
Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.1

7 Einfache Ein- und Ausgaben
Bildschirm, Tastatur und Drucker
Vermischtes

Gliederung

7.1 Die Standardprozeduren Write und WriteLn......................................2

7.2 Die Standardprozeduren Read und ReadLn5

7.3 Die Standardfunktion ReadKey..6

7.4 Die Standardfunktion KeyPressed..7

7.5 Die Ausgabe auf den Drucker...8

7.6 Die Standardprozedur ClrScr..9

7.7 Die Standardprozedur GotoXY ..9

7.8 Die Standardfunktionen WhereX und WhereY................................10

7.9 Die Standardprozedur Window ..11

7.10 Die Standardprozeduren HighVideo, LowVideo und
NormVideo..11

7.11 Die Standardprozeduren TextMode, TextColor und
TextBackground..12

7.12 Die Standardprozeduren ClrEoL, DelLine und InsLine...................13

7.13 Die Standardprozedur Delay...14

7.14 Die Standardprozeduren Sound und NoSound.................................14

7.15 Die Standardprozeduren SetDate, SetTime, GetDate
und GetTime..15

7.16 Die Standardprozedur Halt ...17

7.2 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

In diesem Kapitel werden einfache Ausgaben auf Bildschirm, Eingaben von der Tastatur
und Ausgaben auf den Drucker behandelt. Ein- und Ausgaben auf Diskette/Platte
werden im Kapitel "Dateien" behandelt. Für die Behandlung der Bildschirm-Graphik
und für die Tastatur-Programmierung sind ebenfalls separate Kapitel vorgesehen.

Für die Beispiele in diesem Kapitel muß ein Vorgriff auf einige Datentypen gemacht
werden. Nachstehend eine Auflistung, die z.T. vereinfacht ist. Auf die vollständige Be-
handlung im Kapitel Datentypen wird verwiesen.

Datentyp Definition, Bereich, Erklärungen
Integer Ganzzahlen im Bereich -32768..32767
Word Ganzzahlen im Bereich 0..65535
Byte Ganzzahlen im Bereich 0..255
Real Kommazahlen im Bereich -1.7E+38..1.7E+38. Darstellung in der

Gleitkomma-Schreibweise (wissenschaftliche Schreibweise, Standard)
oder in der Fixkomma-Schreibweise

Char Einzelnes Zeichen (character). 256 verschiedene Zeichen, von #0
bis #255

string Zeichenkette mit maximal 255 Zeichen. Anmerkung: Ab Turbo-Pascal 7.0
können mit der neuen Unit Strings und den darin enthaltenen Deklarationen null-
terminerte Strings miteiner Länge von bis zu 232 = 65535 Zeichen verwaltet werden.
In Delphi ist die Stringlänge nur noch durch die Speicherkapazität beschränkt.

Boolean Kann nur die vordefinierten Wahrheitswerte True oder False an-
nehmen

7.1 Die Standardprozeduren Write und WriteLn

Mit den Standardprozeduren Write und WriteLn werden Daten auf den Bildschirm aus-
gegeben. Der Unterschied zwischen Write und WriteLn besteht lediglich darin, daß der
Cursor bei Write nach der Ausgabe des letzten Zeichens in der Zeile stehen bleibt,
wogegen bei WriteLn (Write Line) der Cursor nach der Ausgabe des letzten Zeichens
auf den Anfang der nächsten Bildschirmzeile gesetzt wird.

Formate: Write(a1 [, a2, ..., an])
 WriteLn(a1 [, a2, ..., an])
 WriteLn

 a1, a2, ... an Ausdrücke

Die eckigen Klammern sind nicht einzugeben, da sie in der Formatbeschreibung ledig-
lich Symbole für Optionen darstellen. Ebenso nicht die Punkte, die beliebige Wieder-
holungen symbolisieren. Siehe Kap. 4.6, in dem auch der Begriff "Ausdruck" erklärt ist.

Wenn keine Ausgabeliste angegeben ist (3. Format), dann wird mit WriteLn eine Leer-
zeile gedruckt bzw. eine noch nicht abgeschlossene Zeile abgeschlossen.

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.3

Bei den folgenden Beispielen wird angenommen, daß x, y und z numerische Variablen
sind, wogegen s eine Stringvariable sein soll.

Beispiele:

Write(x, y, z); { Cursor bleibt in der Zeile }
WriteLn('Der Wert von x: ', x); { Nach Ausgabe neue Zeile }
Write('Der Funktionswert: ', x + 3*Sin(z)/2 - 7);
WriteLn('Der Name: ', s); { Nach Ausgabe neue Zeile }

Real-Typen (Kommazahlen) werden standardmäßig in Gleitkomma-Schreibweise mit
einer Schreibbreite von 17 Zeichen (Datentyp Real) oder 23 Zeichen (Datentyp Double)
ausgegeben. Mit Hilfe einer Formatierung können Real-Typen aber auch in Fixkomma-
Schreibweise ausgegeben werden. Die Anzahl der Nachkommastellen kann gewählt
werden. Im Gegensatz zu Integerdaten wird bei Realdaten für das positive Vorzeichen
ein Leerzeichen gedruckt.

Die Zahl 47.11 in Gleitkomma-Schreibweise (unterhalb der Abzählleiste):
12345678901234567890123 Nur Abzählleiste
 4.7110000000E+01 Ohne Coprozessor, Datentyp Real
 4.71099999999860E+0001 Mit Coprozessor, Datentyp Real
 4.71100000000000E+0001 Mit Coprozessor, Datentyp Double

Zur Formatierung der Ausgabe:

Für die Formatierung der Ausgabe können die Schreibbreiten aller Ausdrücke und bei
Real-Typen in der Fixkomma-Darstellung zusätzlich auch noch die Anzahl der Dezi-
malstellen eingegeben werden.

Für die beiden Formatier-Parameter Schreibbreite und Anzahl der Dezimalstellen sind
Integer-Ausdrücke zulässig. Die Werte müssen >= 1 sein. Die beiden Parameter werden
mit Doppelpunkt an den betreffenden Ausdruck der Ausgabeliste angehängt.

Die Schreibbreite wird immer ab der letzten Schreibstelle gezählt; bei neuen Zeilen ab
Zeilenanfang.

Für das folgende Beispiel sei mit x ein Integer-Variable, mit y eine Real-Variable und
mit s eine String-Variable angenommen.

Beispiel: WriteLn(x:25, y:12:6, s:20);

Die Zahlenwert von x wird rechtsbündig in ein Schreibfeld von 25 Stellen gedruckt,
dann wird der Wert von y rechtsbündig in ein anschließendes Schreibfeld von 12 Stellen
gedruckt, davon sind 6 Stellen Nachkommastellen, somit verbleiben für Vorkomma-
stellen und Vorzeichen noch 5 Stellen. In ein anschließendes Schreibfeld von 20 Stellen
wird der Wert des Strings s rechtsbündig gedruckt.

Wenn die Schreibbreite größer ist als die Anzahl der auszugebenden Zeichen, wird in
das Feld rechtsbündig geschrieben.

7.4 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Wenn die Anzahl der Zeichen größer ist als die vorgegebene Schreibbreite, dann werden
zwar dennoch alle Zeichen ausgegeben, die Formatierung stimmt dann aber nicht mehr.
Eine Warnung erfolgt nicht.

Wenn bei Real-Typen die Anzahl der Nachkommastellen fehlt, dann wird in Gleit-
komma-Schreibweise ausgegeben.

In den folgenden Beispielen wird u.a. die Kreiszahl Pi in verschiedenen Formaten aus-
gegeben. Die Kreiszahl Pi wird durch die gleichnamige Turbo-Pascal-Standardfunktion
dargestellt. In allen neun Beispielen wird zur Verdeutlichung der Formatierung ein
vorangestellter und ein nachstehender Senkrechtstrich gedruckt. Anmerkung: Der Senk-
rechtstrich wird mit Alt+179 dargestellt.

program Pas07011; { Demo Formatierung der Ausgabe }
begin
 WriteLn('1:12345678901234567890 ');
 WriteLn('2:', Pi, ' ');
 WriteLn('3:', -Pi:8, -0.4711, ' ');
 WriteLn('4:', Pi:8:3, ' ');
 WriteLn('5:', 4711, 4711, ' ');
 WriteLn('6:', -4711, -4711, ' ');
 WriteLn('7:', 'Anton Huber':15, ' ');
 WriteLn('8:', 'Anton Huber':4, ' ');
 WriteLn('9:12345678901234567890 ');
end.

Man beachte, daß bei fehlender Formatierung lückenlos hintereinander geschrieben
wird. Lediglich bei Real-Typen wird für das nicht-abgedruckte positive Vorzeichen ein
Leerzeichen gedruckt. Bei positiven Integer-Typen entfällt auch dieses Leerzeichen, wie
Zeile 5 zeigt. Die Zeile 8 zeigt, daß trotz falscher Schreibbreite alle Zeichen ausgedruckt
werden.

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.5

7.2 Die Standardprozeduren Read und ReadLn

Mit den beiden Standardprozeduren werden Daten von der Tastatur eingelesen und auf
die im Aufruf genannten Variablen zugewiesen. Die eingegebenen Daten werden auf
dem Bildschirm angezeigt. Die Eingabe ist mit der Eingabetaste Enter (Return) abzu-
schließen.

Der Unterschied zwischen den beiden Prozeduren besteht lediglich darin, daß der Cur-
sor bei Read nach dem Einlesen der Daten in der Bildschirm-Eingabezeile verbleibt,
wogegen er mit ReadLn (Read Line) nach dem Einlesen der Daten auf den Anfang der
nächsten Bildschirmzeile gesetzt wird, egal wieviele Daten die Eingabezeile noch
enthält. Wenn die Eingabezeile mehr Daten enthält als Read verlangt, dann werden
beim nächsten Read-Aufruf diese Daten gelesen. Bei ReadLn ist dies nicht der Fall.

Formate: Read(v1 [, v2, ..., vn])
 ReadLn(v1 [, v2, ..., vn])
 ReadLn Wartet auf Taste Enter

 v1, v2, ..., vn Variablen

Die Variablen können beliebige Zeichenketten-Variablen (Typ String oder Char) oder
numerische Variablen (alle Integer- und Realtypen) sein. Eine Mischung ist zulässig.
Allerdings dürfen nach einer Zeichenketten-Variablen keine weiteren Variablen stehen.
Somit können in einer Read-Anweisung auch keine zwei Strings eingelesen werden.
Führende und nachstehende Leerzeichen werden bei Strings übernommen. Bei
numerischen Eingaben werden Leerzeichen (ein oder mehrere) und Tabulatorsprünge
lediglich als Trennzeichen zwischen mehreren Daten interpretiert. Das Komma darf
somit bei der Eingabe nicht als Trennzeichen benutzt werden.

Beispiel: ReadLn(x);
Die Tastatureingabe wird auf die (deklarierte) Variable x zugewiesen.

Für ein benutzerfreundliches Programm ist es unbedingt erforderlich, daß vor Read auf
dem Bildschirm ein Hinweis über die folgende Eingabe erscheint. Dazu nimmt man
zweckmäßigerweise die Prozedur Write, wenn der Cursor nach dem Hinweistext stehen
bleiben soll.

Beispiel: Write('Eingabe Rechnungsbetrag und Name: ');
 ReadLn(Betrag, Name);

Demo-Programm:

program Pas07021; { Demo Read und ReadLn }
var
 a, b, c, d: Integer;
 s: string[10];

begin
 WriteLn('Geben Sie 6 Zahlen wie in der folgenden Zeile ein: ');
 WriteLn('1 2 3 4 5 6');

7.6 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

 Read(a, b, c, d);
 WriteLn(a:2, b:2, c:2, d:2); { Die Ausgabe: 1 2 3 4 }

 WriteLn('Geben Sie 6 Zahlen wie in der folgenden Zeile ein: ');
 WriteLn('1 2 3 4 5 6');
 ReadLn(a, b, c, d);
 WriteLn(a:2, b:2, c:2, d:2); { Die Ausgabe: 5 6 1 2
 da noch 2 Daten von Read frei !! }

 WriteLn('Geben Sie die folgende Zeile ein:');
 WriteLn('4711 Anton Huber');
 ReadLn(a, s);
 WriteLn(a, s); { Die Ausgabe: 4711 Anton Hub
 da der String s auf 10 Zeichen deklariert ist
 und das Leerzeichen vor dem "Anton" mitzählt. }
end.

Die Bildschirmausgabe des vorstehenden Programms

7.3 Die Standardfunktion ReadKey
Mit der Funktion ReadKey wird ein Zeichen ohne abschließendes Return von der Tasta-
tur gelesen. Das Ergebnis dieser Funktion hat den Datentyp Char (character). Genau
genommen wird mit ReadKey der Pufferspeicher der Tastatur gelesen. Wenn der
Tastaturpuffer leer ist, dann wartet das Programm auf einen Tastendruck. Siehe auch
Funktion KeyPressed.

ReadKey benötigt die Unit CRT.

Format: ReadKey

Im Gegensatz zu den Prozeduren Read und ReadLn wird das Zeichen nicht auf dem
Bildschirm angezeigt. Sollte das gewünscht sein, ist das Zeichen mit Write oder WriteLn
auszugeben, was in den meisten Fällen sinnvoll ist.

Beispiel: Write('Drücken Sie eine Taste: ');
WriteLn(ReadKey);

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.7

Vorgriff: Spezielle Tasten (z.B. die Cursortasten und die Funktionstasten und auch
Tastenkombinationen mit der Alt-Taste) liefern einen sogenannten Doppelcode. Der
erste Code eines Doppelcodes ist immer das Null-Byte, Chr(0), #0. Der zweite Code ist
der Scan-Code der betreffenden Taste. Doppelcodes werden im Kapitel "Programmie-
rung der Tastatur" behandelt.

Mit ReadKey kann man Tastatureingaben absichern. Im folgenden Demo-Programm
wird ein Vorgriff auf die repeat/until-Schleifenkonstruktion gemacht.

program Pas07031; { Demo Tasteneinzug mit ReadKey }

uses
 CRT; { Unit CRT für ReadKey notwendig }

var
 Zeichen: Char;

begin
 Write('Drücken Sie die Taste <j>: ');
 repeat { Wiederhole solange, bis }
 Zeichen := ReadKey;
 until (Zeichen = 'j'); { bis Taste 'j' gedrückt wird }
 WriteLn(Zeichen);
end.

7.4 Die Standardfunktion KeyPressed

Die Standardfunktion KeyPressed stellt fest, ob eine Taste gedrückt wurde, genauer: ob
sich im Tastaturpuffer noch ein Zeichen befindet. Das Ergebnis der Funktion hat den
Datentyp Boolean und kann somit nur True oder False sein. KeyPressed liest aber nicht
das Zeichen aus dem Tastaturpuffer. Dazu dient die Standardfunktion ReadKey.

KeyPressed benötigt die Unit CRT.

Format: KeyPressed

Es werden nur Tasten geprüft, die lesbare Zeichen erzeugen; Tasten wie Umsch, Strg,
Num, Funktionstasten usw. somit nicht alleine sondern nur in Verbindung mit einer
anderen Taste, die ein lesbares Zeichen ergibt.

Bei den folgenden Demo-Programmen wird wieder ein Vorgriff auf die repeat/until-
Schleifenkonstruktion gemacht.

7.8 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

program Pas07041; { Demo Funktion KeyPressed }
uses
 CRT; { Unit CRT für Funktion KeyPressed notwendig }
begin
 ClrScr;
 Write('Ich warte auf einen Tastendruck ');
 Write('oder bis zum Stromausfall ');
 repeat
 until KeyPressed;
end.

Zum Leeren des Tastaturpuffers:

Bei längeren Programmläufen kann es vorkommen, daß der Anwender mit der Tastatur
"spielt", d.h. versehentlich Zeichen im Tastaturpuffer gespeichert werden. Bei einem
späteren ReadKey wird ein gespeichertes Zeichen ohne Warten ausgelesen. Unter
Umständen kann das Programm einen völlig ungewollten Ablauf nehmen. Deshalb
sollte man in diesen Fällen den Tastaturpuffer leeren und erst dann das gewünschte
Zeichen einziehen. Das folgende Programmschema zeigt die Vorgehensweise unter
Vorwegnahme der while- und repeat/until-Schleifen und noch einiger nicht erklärter
Begriffe:

...
uses
 CRT; { wegen ReadKey und KeyPressed }

var
 Ch: Char;
...
begin
 ... { Hier sei ein langer Programmlauf ... }
 ... { ... und der Anwender "spielt" mit der Tastatur }

 while KeyPressed do
 Ch := ReadKey; { Zuerst Tastaturpuffer leeren ...}

 Write('Eingabe (j/n): ');

 repeat
 Ch := ReadKey; { ... dann erst Zeichen einziehen }
 until (Ch = 'j') or (Ch = 'n');

 if Ch = 'j'
 then
 else;
 ...
end.

7.5 Die Ausgabe auf den Drucker

Für die Druckerausgabe wird die Unit PRINTER benötigt. Ansonsten werden die
gleichen Prozeduren wie für die Bildschirmausgabe benutzt, also Write oder WriteLn,
die lediglich mit der Drucker-Dateivariablen "Lst" zu ergänzen sind. Die Eigenschaften

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.9

der beiden Prozeduren bezüglich Zeilenvorschub und Formatierung gelten auch für den
Drucker. Das folgende Beispiel zeigt die Ausgabe auf den Drucker:

program Pas07051; { Demo Drucker-Test }
uses
 PRINTER; { Unit PRINTER für Druckerausgaben }
begin
 WriteLn(Lst, 'Anton Huber'); { Dateivariable »Lst« für Drucker }
 WriteLn(Lst); { Leerzeile auf Drucker }
end.

Ein Seitenvorschub wird auf dem Drucker mit

Write(Lst, #12); oder mit Write(Lst, Chr(12));

erreicht. Mit #12 wird das Zeichen Nr 12 eingegeben. Bei diesem Zeichen handelt es
sich um das Steuerzeichen Nr. 12 nach Ascii (Vorgriff), das für Form Feed (FF)
bestimmt ist.

7.6 Die Standardprozedur ClrScr

Die Prozedur ClrScr (Clear Screen) löscht den Bildschirm und setzt den Cursor in die
linke obere Ecke des Bildschirm-Fensters.

ClrScr benötigt die Unit CRT.

Format: ClrScr

Diese Prozedur hat keine Parameter.

Turbo-Pascal speichert Bildschirmausgaben. Wenn man die früheren Bildschirmausga-
ben nicht sehen möchte, dann den Bildschirm vor der ersten Ausgabe mit ClrScr lö-
schen.

7.7 Die Standardprozedur GotoXY

Die Prozedur GotoXY versetzt den Cursor in die Spalte X der Zeile Y.

GotoXY benötigt die Unit CRT.

Format: GotoXY(spalte, zeile)

spalte Ausdruck für Spaltenposition, Datentyp Byte
zeile Ausdruck für Zeilenposition, Datentyp Byte

Für das Standard-Textfenster gilt: spalte: 1..80, zeile: 1..25

Wenn auch nur einer der beiden Ausdrücke ungültig ist, dann wird der Cursor nicht ver-
setzt.

7.10 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Die Prozedur GotoXY arbeitet relativ zum gesetzten Textfenster, siehe auch Stan-
dardprozedur Window.

Im folgenden Demo-Programm wird die Standardfunktion Random vorweggenommen.

program Pas07071; { Demo Cursorpositionierung mit GotoXY }

uses
 CRT; { Unit CRT für ClrScr, GotoXY und KeyPressed }

const
 SpMin = 10; SpMax = 70;
 ZeMin = 5; ZeMax = 22;

var
 Sp, Ze: Byte;

begin
 ClrScr; { Bildschirm löschen }
 GotoXY(SpMin, ZeMin - 2); { Cursor in Spalte und Zeile }
 WriteLn('Demo: Cursorpositionierung');
 GotoXY(SpMin, ZeMin - 1);
 WriteLn('Ende mit beliebigem Tastendruck');

 repeat
 Sp := SpMin + Random(SpMax - SpMin + 1); { Standardfunkt. Random }
 Ze := SpMin + Random(ZeMax - ZeMin + 1); { liefert Zufallszahlen }
 GotoXY(Sp, Ze);
 Write('*');
 until KeyPressed;
end.

7.8 Die Standardfunktionen WhereX und WhereY

Die Standardfunktion WhereX liefert die momentane Spaltenposition des Cursors,
WhereY liefert dagegen die momentane Zeilenposition. Das Ergebnis hat den Datentyp
Byte. Wenn mit der Standardfunktion Window ein Textfenster gesetzt ist, dann sind die
Ergebnisse von WhereX und WhereY Relativ-Koordinaten zum gesetzten Textfenster.

WhereX und WhereY benötigen die Unit CRT.

Format: WhereX
 WhereY

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.11

program Pas07081; { Demo WhereX und WhereY }
uses
 CRT;
begin
 ClrScr;
 Write('*****');
 GotoXY(WhereX - 3, WhereY); { Cursor in der gleichen Zeile
 um 3 Spalten zurück }
 WriteLn('!'); { und das mittlere Zeichen überschreiben }
 ReadLn;
end.

7.9 Die Standardprozedur Window

Die Standardprozedur Window (nicht zu verwechseln mit Windows) definiert einen Aus-
schnitt des Bildschirms als Textfenster.

Window benötigt die Unit CRT.

Format: Window(x1, y1, x2, y2)

x1, y1, x2, y2 Ausdrücke mit Datentyp Byte
x1 Erste Bildschirmspalte, Minimalwert 1
y1 Erste Bildschirmzeile, Minimalwert 1
x2 Letzte Bildschirmspalte, Maximalwert 80
y2 Letzte Bildschirmzeile, Maximalwert 25

Alle Koordinaten von GotoXY, WhereX und WhereY sind Relativ-Koordinaten zum zu-
letzt mit Window gesetzten Fenster.

Beim Aufruf von Window wird der Cursor in die linke obere Ecke des Fensters versetzt.
Die Standardprozedur ClrScr wirkt nur für das aktuelle Fenster.

7.10 Die Standardprozeduren HighVideo, LowVideo und
NormVideo

Mit den Prozeduren HighVideo wird die Bildschirmintensität für alle folgenden Aus-
gaben erhöht, so daß die Zeichen heller als normal erscheinen. Mit LowVideo erscheinen
die Zeichen dunkler als normal. Mit NormVideo wird die normale Intensität (Standard)
eingestellt. Bei Farbbildschirmen sind die Prozeduren TextColor und TextBackground
interessanter, siehe nächsten Punkt.

HighVideo, LowVideo und NormVideo benötigen die Unit CRT.

7.12 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Formate: HighVideo
LowVideo

 NormVideo (wie HighVideo)

program Pas07101; { Demo Bildschirmintensitäten }
uses
 CRT; { Unit CRT für Bildschirmintensitäten }
begin
 ClrScr;
 WriteLn('Das ist normale Intensität.');
 HighVideo; WriteLn('Das ist hohe Intensität.');
 LowVideo; WriteLn('Das ist geringe Intensität.');
 NormVideo; WriteLn('Das ist wieder normale Intensität.');
 ReadLn;
end.

7.11 Die Standardprozeduren TextMode, TextColor und
TextBackground

Mit diesen Prozeduren können der Textmodus (Schwarz/Weiß- und Farb-Bildschirme),
die Farben und Attribute des Textes (Farbbildschirm-Textfarbe, Farbbildschirm-Hinter-
grundfarbe), blinkende Zeichen,) eingestellt werden. Diese Prozeduren benötigen die
Unit CRT.

Der Textmodus, die Vordergrund- und die Hintergrundfarben werden sind durch Zahlen
festgelegt (Textmodus Datentyp Word, Bildschirmfarben Datentyp Byte). An Stelle der
Zahlen können jedoch auch die Bezeichner benutzt werden, die in der Unit CRT für
diese Zwecke vordefiniert sind. Siehe folgende Demo-Programme.

program Pas07111; { Demo Standardprozedur "TextMode" }
uses
 CRT;
begin
 { Hinweise: - Es kann immer nur e i n Text-Mode wirksam sein.
 Die nichtzutreffenden in diesem Programm mit
 Kommentarklammern ausschalten.
 - Der Text-Mode kann sein: 0, 1, 2, 3, 7 oder 256.
 Statt dieser Zahlen (Datentyp Word) können auch
 die in der Unit "CRT" vordefinierten Konstanten-
 bezeichner "BW40", "Co80", "BW40", "Co80", "Mono"
 und "Font8x8" benutzt werden. Alles Steinzeit!
 - Ab Win95 mit "Alt+Enter" auf Vollbild umschalten.
 }
 (*
 TextMode(BW40); { 40 Zeichen in einer Zeile, 25 Zeilen }
 WriteLn('BW40 = 0: CGA, 40 * 25, monochrom');

 TextMode(Co40);
 WriteLn('Co40 = 1: CGA, 40 * 25, farbig');

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.13

 TextMode(BW80); { 80 Zeichen in einer Zeile, 25 Zeilen }
 WriteLn('BW80 = 2: CGA, 80 * 25, monochrom');

 TextMode(Co80);
 WriteLn('Co80 = 3: CGA, 80 * 25, farbig');

 TextMode(Mono);
 WriteLn('Mono = 7: CGA, 80 * 25, monochrom, Monochrom-Adapter');
 *)
 TextMode(Font8x8 + Co80); { Font8x8 nur mit einer Addition }
 WriteLn('Font8x8 = 256: 50 Zeilen VGA (43 Zeilen EGA)');

 ReadLn;
end.

program Pas07112; { Demo Standardprozeduren "TextColor"
 und "TextBackground" }
uses
 CRT;
var
 Vordergrund,
 Hintergrund: Byte;

begin
 repeat
 ClrScr;
 GotoXY(10, 1); Write('Demo Bildschirmfarben. Ende mit 0 0');
 GotoXY(10, 3); Write('Vordergrund Hintergrund ');
 GotoXY(10, 4); Write('------------------ -------------');
 GotoXY(10, 5); Write(' 0 = Black 0 = Black ');
 GotoXY(10, 6); Write(' 1 = Blue 1 = Blue ');
 GotoXY(10, 7); Write(' 2 = Green 2 = Green ');
 GotoXY(10, 8); Write(' 3 = Cyan 3 = Cyan ');
 GotoXY(10, 9); Write(' 4 = Red 4 = Red ');
 GotoXY(10, 10); Write(' 5 = Magenta 5 = Magenta ');
 GotoXY(10, 11); Write(' 6 = Brown 6 = Brown ');
 GotoXY(10, 12); Write(' 7 = LightGray 7 = LightGray');
 GotoXY(10, 13); Write(' 8 = DarktGray -------------');
 GotoXY(10, 14); Write(' 9 = LightBlue ');
 GotoXY(10, 15); Write('10 = LightGreen ');
 GotoXY(10, 16); Write('11 = LightCyan ');
 GotoXY(10, 17); Write('12 = LightRed ');
 GotoXY(10, 18); Write('13 = LightMagenta');
 GotoXY(10, 19); Write('14 = Yellow ');
 GotoXY(10, 20); Write('15 = White ');
 GotoXY(10, 21); Write('128= Blink ');
 GotoXY(10, 22); Write('-----------------');

7.14 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

 GotoXY(10, 23); ReadLn(Vordergrund); { Der Einfachheit halber }
 GotoXY(34, 14); ReadLn(Hintergrund); { ohne Fehlerprüfung }

 TextColor(Vordergrund);
 TextBackground(Hintergrund);

 until (Vordergrund = Black) and (Hintergrund = Black);
end.

7.12 Die Standardprozeduren ClrEoL, DelLine und InsLine

• Mit ClrEoL (Clear End of Line) werden alle Zeichen ab der momentanen Cursor-
position bis zum Zeilenende gelöscht.

• Mit DelLine (Delete Line) wird die Zeile, in der sich der Cursor befindet, gelöscht.
Alle darunter liegenden Zeilen werden um eine Zeile nach oben geschoben.

• Mit InsLine (Insert Line) wird die Zeile, in der der Cursor steht und alle nachfol-
genden Zeilen nach unten geschoben und an Stelle der alten Cursorzeile eine Leer-
zeile eingefügt. Mit einer trickhaften Anwendung von InsLine gelingt es, in der
25. Bildchirmzeile auch die 80. Bildschirmspalte zu bedrucken, ohne daß nach
der Ausabe des 80. Zeichens der Bildschirm gescrollt wird. Man schreibt den Text
zuächst mittels GotoXY in die 24. Zeile und "schiebt" diese Zeile dann mit InsLine in
die 25. Zeile.

Alle drei Prozeduren benötigen die Unit CRT.

Formate: ClrEoL
DelLine
InsLine

Wenn mit Window ein Fenster definiert wurde, dann beziehen sich die Aktionen aller
drei Prozeduren auf das aktuelle Fenster, sonst auf den gesamten Bildschirm.

7.13 Die Standardprozedur Delay

Die Prozedur Delay bewirkt eine Verzögerung der Programmausführung für eine wähl-
bare Zeit (Zeitschleife).

Delay benötigt die Unit CRT

Format: Delay(zeit)

zeit Ausdruck. Datentyp Word,
Zeit in Millisekunden (0..65535)

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.15

program Pas07131; { Demo Delay }

uses
 CRT;

const
 Piep = #7; { Steuerzeichen #7: Beep, Bell, Pfeifton }

begin
 ClrScr;
 WriteLn(Piep, 'Das Programm ist in ca. 5 Sekunden beendet');
 Delay(5000); { 5000 Millisekunden warten }
 WriteLn(Piep);
end.

7.14 Die Standardprozeduren Sound und NoSound

Mit der Prozedur Sound wird auf dem eingebauten Lautsprecher ein Ton mit einer wähl-
baren Frequenz ausgegeben. Der Ton wird solange erzeugt, bis er mit der Standard-
prozedur NoSound wieder abgestellt wird.

Beide Prozeduren benötigen die Unit CRT.

Format: Sound(frequenz)
frequenz Ausdruck, Datentyp Word

Frequenz in Hertz, 0..65535,
aber durch Lautsprecher
unten und oben unbegrenzt.

NoSound

program Pas07141; { Demo Sound, Vorgriff Funktion Random }
uses
 CRT;
const
 fMin = 40;
 fMmax = 4000;
begin
 ClrScr;
 WriteLn('Den Ohrenschmaus mit einem Tastendruck beenden');
 Sound(440); { Kammerton a (440 Hertz) }
 Delay(2000); { mit ca. 2 Sekunden Dauer }
 repeat
 Sound(fMin + Random(fMax - fMin + 1)); { Zufallstöne }
 Delay(200); { Dauer ca. 0.2 Sekunden }
 until KeyPressed;
 NoSound;
end.

7.16 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

7.15 Die Standardprozeduren SetDate, SetTime, GetDate
und GetTime

Diese Prozeduren haben zwar nicht unmittelbar mit Ein- und Ausgaben zu tun, sollen
aber dennoch an dieser Stelle abgehandelt werden.

• Mit SetDate kann das Datum des Systems gesetzt werden, ähnlich wie mit DATE im
Betriebssystem.

• Mit SetTime kann die Uhrzeit des Systems gesetzt werden, ähnlich wie mit TIME im
Betriebssystem.

• Mit GetDate wird das aktuelle Datum an Variablen geliefert.
• Mit GetTime wird die aktuelle Uhrzeit an Variablen geliefert.

Alle vier Prozeduren benötigen die Unit DOS. Alle Parameter und Variablen müssen
den Datentyp Word haben und müssen bei SetDate und SetTime in später angegebenen
Gültigkeitsbereich liegen.

Format: SetDate(jahr, monat, tag, wochentag)

jahr Numerischer Ausdruck. Gültig: 1980..2099
monat Numerischer Ausdruck. Gültig: 1..12
tag Numerischer Ausdruck. Gültig: 1..31
wochentag Numerischer Ausdruck. Gültig: 0..6,

wobei 0 für Sonntag steht.

Format: SetTime(hh, mm, ss, ss100)

hh Numerischer Ausdruck für Stunden. Gültig: 0..23
mm Numerischer Ausdruck für Minuten. Gültig: 0..59
ss Numerischer Ausdruck für Sekunden. Gültig: 0..59
ss100 Numerischer Ausdruck für Hunderstel-Sekunden.

Gültig: 0..99

Format: GetDate(jahr, monat, tag, wochentag)

jahr Variable. Ergebnis: 1980..2099
monat Variable. Ergebnis: 1..12
tag Variable. Ergebnis: 1..31
wochentag Variable. Ergebnis: 0..6, wobei: 0 = Sonntag

Format: GetTime(hh, mm, ss, ss100)

hh Variable für Stunden. Ergebnis: 0..23
mm Variable für Minuten. Ergebnis: 0..59
ss Variable für Sekunden. Ergebnis: 0..59
ss100 Variable für Hunderstel-Sekunden. Ergebnis: 0..99

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.17

Die Parameter bei SetDate und SetTime werden im Normalfall als Konstanten einge-
geben. Wenn auch nur ein Parameter außerhalb des Gültigkeitsbereiches liegt, wird die
Prozedur nicht ausgeführt.

program Pas07151; { Demo Datum und Uhrzeit }

uses
 CRT, DOS; { Unit CRT für Delay, Unit DOS für Datum und Zeit }

const
 Dauer = 1000;

var
 Jahr, Monat, Tag, Wochentag,
 Stunden, Minuten, Sekunden, Sekunden_100: Word;
 Zeit_1, Zeit_2, Zeit: Real;

begin
 ClrScr;
 GetDate(Jahr, Monat, Tag, Wochentag);
 Writeln('Das Jahr: ', Jahr);
 Writeln('Der Monat: ', Monat);
 Writeln('Der Tag: ', Tag);
 Writeln('Der Wochentag: ', Wochentag, ' (0 = Sonntag)');

 GetTime(Stunden, Minuten, Sekunden, Sekunden_100);
 Zeit_1 := Stunden*3600.0 + Minuten*60 + Sekunden + Sekunden_100/100;
 Delay(Dauer);
 GetTime(Stunden, Minuten, Sekunden, Sekunden_100);
 Zeit_2 := Stunden*3600.0 + Minuten*60 + Sekunden + Sekunden_100/100;
 Zeit := Zeit_2 - Zeit_1;

 Writeln('Die Zeitschleife Delay mit ', Dauer, ' Millisekunden');
 Writeln('hat', Zeit:6:3, ' Sekunden gedauert.');
 ReadLn;
 end.

Die Ausgabe am Dienstag, den 14. März 2000:

Das Jahr: 2000
Der Monat: 3
Der Tag: 14
Der Wochentag: 2 (0 = Sonntag)
Die Zeitschleife Delay mit 1000 Millisekunden
hat 0.980 Sekunden gedauert.

7.16 Die Standardprozedur Halt

Die Prozedur Halt bricht die Programmausführung ab. Die Prozedur ist i.a. nur in
Verbindung mit einer Bedingung, z.B. bei einem nicht behebbaren Fehlerfall) oder für
Programmtestzwecke sinnvoll. Optional kann ein Exitcode übergeben werden. Für Tests
sollte man aber statt Halt die Möglichkeiten des integrierten Debuggers (Setzen von

7.18 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Abbruchpunkten oder schrittweise Ausführung, Variablenabfrage an den Haltepunkten
mit Strg+F4, siehe Kap. 5.7) nutzen.

Format: Halt[(exitcode)]

Beispiele: Halt; Kein Exitcode = 0
Halt(0); Exitcode 0
Halt(11); Exitcode 11

Der optionale Exitcode ist ein Ausdruck mit den Datentyp Word, man sollte aber nur
Werte aus dem Byte-Bereich 0..255 verwenden. Wenn der Exitcode fehlt, wird stan-
dardmäßig 0 angenommen, also: Halt(0).

Der Exitcode ist dann von Bedeutung, wenn das compilierte Pascal-Programm innerhalb
eines Batch-Programms aufgerufen wird; siehe DV II, Kap. 1: Betriebssystem MS-DOS.
Bei fehlerfreier Ausführung übergibt man sinnvollerweise den Exitcode 0. Ansonsten
hat der Programmierer des Batch-Programms auf die Festlegungen des Programmieres
des Pascal-Programms einzugehen. Im Batch-Programm kann mit errorlevel auf den
Exitcode zugegriffen werden.

50200304 Dr. K. Haller

