Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.1

7 Einfache Ein- und Ausgaben
Bildschirm, Tastatur und Drucker

Vermischtes
Gliederung
7.1 Die Standardprozeduren Write und WriteLn...........ccocceeviiiiinninnees, 2
7.2 Die Standardprozeduren Read und ReadlLncccooovveiiiiiiniinnnn, 5
7.3 Die Standardfunktion ReadKeycccoevieniiniiiniiiniiieicceeeeee, 6
7.4 Die Standardfunktion KeyPressed.........cccoveiviiniieniinieniicieeeee, 7
7.5 Die Ausgabe auf den Drucker........cocoeveeviiniiniiiiiienieeeeeeee, 8
7.6 Die Standardprozedur CIrSCr........ooovevieiiiiiiiiieieeeeeeee s 9
7.7 Die Standardprozedur GOtOXYccccevcieeiiiriieiiienierieeieeeeee e 9
7.8 Die Standardfunktionen WhereX und WhereYc.ccocvevieennnnne. 10
7.9 Die Standardprozedur Windowccccceeeeeviiinienieenienieeieeene, 11
7.10 Die Standardprozeduren HighVideo, LowVideo und

NOTMVIACO ...ttt 11
7.11 Die Standardprozeduren TextMode, TextColor und

TextBack@round............ccocveivvieiiiiieriiecee e 12
7.12 Die Standardprozeduren CIrEoL, DelLine und InsLine................... 13
7.13 Die Standardprozedur Delay..........cccceevviieiiiiiiciiiiieieeceecee e, 14
7.14 Die Standardprozeduren Sound und NoSound............ccceevvveennnennn. 14
7.15 Die Standardprozeduren SetDate, SetTime, GetDate

UNA GEtTIME.eeiiiieiieiie e e 15
7.16 Die Standardprozedur Haltcccoeviiiiiiiiiiiiieeecee e, 17

7.2 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

In diesem Kapitel werden einfache Ausgaben auf Bildschirm, Eingaben von der Tastatur
und Ausgaben auf den Drucker behandelt. Ein- und Ausgaben auf Diskette/Platte
werden im Kapitel "Dateien" behandelt. Fiir die Behandlung der Bildschirm-Graphik
und fiir die Tastatur-Programmierung sind ebenfalls separate Kapitel vorgesehen.

Fiir die Beispiele in diesem Kapitel mufl ein Vorgriff auf einige Datentypen gemacht
werden. Nachstehend eine Auflistung, die z.T. vereinfacht ist. Auf die vollstindige Be-
handlung im Kapitel Datentypen wird verwiesen.

Datentyp Definition, Bereich, Erklarungen

| nt eger Ganzzahlen im Bereich -32768..32767

Wr d Ganzzahlen im Bereich 0..65535

Byt e Ganzzahlen im Bereich 0..255

Real Kommazahlen im Bereich -1.7E+38..1.7E+38. Darstellung in der

Gleitkomma-Schreibweise (wissenschaftliche Schreibweise, Standard)
oder in der Fixkomma-Schreibweise

Char Einzelnes Zeichen (character). 256 verschiedene Zeichen, von #0
bis #255
string Zeichenkette mit maximal 255 Zeichen. Anmerkung: Ab Turbo-Pascal 7.0

kénnen mit der neuen Unit Strings und den darin enthaltenen Deklarationen null-
terminerte Strings miteiner Linge von bis zu 2*? = 65535 Zeichen verwaltet werden.
In Delphi ist die Stringlénge nur noch durch die Speicherkapazitit beschrankt.

Bool ean Kann nur die vordefinierten Wahrheitswerte True oder False an-
nehmen

7.1 Die Standardprozeduren Write und WriteLn

Mit den Standardprozeduren Write und WriteLn werden Daten auf den Bildschirm aus-
gegeben. Der Unterschied zwischen Write und WriteLn besteht lediglich darin, daf3 der
Cursor bei Write nach der Ausgabe des letzten Zeichens in der Zeile stehen bleibt,
wogegen bei WriteLn (Write Line) der Cursor nach der Ausgabe des letzten Zeichens
auf den Anfang der néchsten Bildschirmzeile gesetzt wird.

Formate: Wite(al [, a2, ..., an])
WiteLn(al [, a2, ..., an])
WitelLn
al, a2, ... an Ausdriicke

Die eckigen Klammern sind nicht einzugeben, da sie in der Formatbeschreibung ledig-
lich Symbole fiir Optionen darstellen. Ebenso nicht die Punkte, die beliebige Wieder-
holungen symbolisieren. Siehe Kap. 4.6, in dem auch der Begriff "Ausdruck" erklért ist.

Wenn keine Ausgabeliste angegeben ist (3. Format), dann wird mit WriteLn eine Leer-
zeile gedruckt bzw. eine noch nicht abgeschlossene Zeile abgeschlossen.

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.3

Bei den folgenden Beispielen wird angenommen, daf3 x, y und z numerische Variablen
sind, wogegen s eine Stringvariable sein soll.

Beispiele:

Wite(x, vy, 2); { Cursor bleibt in der Zeile }
WiteLn(' Der Wert von x: ', Xx); { Nach Ausgabe neue Zeile }
Wite(' Der Funktionswert: ', x + 3*Sin(z)/2 - 7);
WiteLn(' Der Nane: ', s); { Nach Ausgabe neue Zeile }

Real-Typen (Kommazahlen) werden standardmiBig in Gleitkomma-Schreibweise mit
einer Schreibbreite von 17 Zeichen (Datentyp Real) oder 23 Zeichen (Datentyp Double)
ausgegeben. Mit Hilfe einer Formatierung konnen Real-Typen aber auch in Fixkomma-
Schreibweise ausgegeben werden. Die Anzahl der Nachkommastellen kann gewahlt
werden. Im Gegensatz zu Integerdaten wird bei Realdaten filir das positive Vorzeichen
ein Leerzeichen gedruckt.

Die Zahl 47. 11 in Gleitkomma-Schreibweise (unterhalb der Abzdhlleiste):

12345678901234567890123 Nur Abzéhlleiste
4. 7110000000E+01 Ohne Coprozessor, Datentyp Real
4.71099999999860E+0001 Mit Coprozessor, Datentyp Real
4. 71100000000000E+0001 Mit Coprozessor, Datentyp Double

Zur Formatierung der Ausgabe:

Fiir die Formatierung der Ausgabe konnen die Schreibbreiten aller Ausdriicke und bei
Real-Typen in der Fixkomma-Darstellung zusétzlich auch noch die Anzahl der Dezi-
malstellen eingegeben werden.

Fiir die beiden Formatier-Parameter Schreibbreite und Anzahl der Dezimalstellen sind
Integer-Ausdriicke zulédssig. Die Werte miissen >= 1 sein. Die beiden Parameter werden
mit Doppelpunkt an den betreffenden Ausdruck der Ausgabeliste angehingt.

Die Schreibbreite wird immer ab der letzten Schreibstelle gezihlt; bei neuen Zeilen ab
Zeilenanfang.

Fiir das folgende Beispiel sei mit x ein Integer-Variable, mit y eine Real-Variable und
mit s eine String-Variable angenommen.

Beispiel: WitelLn(x: 25, y:12:6, s:20);

Die Zahlenwert von x wird rechtsbiindig in ein Schreibfeld von 25 Stellen gedruckt,
dann wird der Wert von y rechtsbiindig in ein anschlieBendes Schreibfeld von 12 Stellen
gedruckt, davon sind 6 Stellen Nachkommastellen, somit verbleiben fiir Vorkomma-
stellen und Vorzeichen noch 5 Stellen. In ein anschlieBendes Schreibfeld von 20 Stellen
wird der Wert des Strings s rechtsbiindig gedruckt.

Wenn die Schreibbreite grofler ist als die Anzahl der auszugebenden Zeichen, wird in
das Feld rechtsbiindig geschrieben.

7.4 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Wenn die Anzahl der Zeichen grof3er ist als die vorgegebene Schreibbreite, dann werden
zwar dennoch alle Zeichen ausgegeben, die Formatierung stimmt dann aber nicht mehr.
Eine Warnung erfolgt nicht.

Wenn bei Real-Typen die Anzahl der Nachkommastellen fehlt, dann wird in Gleit-
komma-Schreibweise ausgegeben.

In den folgenden Beispielen wird u.a. die Kreiszahl Pi in verschiedenen Formaten aus-
gegeben. Die Kreiszahl Pi wird durch die gleichnamige Turbo-Pascal-Standardfunktion
dargestellt. In allen neun Beispielen wird zur Verdeutlichung der Formatierung ein
vorangestellter und ein nachstehender Senkrechtstrich gedruckt. Anmerkung: Der Senk-
rechtstrich wird mit Alt+179 dargestellt.

program Pas07011; { Deno Fornmatierung der Ausgabe }

begin
WitelLn('1:123456789012345678900C7) ;
WiteLn('2:', Pi, '0O0);
WiteLn('3:', -Pi:8, -0.4711, '[0);
WiteLn('4:', Pi:8:3, '00);
WiteLn('5:"', 4711, 4711, '0O0);
WiteLn('6:', -4711, -4711, '0O0);
WiteLn('7:', '"Anton Huber':15, '0O);
WiteLn('8:', 'Anton Huber':4, '[0);
WitelLn('9:123456789012345678900C7) ;

end.

1:12345678301234567830 |

2: 3.1415926536E+00]

3:-3. 1E+86-4. 7110000000E-01 |
4: 3.142}

5:47114711}

6:-4711-4711}

?: Anton Huber]

8:Anton Huber|

9: 12345678901234567890 |

Die Bildschirmausgabe des Programms ""Pas@7@011.PAS"

Man beachte, dafl bei fehlender Formatierung liickenlos hintereinander geschrieben
wird. Lediglich bei Real-Typen wird fiir das nicht-abgedruckte positive Vorzeichen ein
Leerzeichen gedruckt. Bei positiven Integer-Typen entfdllt auch dieses Leerzeichen, wie
Zeile 5 zeigt. Die Zeile 8 zeigt, daB trotz falscher Schreibbreite alle Zeichen ausgedruckt
werden.

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.5

7.2 Die Standardprozeduren Read und ReadLLn

Mit den beiden Standardprozeduren werden Daten von der Tastatur eingelesen und auf
die im Aufruf genannten Variablen zugewiesen. Die eingegebenen Daten werden auf
dem Bildschirm angezeigt. Die Eingabe ist mit der Eingabetaste Enter (Return) abzu-
schlieflen.

Der Unterschied zwischen den beiden Prozeduren besteht lediglich darin, dafl der Cur-
sor bei Read nach dem Einlesen der Daten in der Bildschirm-Eingabezeile verbleibt,
wogegen er mit ReadLn (Read Line) nach dem Einlesen der Daten auf den Anfang der
nidchsten Bildschirmzeile gesetzt wird, egal wieviele Daten die Eingabezeile noch
enthdlt. Wenn die Eingabezeile mehr Daten enthilt als Read verlangt, dann werden
beim nichsten Read-Aufruf diese Daten gelesen. Bei ReadLn ist dies nicht der Fall.

Formate: Read(v1 [, v2, ..., vn])
ReadLn(vl1l [, v2, ..., vn])
ReadLn Wartet auf Taste Enter
vl Vv2, ..., vn Variablen

Die Variablen konnen beliebige Zeichenketten-Variablen (Typ String oder Char) oder
numerische Variablen (alle Integer- und Realtypen) sein. Eine Mischung ist zuldssig.
Allerdings diirfen nach einer Zeichenketten-Variablen keine weiteren Variablen stehen.
Somit konnen in einer Read-Anweisung auch keine zwei Strings eingelesen werden.
Fithrende und nachstehende Leerzeichen werden bei Strings {ibernommen. Bei
numerischen Eingaben werden Leerzeichen (ein oder mehrere) und Tabulatorspriinge
lediglich als Trennzeichen zwischen mehreren Daten interpretiert. Das Komma darf
somit bei der Eingabe nicht als Trennzeichen benutzt werden.

Beispiel: ReadLn(x) ;
Die Tastatureingabe wird auf die (deklarierte) Variable X zugewiesen.

Fiir ein benutzerfreundliches Programm ist es unbedingt erforderlich, dal vor Read auf
dem Bildschirm ein Hinweis iiber die folgende Eingabe erscheint. Dazu nimmt man
zweckmaifigerweise die Prozedur Write, wenn der Cursor nach dem Hinweistext stehen
bleiben soll.

Beispiel: Wite(' Ei ngabe Rechnungsbetrag und Nane: ');
ReadLn(Betrag, Nane);

Demo-Programm:

program Pas07021; { Denmb Read und ReadLn }
var

a, b, ¢, d: Integer;

S: string[10];
begin

WitelLn(' Geben Sie 6 Zahlen wie in der fol genden Zeile ein: ');
WitelLn('1 2 345 6');

7.6 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Read(a, b, c, d);
WitelLn(a:2, b:2, c:2, d:2); { Dy e Ausgabe: 12 3 4 }

WitelLn(' Geben Sie 6 Zahlen wie in der folgenden Zeile ein: ');
WiteLn('1 2 345 6');
ReadLn(a, b, c, d);
WiteLn(a:2, b:2, c:2, d:2); { Die Ausgabe: 56 1 2
da noch 2 Daten von Read frei !! }

WitelLn(' Geben Sie die folgende Zeile ein:');
WitelLn(' 4711 Anton Huber');
ReadlLn(a, s);
WiteLn(a, s); { Die Ausgabe: 4711 Anton Hub
da der String s auf 10 Zeichen deklariert ist
und das Leerzeichen vor dem "Anton" mitzahlt. }
end.

ebe i Zahlen uie in der folgenden Zeile ein:

ko

ben Sie 6
23456
23456
1234

Geben Sie 6 Zahlen wie in der folgenden Zeile ein:
123456

123456

5612

Geben Sie die folgende Zeile ein:

4711 Anton Huber

4711 Anton Huber

4711 Anton Hub

Die Bildschirmausgabe des vorstehenden Programms

7.3 Die Standardfunktion ReadKey

Mit der Funktion ReadKey wird ein Zeichen ohne abschlieBendes Return von der Tasta-
tur gelesen. Das Ergebnis dieser Funktion hat den Datentyp Char (character). Genau
genommen wird mit ReadKey der Pufferspeicher der Tastatur gelesen. Wenn der
Tastaturpuffer leer ist, dann wartet das Programm auf einen Tastendruck. Siehe auch
Funktion KeyPressed.

ReadKey bendtigt die Unit CRT.
Format: ReadKey

Im Gegensatz zu den Prozeduren Read und ReadLn wird das Zeichen nicht auf dem
Bildschirm angezeigt. Sollte das gewiinscht sein, ist das Zeichen mit Write oder WriteLn
auszugeben, was in den meisten Fillen sinnvoll ist.

Beispiel: Wite(' Dricken Sie eine Taste: ');
Wit eLn(ReadKey);

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.7

Vorgrift: Spezielle Tasten (z.B. die Cursortasten und die Funktionstasten und auch
Tastenkombinationen mit der Alt-Taste) liefern einen sogenannten Doppelcode. Der
erste Code eines Doppelcodes ist immer das Null-Byte, Chr(0), #0. Der zweite Code ist
der Scan-Code der betreffenden Taste. Doppelcodes werden im Kapitel "Programmie-
rung der Tastatur" behandelt.

Mit ReadKey kann man Tastatureingaben absichern. Im folgenden Demo-Programm
wird ein Vorgriff auf die repeat/until-Schleifenkonstruktion gemacht.

program Pas07031; { Denp Tasteneinzug nit ReadKey }

uses
CRT, { Unit CRT fur ReadKey notwendig }

var
Zei chen: Char;

begin
Wite('Dricken Sie die Taste <> ');
repeat { W ederhol e sol ange, bis }
Zei chen : = ReadKey;
until (Zeichen = 'j'); { bis Taste 'j' gedriuckt wird }
Wi telLn(Zei chen);
end.

7.4 Die Standardfunktion KeyPressed

Die Standardfunktion KeyPressed stellt fest, ob eine Taste gedriickt wurde, genauer: ob
sich im Tastaturpuffer noch ein Zeichen befindet. Das Ergebnis der Funktion hat den
Datentyp Boolean und kann somit nur 7True oder False sein. KeyPressed liest aber nicht
das Zeichen aus dem Tastaturpuffer. Dazu dient die Standardfunktion ReadKey.

KeyPressed bendtigt die Unit CRT.
Format: KeyPr essed

Es werden nur Tasten gepriift, die lesbare Zeichen erzeugen; Tasten wie Umsch, Strg,
Num, Funktionstasten usw. somit nicht alleine sondern nur in Verbindung mit einer
anderen Taste, die ein lesbares Zeichen ergibt.

Bei den folgenden Demo-Programmen wird wieder ein Vorgriff auf die repeat/until-
Schleifenkonstruktion gemacht.

7.8 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

program Pas07041; { Demp Funktion KeyPressed }
uses
CRT; { Unit CRT fur Funktion KeyPressed notwendig }
begin
CrScr;
Wite('lch warte auf einen Tastendruck ');
Wite('oder bis zum Stromausfall ');
r epeat
until KeyPressed;
end.

Zum Leeren des Tastaturpuffers:

Bei ldngeren Programmliufen kann es vorkommen, daf3 der Anwender mit der Tastatur
"spielt", d.h. versehentlich Zeichen im Tastaturpuffer gespeichert werden. Bei einem
spiteren ReadKey wird ein gespeichertes Zeichen ohne Warten ausgelesen. Unter
Umstidnden kann das Programm einen vollig ungewollten Ablauf nehmen. Deshalb
sollte man in diesen Fillen den Tastaturpuffer leeren und erst dann das gewiinschte
Zeichen einziehen. Das folgende Programmschema zeigt die Vorgehensweise unter
Vorwegnahme der while- und repeat/until-Schleifen und noch einiger nicht erklirter
Begriffe:

uses

CRT; { wegen ReadKey und KeyPressed }
var
Ch: Char;
begi n
{ Hier sei ein |langer Program auf ... }
{ ... und der Anwender "spielt" mt der Tastatur }

whi | e KeyPressed do
Ch : = ReadKey; { Zuerst Tastaturpuffer leeren ...}

Wite('Eingabe (j/n): ');

r epeat
Ch := ReadKey; { ... dann erst Zeichen einzi ehen }
until (Ch ="'"j') or (Ch ="'n");
if Ch ="j"'
then
else;
end.

7.5 Die Ausgabe auf den Drucker

Fir die Druckerausgabe wird die Unit PRINTER bendtigt. Ansonsten werden die
gleichen Prozeduren wie fiir die Bildschirmausgabe benutzt, also Write oder WriteLn,
die lediglich mit der Drucker-Dateivariablen "Ls#" zu ergénzen sind. Die Eigenschaften

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.9

der beiden Prozeduren beziiglich Zeilenvorschub und Formatierung gelten auch fiir den
Drucker. Das folgende Beispiel zeigt die Ausgabe auf den Drucker:

program Pas07051; { Denp Drucker-Test }
uses
PRI NTER; { Unit PRINTER fur Druckerausgaben }
begi n
WitelLn(Lst, 'Anton Huber'); { Dateivariable »Lst« fur Drucker }
WitelLn(Lst); { Leerzeile auf Drucker }
end.

Ein Seitenvorschub wird auf dem Drucker mit
Wite(Lst, #12); oder mit Wite(Lst, Chr(12));

erreicht. Mit #/2 wird das Zeichen Nr 12 eingegeben. Bei diesem Zeichen handelt es
sich um das Steuerzeichen Nr. 12 nach Ascii (Vorgriff), das fiir Form Feed (FF)
bestimmt ist.

7.6 Die Standardprozedur ClrScr

Die Prozedur ClrScr (Clear Screen) loscht den Bildschirm und setzt den Cursor in die
linke obere Ecke des Bildschirm-Fensters.

ClrScr benétigt die Unit CRT.
Format: CrScr
Diese Prozedur hat keine Parameter.

Turbo-Pascal speichert Bildschirmausgaben. Wenn man die fritheren Bildschirmausga-
ben nicht sehen mdchte, dann den Bildschirm vor der ersten Ausgabe mit CirScr 16-
schen.

7.7 Die Standardprozedur GotoXY

Die Prozedur GotoXY versetzt den Cursor in die Spalte X der Zeile Y.
GotoXY bendtigt die Unit CRT.
Format: Got oXY(spalte, zeile)

spal te Ausdruck fiir Spaltenposition, Datentyp Byte
zeil e Ausdruck fiir Zeilenposition, Datentyp Byte

Fiir das Standard-Textfenster gilt: spalte: 1..80, zeile: 1..25

Wenn auch nur einer der beiden Ausdriicke ungiiltig ist, dann wird der Cursor nicht ver-
setzt.

7.10 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Die Prozedur GotoXY arbeitet relativ zum gesetzten Textfenster, siche auch Stan-
dardprozedur Window.

Im folgenden Demo-Programm wird die Standardfunktion Random vorweggenommen.

program Pas07071, { Denp Cursorpositionierung mt GCotoXY }
uses

CRT; { Unit CRT fur drScr, GotoXY und KeyPressed }
const

SpM n = 10; SpMax = 70;

ZeMn = 5; ZeMax = 22;
var

Sp, Ze: Byte;

begi n
CrScr; { Bildschirm| dschen }
Got oXY(SpM n, ZeMn - 2); { Cursor in Spalte und Zeile }

WitelLn(' Denb: Cursorpositionierung);
Got oXY(SpM n, ZeMn - 1);
WitelLn(' Ende mt beliebi gem Tast endruck');

r epeat
Sp := SpM n + Random(SpMax - SpMn + 1); { Standardfunkt. Random }
Ze := SpMn + Randon{ZeMax - ZeMn + 1); { liefert Zufallszahlen }
Got oXY(Sp, Ze);
Wite('*');
until KeyPressed;
end.

7.8 Die Standardfunktionen WhereX und WhereY

Die Standardfunktion WhereX liefert die momentane Spaltenposition des Cursors,
WhereY liefert dagegen die momentane Zeilenposition. Das Ergebnis hat den Datentyp
Byte. Wenn mit der Standardfunktion Window ein Textfenster gesetzt ist, dann sind die
Ergebnisse von WhereX und WhereY Relativ-Koordinaten zum gesetzten Textfenster.

WhereX und WhereY bendtigen die Unit CRT.

Format: VWher eX
Wher eY

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.11

pr ogram Pas07081; { Demp WhereX und WhereY }
uses
CRT;
begin
CrScr;
Wite('*****');
Got oXY(VhereX - 3, VWereY); { Cursor in der gleichen Zeile

um 3 Spal ten zurick }
WiteLn('!"); { und das nittlere Zeichen Uberschrei ben }
ReadLn;
end.

7.9 Die Standardprozedur Window

Die Standardprozedur Window (nicht zu verwechseln mit Windows) definiert einen Aus-
schnitt des Bildschirms als Textfenster.

Window bendtigt die Unit CRT.
Format: W ndow(x1, yl1, x2, y2)

x1, yl, x2, y2 Ausdriicke mit Datentyp Byte
x1 Erste Bildschirmspalte, = Minimalwert 1

y1 Erste Bildschirmzeile, Minimalwert 1

X2 Letzte Bildschirmspalte, Maximalwert 80

y2 Letzte Bildschirmzeile, Maximalwert 25

Alle Koordinaten von GotoXY, WhereX und WhereY sind Relativ-Koordinaten zum zu-
letzt mit Window gesetzten Fenster.

Beim Aufruf von Window wird der Cursor in die linke obere Ecke des Fensters versetzt.
Die Standardprozedur C/rScr wirkt nur fiir das aktuelle Fenster.

7.10 Die Standardprozeduren HighVideo, LowVideo und
NormVideo

Mit den Prozeduren HighVideo wird die Bildschirmintensitét fiir alle folgenden Aus-
gaben erhoht, so dal} die Zeichen heller als normal erscheinen. Mit LowVideo erscheinen
die Zeichen dunkler als normal. Mit NormVideo wird die normale Intensitét (Standard)
eingestellt. Bei Farbbildschirmen sind die Prozeduren TextColor und TextBackground
interessanter, siche nidchsten Punkt.

HighVideo, LowVideo und NormVideo bendtigen die Unit CRT.

7.12 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Formate: Hi ghVi deo
Lowvi deo
Nor mVi deo (wie HighVideo)
program Pas07101; { Denp Bildschirm ntensitaten }
uses
CRT; { Unit CRT fir Bildschirm ntensitaten }
begi n
ClrScr;

WiteLn('Das ist nornale Intensitat.');
Hi ghVi deo; WitelLn('Das ist hohe Intensitat."');
Lowvi deo; WitelLn('Das ist geringe Intensitat."');
Nor nVi deo; WitelLn('Das ist wi eder nornale Intensitat.');
ReadLn;
end.

7.11 Die Standardprozeduren TextMode, TextColor und
TextBackground

Mit diesen Prozeduren konnen der Textmodus (Schwarz/Weil3- und Farb-Bildschirme),
die Farben und Attribute des Textes (Farbbildschirm-Textfarbe, Farbbildschirm-Hinter-
grundfarbe), blinkende Zeichen,) eingestellt werden. Diese Prozeduren bendtigen die
Unit CRT.

Der Textmodus, die Vordergrund- und die Hintergrundfarben werden sind durch Zahlen
festgelegt (Textmodus Datentyp Word, Bildschirmfarben Datentyp Byte). An Stelle der
Zahlen konnen jedoch auch die Bezeichner benutzt werden, die in der Unit CRT fiir
diese Zwecke vordefiniert sind. Siehe folgende Demo-Programme.

program Pas07111; { Denob Standardprozedur "Text Mode" }
uses

CRT,
begi n
{ Hinweise: - Es kann imer nur e i n Text-Mde wrksam sein.
Di e nichtzutreffenden in di esem Programm m t
Komrent ar kl ammer n ausschal t en.
- Der Text-Mde kann sein: 0, 1, 2, 3, 7 oder 256.
Statt dieser Zahlen (Datentyp Wrd) kénnen auch
die in der Unit "CRT" vordefinierten Konstanten-
bezei chner "BWO", "Co80", "BWO0", "Co80", "Mno"
und "Font 8x8" benutzt werden. Alles Steinzeit!
- Ab Wno5 nmt "Alt+Enter" auf Vollbild unschalten.
}
(*
Text Mode(BWMO) ; { 40 Zeichen in einer Zeile, 25 Zeilen }

WiteLn(' BMO = 0: CGA, 40 * 25, nonochrom);

Text Mode(Co40) ;
WitelLn(' Co40 = 1: CGA, 40 * 25, farbig');

Dr. K. Haller Turbo-Pascal

Kap. 7: Einfache Ein- und Ausgaben

7.13

Text Mode(BW0) ;
WitelLn(' BWB0O = 2:

Text Mode(Co80) ;

WitelLn(' Co80 = 3:
Text Mode(Mono) ;
WitelLn(' Mono = 7:

*)
Text Mode(Font 8x8
WitelLn(' Font 8x8

ReadlLn;
end.

+

{ 80 Zeichen in einer Zeile,
CGA, 80 * 25, nonochrom);

CGA, 80 * 25, farbig');

CGA, 80 * 25,

Co80) ;

25 Zeilen }

nmonochrom Mnochr om Adapter');

{ Font8x8 nur mt einer Addition }

256: 50 Zeilen VGA (43 Zeilen EGA)');

program Pas07112; {

uses
CRT;

var
Vor der gr und,

H ntergrund: Byte,;
begin
r epeat

CrScr;

Got oXY(10, 1);
Got oXY(10, 3);
Got oXY(10, 4);
Got 0XY(10, 5);
Got oXY(10, 6);
Got oXY(10, 7);
Got oXY(10, 8);
Got oXY(10, 9);
Got 0XY(10, 10);
Got oXY(10, 11);
Got oXY(10, 12);
Got 0XY(10, 13);
Got oXY(10, 14);
Got oXY(10, 15);
Got 0XY(10, 16);
Got oXY(10, 17);
Got oXY(10, 18);
Got oXY(10, 19);
Got oXY(10, 20);
Got 0XY(10, 21);
Got 0XY(10, 22);

Denp St andar dpr ozeduren " Text Col or ™"

und " Text Background" }

Wite(' Deno Bil dschirnfarben.
Wite(' Vordergrund

Wite('------mcmmmmaam
Wite(' 0 = Black

Wite(' 1 = Blue

Wite(' 2 = Green

Wite(' 3 = Q/an

Wite(' 4 = Red

Wite(' 5 = Magenta
Wite(' 6 = Brown

Wite(' 7 = LightGay
Wite(' 8 = DarktG ay
Wite(' 9 = LightBlue ")
Wite('10 = LightGeen ');
Wite('11 = LightCyan ');
Wite('12 = LightRed ")
Wite('13 = Light Magenta');
Wite('14 = Yel |l ow ");
Wite('15 = Wiite ");
Wite('128= Blink ")
Wite(' ----------------- '),

Ende mt 0 0');
H ntergrund ');

------------- ")
Bl ack '

’
1 a
’
1

)
)
I
Cyan ");
).
)
)
)

Red '

’
’
1 a

Li ght G ay'
-)’

’

7.14 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Got 0XY(10, 23); ReadLn(Vordergrund); { Der Einfachheit hal ber }
Got 0XY(34, 14); ReadLn(Hintergrund); { ohne Fehl erprifung }

Text Col or (Vor der grund) ;
Text Backgr ound(Hi nt er grund);

until (Vordergrund = Bl ack) and (H ntergrund = Bl ack);
end.

7.12 Die Standardprozeduren ClrEoL, DelLine und InsLine

* Mit ClrEoL (Clear End of Line) werden alle Zeichen ab der momentanen Cursor-
position bis zum Zeilenende geloscht.

* Mit DelLine (Delete Line) wird die Zeile, in der sich der Cursor befindet, geldscht.
Alle darunter liegenden Zeilen werden um eine Zeile nach oben geschoben.

» Mit InsLine (Insert Line) wird die Zeile, in der der Cursor steht und alle nachfol-
genden Zeilen nach unten geschoben und an Stelle der alten Cursorzeile eine Leer-
zeile eingefiigt. Mit einer trickhaften Anwendung von InsLine gelingt es, in der
25. Bildchirmzeile auch die 80. Bildschirmspalte zu bedrucken, ohne dafl nach
der Ausabe des 80. Zeichens der Bildschirm gescrollt wird. Man schreibt den Text
zudchst mittels GotoXY in die 24. Zeile und "schiebt" diese Zeile dann mit /nsLine in
die 25. Zeile.

Alle drei Prozeduren bendtigen die Unit CRT.

Formate: C r EoL
Del Li ne
| nsLi ne

Wenn mit Window ein Fenster definiert wurde, dann beziehen sich die Aktionen aller
drei Prozeduren auf das aktuelle Fenster, sonst auf den gesamten Bildschirm.

7.13 Die Standardprozedur Delay

Die Prozedur Delay bewirkt eine Verzogerung der Programmausfiihrung fiir eine wéhl-
bare Zeit (Zeitschleife).

Delay benétigt die Unit CRT
Format: Del ay(zeit)

zeit Ausdruck. Datentyp Word,
Zeit in Millisekunden (0..65535)

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.15

program Pas07131; { Demp Del ay }

uses
CRT;

const
Piep = #7,; { Steuerzeichen #7: Beep, Bell, Pfeifton }

begin
CrScr;
WiteLn(Piep, 'Das Progranmist in ca. 5 Sekunden beendet');
Del ay(5000); { 5000 MIlisekunden warten }
Wi teLn(Piep);
end.

7.14 Die Standardprozeduren Sound und NoSound

Mit der Prozedur Sound wird auf dem eingebauten Lautsprecher ein Ton mit einer wéhl-
baren Frequenz ausgegeben. Der Ton wird solange erzeugt, bis er mit der Standard-
prozedur NoSound wieder abgestellt wird.

Beide Prozeduren benétigen die Unit CRT.

Format: Sound(frequenz)
frequenz Ausdruck, Datentyp Word
Frequenz in Hertz, 0..65535,
aber durch Lautsprecher
unten und oben unbegrenzt.
NoSound

program Pas07141; { Deno Sound, Vorgriff Funktion Random }
uses
CRT;
const
fMn = 40;
f Mrax = 4000;
begin
CrScr;
WiteLn(' Den Chrenschmaus nit ei nem Tastendruck beenden');
Sound(440) ; { Kammrerton a (440 Hertz) }
Del ay(2000); { mt ca. 2 Sekunden Dauer }
r epeat
Sound(fMn + Random(fMax - fMn + 1)); { Zufallstédne }
Del ay(200); { Dauer ca. 0.2 Sekunden }
until KeyPressed;
NoSound;
end.

7.16 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

7.15 Die Standardprozeduren SetDate, SetTime, GetDate
und GetTime

Diese Prozeduren haben zwar nicht unmittelbar mit Ein- und Ausgaben zu tun, sollen
aber dennoch an dieser Stelle abgehandelt werden.

* Mit SetDate kann das Datum des Systems gesetzt werden, dhnlich wie mit DATE im
Betriebssystem.

* Mit SetTime kann die Uhrzeit des Systems gesetzt werden, dhnlich wie mit 7/ME im
Betriebssystem.

* Mit GetDate wird das aktuelle Datum an Variablen geliefert.

* Mit GetTime wird die aktuelle Uhrzeit an Variablen geliefert.

Alle vier Prozeduren benétigen die Unit DOS. Alle Parameter und Variablen miissen
den Datentyp Word haben und miissen bei SetDate und SetTime in spiter angegebenen
Giiltigkeitsbereich liegen.

Format: SetDate(jahr, nonat, tag, wochentag)

j ahr Numerischer Ausdruck. Giiltig: 1980..2099
nonat Numerischer Ausdruck. Giiltig: 1..12
tag Numerischer Ausdruck. Giiltig: 1..31

wochent ag Numerischer Ausdruck. Giiltig: 0..6,
wobei 0 fiir Sonntag steht.

Format: SetTi me(hh, mm ss, ss100)

hh Numerischer Ausdruck fiir Stunden. Giiltig: 0..23
nmm Numerischer Ausdruck fiir Minuten. Giiltig: 0..59
SsS Numerischer Ausdruck fiir Sekunden. Giiltig: 0..59
ss100 Numerischer Ausdruck fiir Hunderstel-Sekunden.
Giltig: 0..99

Format: GCetDate(jahr, nonat, tag, wochentag)
j ahr Variable. Ergebnis: 1980..2099
nonat Variable. Ergebnis: 1..12
t ag Variable. Ergebnis: 1..31

wochent ag Variable. Ergebnis: 0..6, wobei: 0 = Sonntag
Format: GetTi nme(hh, mm ss, ss100)

hh Variable fiir Stunden. Ergebnis: 0..23
nmm Variable fiir Minuten. Ergebnis: 0..59
SsS Variable flir Sekunden. Ergebnis: 0..59

ss100 Variable fiir Hunderstel-Sekunden. Ergebnis: 0..99

Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben 7.17

Die Parameter bei SetDate und SetTime werden im Normalfall als Konstanten einge-
geben. Wenn auch nur ein Parameter auBerhalb des Giiltigkeitsbereiches liegt, wird die
Prozedur nicht ausgefiihrt.

program Pas07151; { Denp Datum und Uhrzeit }

uses
CRT, DCS; { Unit CRT fir Delay, Unit DOS fiur Datumund Zeit }

const
Dauer = 1000;

var
Jahr, Mnat, Tag, Wchentag,
St unden, M nuten, Sekunden, Sekunden_ 100: Word;

Zeit 1, Zeit 2, Zeit: Real ;
begi n
CrScr;
Get Dat e(Jahr, Monat, Tag, Wbchent ag);
Witeln(' Das Jahr: ', Jahr);
Witeln(' Der Mnat: ', Monat);
Witeln(' Der Tag: ', Tag);
Witeln(' Der Wichentag: ', Wchentag, ' (0 = Sonntag)');

Get Ti me(Stunden, M nuten, Sekunden, Sekunden_100);

Zeit _1 := Stunden*3600.0 + M nuten*60 + Sekunden + Sekunden_100/100;
Del ay(Dauer) ;

Get Ti me(Stunden, M nuten, Sekunden, Sekunden_100);

Zeit _2 := Stunden*3600.0 + M nuten*60 + Sekunden + Sekunden_100/100;

Zei t Zeit 2 - Zeit 1,
Witeln('Die Zeitschleife Delay mit ', Dauer, ' MIIisekunden');
Witeln('hat', Zeit:6:3, ' Sekunden gedauert.');
ReadLn;
end.

Die Ausgabe am Dienstag, den 14. Mérz 2000:

Das Jahr: 2000
Der Mbnat: 3
Der Tag: 14

Der Wochentag: 2 (0 = Sonnt ag)
Die Zeitschleife Delay mit 1000 M1 isekunden
hat 0.980 Sekunden gedauert.

7.16 Die Standardprozedur Halt

Die Prozedur Halt bricht die Programmausfithrung ab. Die Prozedur ist i.a. nur in
Verbindung mit einer Bedingung, z.B. bei einem nicht behebbaren Fehlerfall) oder fiir
Programmtestzwecke sinnvoll. Optional kann ein Exitcode libergeben werden. Fiir Tests
sollte man aber statt Halt die Moglichkeiten des integrierten Debuggers (Setzen von

7.18 Dr. K. Haller Turbo-Pascal Kap. 7: Einfache Ein- und Ausgaben

Abbruchpunkten oder schrittweise Ausfithrung, Variablenabfrage an den Haltepunkten
mit Strg+F4, siche Kap. 5.7) nutzen.

Format: Hal t [(exi t code)]

Beispiele: Hal t ; Kein Exitcode =0
Hal t (0); Exitcode 0
Hal t (11); Exitcode 11

Der optionale Exitcode ist ein Ausdruck mit den Datentyp Word, man sollte aber nur
Werte aus dem Byte-Bereich 0..255 verwenden. Wenn der Exitcode fehlt, wird stan-
dardmaBig 0 angenommen, also: Hal t (0) .

Der Exitcode ist dann von Bedeutung, wenn das compilierte Pascal-Programm innerhalb
eines Batch-Programms aufgerufen wird; siche DV II, Kap. 1: Betriebssystem MS-DOS.
Bei fehlerfreier Ausfithrung iibergibt man sinnvollerweise den Exitcode 0. Ansonsten
hat der Programmierer des Batch-Programms auf die Festlegungen des Programmieres
des Pascal-Programms einzugehen. Im Batch-Programm kann mit errorlevel auf den
Exitcode zugegriffen werden.

50200304 Dr. K. Haller

