamige Stan-
dardfunktion zur Verfügung, was in Standard-Pascal und einigen anderen Program-
miersprachen nicht der Fall ist. Mit einer Wertzuweisung an eine "Variable" Pi mit:

Pi := 4 * ArcTan(1)

kann man sich aber leicht behelfen. In Pascal besteht natürlich auch die Möglichkeit,
eine Konstante Pi mit dem Zahlenwert 3.14159... zu deklarieren. Wegen Fehlermög-
lichkeit vermeiden!

Zur Schreibweise von mathematischen Ausdrücken:

Bei der mathematischen Schreibweise wird das Multiplikationszeichen häufig nicht
angeschrieben. In Pascal muß das aber unbedingt geschehen. In den Beispielen seien x,
y und z Variablen.

Mathematisch In Pascal (und ähnl. Sprachen)

zyx + x + y*z

z

y
x − x - y/z

z

yx
x*y/z oder x/z*y

z

yx +
(x + y)/z

8-14 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

zy

x
x/y/z oder x/(y*z)

Das folgende Demo-Programm zeigt die Wirkung des mathematischen Coprozessors bei
Gleitkommaberechnungen in Abhängigkeit der Compilerschalter N und E. Für die
Demo muß aber ein Vorgriff auf die for-Schleife gemacht werden:

{$N+,E+} { 4 Kombinationen "N-,E-", "N-,E+", }
 { "N+,E-", "N+,E+" }
program Pas08031; { "Pas08031.PAS", Demo Coprozessor }
 { 37300398, Dr. K. Haller }
uses
 CRT, DOS; { Unit DOS wegen "GetTime" }

const
 iMax = 100000;

var
 x, y, T: Double; { Hier steht fallweise "Real" oder "Double" }
 i: LongInt;
 hh, mm,
 ss, ss100: Word;

begin
 ClrScr;
 GetTime(hh, mm, ss, ss100);
 T := hh*3600.0 + mm*60 + ss + ss100/100; { "3600.0" !!! }

 for i := 1 to iMax do
 begin
 x := Sin(47.11);
 y := Exp(47.11);
 end;

 GetTime(hh, mm, ss, ss100);
 T := hh*3600.0 + mm*60 + ss + ss100/100 - T;
 WriteLn('Die Ausführungszeit: ', T:8:4);
 ReadLn;
 (*
 | Compiler- | Zeit | Zeit | EXE-File | EXE-File |
 | schalter | Real-Typ | Double-Typ | Real-Typ | Double-Typ |
 +===========+==========+=============+============+=============+
{$N-,E-}	3.90 s	nicht mögl.	12090 Byte	nicht mögl.
{$N-,E+}	3.90 s	nicht mögl.	12090 Byte	nicht mögl.
{$N+,E-}	0.99 s	0.99 s	12042 Byte	11946 Byte
{$N+,E+}	0.99 s	0.93 s	21802 Byte	21706 Byte

 Die Ausführungszeiten und EXE-Dateigrößen gelten für ein System
 mit Prozessor Pentium 166 MHz und den hier nicht aufgeführten
 weiteren Compilerschaltern. Die Daten sind nur für diese Test-
 umgebung gültig und können nicht einfach verallgemeinert werden.

 Die Compilerschalter-Kombination {$N+,E+} ist auf allen Systemen

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-15

 lauffähig, egal ob Coprozessor vorhanden ist oder nicht.

 Die Compilerschalter-Kombination {$N+,E-} ist nur auf Systemen
 mit Coprozessoren lauffähig.

 *)
end.

8.4 Der Typ Char. Operatoren und Standardfunktionen

Der Datentyp Char (Character, Zeichen) umfaßt alle vom Computer darstellbaren
Zeichen, also nicht nur Buchstaben, sondern auch Ziffern, Satz- und Sonderzeichen,
Graphikzeichen und Steuerzeichen. Letztere können aber nicht sichtbar dargestellt wer-
den, sondern sind für die Steuerung von Computerfunktionen vorgesehen. Jedes Zeichen
wird im Speicher mit 1 Byte = 8 bit dargestellt. Damit ergeben sich 28 = 256
verschiedene Bit-Muster, die den Zeichen mit den Ordnungsnummern von 0 bis 255
zugeordnet werden. Die Ordnungsnummern sind das Dezimal-Äquivalent der Bit-
Muster. Die Zuordnung (Codierung) ist im Prinzip willkürlich, sinnvollerweise wird
man aber die Codierung so wählen, daß die Buchstaben dem gewöhnlichen Alphabet
entsprechend aufeinanderfolgen. Bei Ziffern wird man die gleiche Vorgehensweise
wählen. Bei Mikrocomputern ist fast ausschließlich die Codierung nach ASCII ge-
bräuchlich (ASCII: American Standard Code for Information Interchange); allerdings
nicht mehr in der ursprünglichen 7-Bit-Form, sondern in der erweiterten 8-Bit-Form
(Zeichen 128 bis 255), für die es noch keine Norm, dafür aber einen mittlerweile weit
verbreiteten "Industrie-Standard" gibt, den sogenannten "IBM-Zeichensatz für Mikro-
computer". Nach ASCII beginnen die Großbuchstaben mit der Codenummer 65
(Zeichen A), die Kleinbuchstaben haben um 32 verschobene Codenummern, beginnen
also bei 97 (Zeichen a). Die Ziffernzeichen beginnen mit der "0" bei 48, in hex 30
(leicht merkar), das Leerzeichen hat die Codenummer 32. Die Zeichen für die Code-
nummern >= 128 sind nationale Sonderzeichen, Graphikzeichen und mathematische
Zeichen, z.B. nach dem "IBM-Zeichensatz". Weitere Details siehe Kapitel 13. Den
IBM-Zeichensatz gibt es zudem in verschiedenen nationalen Ausgestaltungen, Im
Betriebssystem MS-DOS Codepages genannt. Für Deutschland empfiehlt sich die Code-
page 437 (auf dem Arbeitsblatt dargestellt) oder die Codepage 850.
Hinweis: Das Windows- und das Apple-Betriebsssytem arbeiten mit dem Ansi-Zeichen-
satz, der im Codebereich 0 bis 127 identisch ist mit dem Ascii-Zeichensatz, sich aber im
Codebereich >= 128 gänzlich vom IBM-Zeichensatz unterscheidet.

Operatoren für Char-Typen:

Char-Typen können mit Read bzw. ReadLn eingelesen und mit Write bzw. WriteLn
ausgegeben werden. Die Vergleichsoperatoren (= > < >= <= <>) und der
Mengenoperator in sind auch für Char-Typen definiert, ebenso die Wertezuweisung. Es
gibt aber keine Operatoren für die Manipulation von Char-Typen.

8-16 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Schreibweise der Konstanten vom Typ Char:

Konstanten vom Typ Char sind in Hochkommas zu setzen. Wenn das Hochkomma
selbst als Zeichen gebraucht wird, dann muß es doppelt in Hochkommas geschrieben
werden. In Turbo-Pascal können Char-Konstanten auch durch die Codenummer des Zei-
chens und dem vorausgestellten Nummernzeichen # dargestellt werden.

Beispiele: 'A' 'a' '7' '+' ' ' ''''
In Turbo-Pascal auch: #65 #97 #55 #43 #32 #39

Das vorletzte Zeichen ist ein Blank (Space, Leerzeichen), das letzte ein Hochkomma.

Standardfunktionen für Char-Typen:

• Die Standardfunktion Chr(a) liefert das Zeichen mit der Ordungsnummer a, wobei
a einen Byte-Ausdruck darstellt. In Turbo-Pascal statt Chr(a) auch zulässig, wenn
a eine Byte-Konstante ist: #a

Beispiele:

Write(Chr(65)); { |A }
Write(#66); { |B }
Write(Chr(97)); { |a }
Write(Chr(98)); { |b }
Write(Chr(48)); { |0 }
Write(Chr(49)); { |1 }
Write(Chr(32)); { | } { Blank, Space, Leerzeichen }
Write(Chr(39)); { |' } { Hochkomma }

• Die Standardfunktion Ord(Ch) ist die Umkehrfunktion zu Chr(a). Ch ist eine
Konstante oder Variable vom Datentyp Char. Die Funktion Ord liefert bei Char-
Typen die Ordnungsnummer des Zeichens, also die Code-Nummer nach ASCII,
bzw. nach dem IBM-Zeichensatz. Das Ergebnis hat den Datentyp Byte und liegt
somit im Bereich von 0 bis 255.

Beispiele:

Write(Ord('A')); { |65 }
Write(Ord('B')); { |66 }
Write(Ord('a')); { |97 }
Write(Ord('b')); { |98 }
Write(Ord('0')); { |48 }
Write(Ord('1')); { |49 }
Write(Ord(' ')); { |32 } { Blank, Space, Leerzeichen }
Write(Ord('''')); { |39 } { Hochkomma }

• Die Standardfunktionen Pred(Ch) (Vorgänger) und Succ(Ch) (Nachfolger) sind
auch für Char-Typen definiert. Ist Ch eine Konstante oder Variable vom Datentyp
Char, dann hat das Ergebnis ebenfalls den Datentyp Char. Man beachte, daß der
Nachfolger des letzten Wertes und der Vorgänger des ersten Wertes nicht definiert
sind.

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-17

Beispiele:
Write(Pred('B')); { |A }
Write(Pred('b')); { |a }
Write(Pred('1')); { |0 }
Write(Succ('A')); { |B }
Write(Succ('a')); { |b }
Write(Succ('0')); { |1 }

• Die Standardfunktion ReadKey liest ein Zeichen von der Tastatur (genauer: aus
dem Tastaturpuffer) ohne das Zeichen auf dem Bildschirm anzuzeigen. Diese
Funktion hat kein Argument. Sie benötigt die Unit CRT. Weitere Details siehe Kapi-
tel 7 "Ein- und Ausgaben".

• Die Standardfunktionen UpCase(Ch) (Upper Case) liefert den Großbuchstaben des
Zeichens. Ch ist eine Konstante oder eine Variable vom Typ Char. Die Funktion
wirkt nur für den Kleinbuchstabenbereich 'a'..'z'. Alle anderen Zeichen werden nicht
verändert, somit leider auch nicht 'ä', 'ö' und 'ü'. Für die Umwandlung in Klein-
buchstaben gibt es in Turbo-Pascal keine Standardfunktion.

Beispiele:
Write(UpCase('a')); { |A }
Write(UpCase('b')); { |B }
Write(UpCase('A')); { |A }
Write(UpCase('1')); { |1 }
Write(UpCase('ä')); { |ä }
Write(UpCase('Ä')); { |Ä }
Write(UpCase('+')); { |+ }

Demo-Programm:

program Pas08041; { Demo: Typ Char, Ja-/Nein-Eingabe }
uses
 CRT; { Unit CRT wegen ReadKey }
var
 Antwort: Char;
begin
 ClrScr;
 repeat
 Write('Wiederholung (j/n): ');
 repeat
 Antwort := Chr(Ord('a') - Ord('A') + Ord(UpCase(ReadKey)));
 { Bleibt in der Schleife, bis 'j' oder 'J' oder 'n' oder 'N'
 von der Tastatur eingegeben wird. Die Zeichen werden in
 Kleinbuchstaben umgewandelt.
 Der Teil-Ausdruck "Ord('a') - Ord('A')" ergibt beim
 ASCII-Code den Wert 32.
 }
 until Antwort in ['j', 'n'];
 { oder: until (Antwort = 'j') or (Antwort = 'n'); }
 Writeln(Antwort);
 until Antwort = 'n';
end.

8-18 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

8.5 Der Typ Boolean. Operatoren und Standardfunktionen

Boolesche Variablen und Ausdrücke können nur die vordefinierten Werte "True" oder
"False" annehmen.

Boolesche Ausdrücke werden vorrangig als Bedingung in if-Anweisungen, und als
Bedingung in den Schleifenanweisungen while und until verwendet.

Die Ergebnisse von Boolean-Ausdrücken können außerdem mit dem Zuweisungsoper-
ator := an boolesche Variablen zugewiesen werden.

Eine Eingabe von Boolean-Typen (z.B. mit Read) ist nicht möglich, wohl aber eine
Ausgabe mit Write, wobei die Zeichenfolge "TRUE" bzw. "FALSE" ausgegeben wird.

Man unterscheidet einfache und zusammengesetzte boolesche Ausdrücke. Einfache
Ausdrücke enthalten nur Relationen. Zusammengesetzte Ausdrücke können außer
Relationen auch die booleschen Operatoren not, and, or und xor enthalten.

Beispiele für einfache boolesche Ausdrücke mit Verwendung von if-Anweisungen
und bei Zuweisungen:

program;
var
 Note: Integer;
 Bestanden: Boolean;
 Zeichen: Char;
 ;
begin
 ;
 Note :=;
 Zeichen :=;

 if Note = 1 then;
 { └───┬──┘
 └─── Boolescher Ausdruck, nur True oder False,
 wenn True, dann wird folgende Anweisung ausgeführt }

 if Zeichen <> 'J' then;

 Bestanden := (Note < 5);
 { └───┬────┘
 └── Boolescher Ausdruck, nur True oder False.
 Zuweisung an eine boolsche Variable }
 ;
 Write(Bestanden); {│TRUE oder: │FALSE }

 if Bestanden then; { Nicht schön und ineffizient: }
 { if Bestanden = True then }
 ;
end.

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-19

Operatoren für Boolean-Typen:

Die Boolean-Operatoren sind mit:
• not logische Negation
• and logisches UND
• or logisches ODER
• xor logisches Exklusiv-ODER (ausschließendes ODER, Antivalenz)

eine Untermenge der logischen Operatoren für Integer-Typen. Die Wirkung der boole-
schen Operatoren kann anschaulich mit Wahrheitstabellen dargestellt werden:

 X Y not X X and Y X or Y X xor Y
 False False True False False False
 False True True False True True
 True False False False True True
 True True False True True False

Beispiel für einen zusammengesetzten booleschen Ausdruck mit Zuweisung an eine
boolesche Variable mit dem Bezeichner "Test":

Test := (x = 3) and not (Zeichen = 'J') or (y < 4711);

Hat x den Wert 7, y den Wert 2 und Zeichen den Wert 'N', dann erhält die boolesche
Variable Test den Wert True.

Die Priorität aller Operatoren wird im Unterpunkt 8.6 erklärt. Es wurde aber im
Beispiel vorweggenommen, daß unter den logischen Operatoren not die höchste Priori-
tät hat, in der Stufe 2 befindet sich das and, wogegen or und xor in der 3. Stufe sind.
Die relationalen Operatoren haben die geringste Priorität. Durch Klammerung mit run-
den Klammern kann aber jede gewünschte Abarbeitungsreihenfolge erzwungen werden.

Zur Umformung von booleschen Ausdrücken:

not (not x) ist gleichwertig mit: x
not (x and y) ist gleichwertig mit: (not x) or (not y)
not (x or y) ist gleichwertig mit: (not x) and (not y)
not (x = y) ist gleichwertig mit: x <> y

Zur Auswertung von zusammengesetzten booleschen Ausdrücken:

Ein zusammengesetzter boolescher Ausdruck, der z.B. die Form hat: b1 and b2

wird standardmäßig von Turbo-Pascal nicht vollständig ausgewertet, wenn die Auswer-
tung von b1 den Wert False ergibt, da ja damit bereits das Gesamtergebnis False
feststeht.

Ein ähnlicher Fall liegt vor bei: b1 or b2

8-20 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Wenn hier b1 den Wert True hat, dann wird b2 nicht mehr ausgewertet, da das Gesamt-
ergebnis mit True ebenfalls bereits feststeht, unabhängig von b2.

Dieses effiziente Kurzschlußverfahren kann aber in Sonderfällen zu Problemen führen,
wenn z.B. b2 Aufrufe von selbstdefinierten Funktionen enthält und in diesen Funktionen
Variablen manipuliert werden (bzw. in diesem Falle nicht), auf die an anderer Stelle des
Programms zugegriffen wird. Die Variablen können dann undefiniert sein.

In Turbo-Pascal kann man eine vollständige Auswertung eines zusammengesetzten
booleschen Ausdruckes erzwingen. Dazu dient der Compilerbefehl {$B}. Dieser ist
standardmäßig auf {$B-} gesetzt (Kurzschlußverfahren). Mit {$B+} wird eine vollstän-
dige Auswertung eines booleschen Ausdruck erzwungen. Diese Compilerbefehle
werden in das Programm geschrieben werden und bei Bedarf lokal. Eine entsprechende
Einstellung ist auch über den Menüpunkt "Option/Compiler.../Boolesche Ausdrücke
vollständig" in der IDE des Turbo-Pascal-Systems möglich, siehe Kap. 5.12.1.

Standardfunktionen für Boolean-Typen:

Da der Typ Boolean ordinal ist, können auf ihn die Standardfunktionen
• Ord (Ordnungsnummer)
• Pred (Predecessor, Vorgänger) und
• Succ (Successor, Nachfolger)
angesetzt werden, wenn auch ohne großen praktischen Nutzen. Die Ordnungsnummer
von "False" ist 0, die von "True" ist 1. Somit gilt:
• True > False
• Succ(False) ═══> True
• Pred(True) ═══> False

Weitere Standardfunktionen mit Boolean-Ergebnis:

• Odd(a) Prüfung auf ungerade. Liefert True, wenn die Auswertung des
Integer-Ausdrucks a eine ungerade Zahl ergibt, sonst False.
Beispiel: Odd(4711) liefert True.

• KeyPressed Liefert True, wenn der Tastaturpuffer noch Zeichen enthält, sonst
False. Diese Funktion hat kein Argument und benötigt die Unit
CRT.

• EoLn(f) End of Line. Liefert True, wenn der Positionszeiger innerhalb der
Datei f auf das Zeilenende zeigt oder das Dateiende erreicht ist,
sonst False.

• SeekEoLn(f) Liefert True, wenn sich zwischen dem Positionszeiger und dem
nächsten Zeilenende der Datei f noch lesbare Zeichen befinden,
sonst False.

• EoF(f) End of File. Liefert True, wenn das Ende der Datei f erreicht ist
oder die Datei keine Daten enthält oder wenn die Datei eine

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-21

Geräte-Datei ist, von der keine Daten gelesen werden können (z.B.
Drucker), sonst False.

• SeekEof(f) Liefert True, wenn sich zwischen dem Positionszeiger und dem
Ende der Datei f noch lesbare Zeichen befinden, sonst False.

Demo-Programm:

program Pas08051; { Demo: Typ Boolean, Priorität der Operatoren }
uses
 CRT;
var
 x, y,
 Note: Integer;
 Zeichen: Char;
 Test1,
 Test2,
 Bestanden: Boolean;
begin
 ClrScr;
 x := 7;
 y := 2;
 Note := 2;
 Zeichen := 'N';
 Bestanden := (Note < 5);
 Test1 := (x = 3) and not (Zeichen = 'J') or (y < 4711);
 Test2 := (x div y > 3) and ((Zeichen <> 'J') xor (x >= 4711));
 Writeln(Test1); { |TRUE }
 Writeln(not Test1); { |FALSE }
 Writeln(Test2); { |FALSE }
 Writeln(Bestanden xor Test2); { |TRUE }
 Writeln(not True); { |FALSE }
 Writeln(not False); { |TRUE }
 Writeln(x in [3..5]); { |FALSE }
 ReadLn;
end.

8.6 Die Priorität der Operatoren

Die Priorität der arithmetischen und logischen Operatoren wird in der folgenden Liste
gezeigt. Eine andere Prioritätsfolge kann durch Klammerung mit runden Klammern
erzwungen werden.

 not @ 1. Stufe (unär, höchste Stufe)
 / * div mod and shl shr 2. Stufe (multiplizierend)
 + - or xor 3. Stufe (addierend)
 = < > <> <= >= in 4. Stufe (relational)

8-22 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

Das Symbol @ ist der Adress-Operator. Mit ihm kann die Adresse einer Variablen be-
stimmt werden und einem Zeiger zugeordnet werden. Siehe Kapitel über dynamische
Datentypen.

Die Symbole +, - und * dienen auch als Mengen-Operatoren; das Symbol + zudem
auch noch als String-Operator. Siehe die einschlägigen Kapitel.

8.7 Die selbstdefinierten Typen

Pascal hat gegenüber den meisten anderen Programmiersprachen den Vorzug, daß ei-
gene Datentypen definiert werden können. Die Deklaration eigener Typen kann eben-
falls wieder direkt bei der Variablendeklaration oder indirekt mit "type" erfolgen. Bei
eigenen Datentypen sollte man die indirekte Dekleration vorziehen. Sie ist sogar not-
wendig, wenn Variablen mit selbstdefinierten Typen als Parameter an Funktionen oder
Prozeduren übergeben werden (Vorgriff), wenn auch diese Notwendigkeit ab Turbo-
Pascal 7.0 bei Verwendung der Offenen Arrays bei Array- und Stringübergabe an
Routinen nicht mehr besteht (Vorgriff).

Die selbstdefinierten Datentypen unterteilen sich in
1. Aufzählungstypen (enumerated types) und
2. Teilbereichstypen (Ausschnittstyp, subrange types).

Beide Datentypen sind ordinal, d.h. sie besitzen endliche und geordnete Werte. Die
Standardfunktionen Ord (Ordnungsnummer), Pred (Predecessor, Vorgänger) und Succ
(Successor, Nachfolger) sind somit auch bei selbstdefinierten Typen anwendbar.

Darüber hinaus sind mit "type" auch Umbennenungen von Standardtypen möglich.

Beispiel:

type
 Grad = Real;
var
 Temperatur: Grad;

1. Der Aufzählungstyp:

Die möglichen Werte dieses Typs werden mit dem Komma als Trennzeichen in runde
Klammern geschrieben. Die Werte können nur durch Bezeichner dargestellt werden.
Die Schreibweise der Bezeichner bezüglich Groß- und Kleinbuchstaben wird, wie bei
allen Bezeichnern, nicht beachtet und ist somit beliebig.

Beispiel:

....
type
 Grundfarben = (Cyan, Magenta, Yellow, Black);

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-23

var
 Farbe: Grundfarben;

begin

 Farbe := Magenta;

 if (Farbe = Magenta)
 then Write('Die Farbe ist Magenta.');

end.

Wichtig: Aufzählungstypen können weder eingegeben noch ausgegeben werden.

Im vorstehenden Beispiel würden die Anweisungen "Read(Farbe)" oder "Write(Farbe)"
die Fehlmeldung 64 "Cannot Read or Write variables of this type" zur Folge haben. Im
Dialogfenster "Auswerten und Ändern" des integrierten Debuggers können an den
Haltepunkten mit Strg+F4 auch Aufzählungstypen abgefragt und gegebenenfall auch
geändert werden.

Zuweisungen und Vergleichsoperatoren (=, >, <, >=, <=, <>) sind für Aufzählungstypen
zulässig. Die Ordnungsnummer der Werte ergibt sich aus der Reihenfolge der
Auflistung. Der erste Wert hat die Ordungsnummer 0, der zweite die Ordnungsnummer
1 usw. Somit ist im Beispiel "Magenta" größer als "Cyan" und kleiner als "Yellow". Die
Ordungsnummer kann mit der Standardfunktion "Ord" ermittelt werden. Im vorstehen-
den Beispiel würde "Ord(Farbe)" bei "Magenta" den Wert 1 liefern.

Die Standardfunktionen »Pred« (Predecessor, Vorgänger) und »Succ« (Succesor, Nach-
folger) sind ebenfalls für Aufzählungstypen zulässig. Zu beachten ist aber, daß der
Nachfolger des letzten Wertes und der Vorgänger des ersten Wertes nicht definiert sind

2. Der Teilbereichstyp:

Teilbereichstypen sind ein Rückgriff auf einen ordinalen Grundtyp. Der Grundtyp kann
ein vordefinierter Typ sein (alle Integer-Typen, Char und Boolean) oder ein bereits
deklarierter Aufzählungstyp. Der Wertebereich des Teilbereichstypen ist gegenüber dem
Grundtyp eingeschränkt und kann somit an die Aufgabenstellung angepaßt werden.

Real-Typen sind somit nicht für Teilbereichstypen zulässig.

Die Definition erfolgt durch Nennung je einer Konstanten für die Untergrenze und für
die Obergrenze des Teilbereiches. Beide Werte sind mit zwei aufeinanderfolgenden
Punkten zu trennen.

Beispiel: "Wochentage" ist ein Aufzählungstyp, die anderen sind Teilbereichstypen. "Arbeitstage" ist
ein Teilbereichstyp des vorher deklarierten Aufzählungstyp "Wochentage".

....
type
 KontoNummernBereich = 100000..999999;

8-24 Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen

 KontoBereich = -6000..9000;
 Grossbuchstaben = 'A'..'Z';
 Wochentage = (Mon, Die, Mit, Don, Fre, Sam, Son);
 Arbeitstage = Mon..Fre; { Grundtyp ist der vorher
 deklarierte Aufzählungstyp »Wochentage«}
var
 KontoNummer: KontoNummernBereich;
 Konto: KontoBereich;
 Zeichen: Grossbuchstaben;
 Tag: Arbeitstage;

Die Eigenschaften des Teilbereichstyps sind bezüglich Operatoren, Funktionen und
Eingabe und Ausgabe identisch mit denen des Grundtyps. Zum Beispiel können Integer
und Character ein- und ausgegeben werden. Boolean können nur ausgegeben werden;
bei Aufzählungstypen ist weder Eingabe noch Ausgabe möglich.

Bei Turbo-Pascal wird standardmäßig nicht auf Einhaltung der Grenzen geprüft. Trotz
Deklaration von Teilbereichstypen können z.B. Werte eingegeben werden, die außerhalb
der Grenzen liegen. Um dies zu verhindern, muß der Compiler mit dem Compilerschal-
ter {$R+} angewiesen werden, zusätzlichen Prüfcode zu erzeugen, was auch in der IDE
mit dem Menüpunkt "Option/Compiler.../Bereichsüberprüfung" global geschehen
kann. In diesem Fall gilt die Prüfung für das gesamte Programm; die Ausführungs-
geschwindigkeit kann abfallen. Bei einer fehlerhaften Eingabe bricht das Programm mit
der Fehlermeldung "Runtime error 201 at" (Range check error) ab, was mit Sicher-
heit besser ist als fehlerhaftes weiteres Ausführen. Da der Compilerschalter R lokal
wirkt, kann er auch wieder abgeschaltet werden und zwar mit {$R-}. Compilerschalter
sind im Kapitel 5.12.1 beschrieben.

Demo-Programm:

program Pas08071; { Demo: Aufzählungstypen und Teilbereichstypen.
 Vorgriff auf "repeat/until", "case ... of"
 und "if/then/else"}

uses
 CRT; { Unit CRT wegen ClrScr und GotoXY }

type { Indirekte Deklaration von Aufzählungs- und Teilbereichs-
 typen mit "type" }
 Wochentage = (Mon, Die, Mit, Don, Fre, Sam, Son); { Aufzählungstyp}
 Arbeitstage = Mon..Fre; { Teilbereichstyp eines vorher deklarierten
 Aufzählungstypen }
 Monatstage = 1..31; { Teilbereichstyp }
 Noten = (Fuenf, Vier, Drei, Zwei, Eins); { Aufzählungstyp }

var
 Zahl: 1..5; { direkte Deklaration eines Teilbereichstypen }
 Freude: (klein, maessig, mittelpraechtig, gross);
 { direkte Deklaration eines Aufzählungstypen }
 Tag: Arbeitstage;
 Monatstag: Monatstage;
 Note: Noten;
 Bestanden: Boolean;

begin

Dr. K. Haller Turbo-Pascal Kap. 8: Datentypen 8-25

 ClrScr;
 repeat
 GotoXY(5, 2);
 Write('Eingabe einer Zahl für Note (1 bis 5): ');
 Readln(Zahl);
 until Zahl in [1..5]; { Vorgriff: Mengenoperator "in"}
 case Zahl of { Vorgriff: Selektion mit "case ... of"}
 1: begin Note := Eins; Freude := gross; end;
 2: begin Note := Zwei; Freude := gross; end;
 3: begin Note := Drei; Freude := mittelpraechtig; end;
 4: begin Note := Vier; Freude := maessig; end;
 5: begin Note := Fuenf; Freude := klein; end;
 end;
 if Note > Vier { Man beachte die Reihenfolge in der
 Deklaration des Typen "Noten"}
 then Bestanden := True
 else Bestanden := False;
 if Freude >= mittelpraechtig
 then Writeln('Hurra !!')
 else Writeln('Na ja ..');
 Monatstag := 13;
 Tag := Fre;

 if (Freude <= maessig) and (Monatstag = 13) and (Tag = Fre)
 then Writeln('Man ist ja nicht abergläubisch, aber');

 ReadLn;
end.

30200302 Dr. K. Haller

	30200302 Dr. K. Haller

