Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.1

4 Allgemeines zu Pascal und Turbo-Pascal

Einleitende Programmbeispiele in Turbo-Pascal
Aufbau eines Turbo-Pascal-Programms

Reservierte Worter. Bezeichner. Formatbeschreibung
Programmbeispiel Zahlenumwandlung

Register der Turbo-Pascal-Begriffe

Gliederung

4.1 Allgemeines zu Pascal und Turbo-Pascal...........c.ccccvvvviiiiniirnnnnnne. 2
4.2 Einleitende Programmbeispiele in Turbo-Pascalcccccueeneene. 3
4.3 Aufbau eines Pascal-Programmscccceeviiieiiieenieenieeeiieeeeene 7
4.4 ReESEIVIETIE WOTTET ...cccvieviieiiieeiiieiiieeiee ettt eeee et 8
4.5 Selbstdefinierte Bezeichner und Standardbezeichner 9
4.6 Die Begriffe Konstante, Variable und Ausdruckcccccecuveennnenn. 10
4.7 Zur Formatbeschreibung...........ccccooveeiiieiiiieniiieeieeeiieeieeeiee e 11
4.8 Programmbeispiel Zahlenumwandlung...........cccocceeeviieniieniinnnnnnns 12
4.9 Zur Gestaltung von Pascal-Quelltexten..........ccccceevvieeniiiiniieennnnnns 14

4.10 Register der Turbo-Pascal-Begriffe.........ccccceevviiniiiniiiiniiiiiecies 19

4.2 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

4.1 Allgemeines zu Pascal und Turbo-Pascal

Wie bereits erwdhnt, wurde die Sprache Pascal um 1970 von Prof. Dr. NikolausWirth
an der Eidgendssischen Technischen Hochschule Ziirich (ETH Ziirich) als Aus-
bildungssprache entwickelt. Das Ziel war, die Studenten zu einem neuen Program-
mierstil, dem strukturierten Programmieren, anzuleiten. Pascal war somit nicht als
Brotsprache konzipiert. Dennoch hat sich die Sprache relativ schnell durchgesetzt.

Neben einem zwischenzeitlich definierten Standard-Pascal haben sich viele Pascal-Dia-
lekte herausgebildet. Um 1970 gab es noch keine Mikrocomputer im heutigen Sinne.
Der Befehlsvorrat von Standard-Pascal orientiert sich mehr an dem fritheren Stand der
Rechentechnik (Batch-Betrieb, Eingabe mit Lochkarten), so da3 Standard-Pascal mehr
als Referenz dient als zur praktischen Anwendung. Mit den aufkommenden Mikro-
computern hat Basic eine starke Verbreitung erlangt. Diese Sprache stand auch bei
Mikrocomputern mit kleinem Arbeitspeicher zur Verfiigung, war in den meisten Féllen
fest im ROM abgelegt, war leicht erlernbar und einfach in der Anwendung, zumindest
im Vergleich mit den damaligen Pascal-Compilern.

Der grof3e Durchbruch von Pascal im Bereich der Mikrocomputer begann um etwa
1984, als das amerikanische Software-Haus Borland ein neuartiges Pascal-Entwick-
lungssystem, das Turbo-Pascal, herausbrachte. Der Quelltext, der Editor, der Compiler
und das Compilat stehen bei Turbo-Pascal immer im Arbeitsspeicher. Wenn beim Com-
pilieren ein Fehler entdeckt wird, wird sofort der Editor aktiviert und der Quelltext mit
einer Fehlermarkierung angezeigt. Mit Turbo-Pascal kann man fast genau so interaktiv
wie bei einem Interpreter-Basic Programme entwickeln. Optional kann das compilierte
Programm auch auf der Platte/Diskette gespeichert werden. Das so compilierte Pro-
gramm hat die Extension .EXE und kann auferhalb der Turbo-Pascal-Entwicklungs-
systems und ohne ein zusétzliches Laufzeit-Modul benutzt werden. Der Erfolg von
Turbo-Pascal hat zu vielen Nachahmungen gefiihrt.

Die Versionen von Turbo-Pascal: 1.0, 2.0, 3.0, 4.0 (4.0 erstmal mit kompletter Entwick-
lungumgebung, Integrated Development Enviroment, IDE), 5.0, 5.5, 6.0 (6.0 erst mit
Mausbedienung des Editors) und 7.0 (1993). Zusammen mit Version 7.0 erschien die
Windows-Version Borland Pascal 7.0. Mit dieser groBen Version war es moglich,
Pascal-Programme fiir den DOS-Real-Mode, den DOS-Protected-Mode (wichtig fiir
groBe Programme) und fiir Windows zu entwickeln. Die grofe Version wurde wegen
der Schwierigkeiten mit der Windows-Programmierung ein Flop. Wesentlich besser
sieht es mit der 1995 erschienen reinen Windows-Version Delphi aus, mit der — dhnlich
wie mit Visual Basic (VB) von Microsoft — Windows-Anwendungen in weiten Teilen
visuell entwickelt werden konnen. Es bleibt abzuwarten, ob Delphi den Vorsprung von
VB aufholen kann. Delphi setzt fast den gesamten Sprachumfang von Turbo-Pascal

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.3

vorraus. DOS-Anwendungen konnen mit Delphi nicht entwickelt werden, es sei denn,
man miflbraucht Delphi nur als Editor.

Turbo-Pascal besitzt gegeniiber Standard-Pascal sehr viele Erweiterungen. Allerdings
darf nicht tibersehen werden, dal Turbo-Pascal auf das Betriebssystem MS-DOS und
somit auf die Intel-Prozessoren 8088, 8086, 80x86 und Pentium abgestimmt ist. Die
Nutzung der Spracherweiterungen erschwert die Ubertragung des Programms in der
Quellcode-Form auf Rechnersysteme mit anderen Prozessoren und Betriebssystemen. In
der Regel muB} der Quellcode gedndert werden.

Im Rahmen der Ausbildung im Studiengang Druckereitechnik werden die Erweite-
rungen von Turbo-Pascal im sinnvoll erscheinenden Umfang genutzt. Auf die Unter-
schiede zu Standard-Pascal wird nur in Sonderfallen hingewiesen.

Hinweis: Das Turbo-Pascal-System enthélt eine Menii-Version von Turbo-Pascal
(Dateiname Turbo.EXE), als auch eine Kommandozeilen-Version (Dateiname
TPC.EXE). Beide Versionen sind inhaltlich identisch, unterscheiden sich in der dufleren
Erscheinungsform génzlich. Die Menii-Version bedient sich einer anwenderfreundlichen
Entwicklungsumgebung, die Kommandozeilen-Version dhnelt in der Handhabung mehr
den klassischen Compilern. Die Kommandozeilen-Version wird z.B. fiir die
Entwicklung groflerer Programme gebraucht, die Programm-Module aus anderen
Programmiersprachen enthalten. Die Kommandozeilen-Version wird hier nicht be-
handelt; auf die Turbo-Pascal-Handbiicher wird verwiesen.

4.2 Einleitende Programmbeispiele in Turbo-Pascal

1. Beispiel:

program Hal | o;
begi n

WiteLn('Hallo Wlt,");

WiteLn('das ist das erste Programm von Anton Huber');
end.

Dieses Programm benutzt die Pascal-Standardprozedur W i t eLn und schreibt die in
Hochkommata eingeschlossene Zeichenfolgen (Zeichenkette, engl. string) auf den Bild-
schirm. Man beachte den Punkt nach end. Er zeigt den Compiler das Programmende
an. Man achte auch auf die Semikolons, die Programmanweisungen abschlieen. Die
hier fettgedruckten Worter pr ogr am begi n und end sind sog. reservierte Worter.

4.4 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Nach der Eingabe des Quelltextes und dem Start mit Strg+F9 (Taste Strg gedriickt
halten und dann Funktionstaste F9 driicken) zeigt der Bildschirm folgendes an:

Hallo Velt,
das i st das erste Programm von Anton Huber

Die Anzeige verschwindet so schnell wieder und das System kehrt zum Editor zurtick,
daBl die Anzeige auch vom schnellsten Auge nicht wahrgenomen wird. Mit Alt+F5
(Taste Alt gedriickt halten und dann die Funktionstaste F5 driicken) kann der (DOS-)
Ausgabebildschirm wieder angezeigt werden. Mit nochmaligen Alt+F5 kehrt man zum
Editor zuriick. Spater werden andere Methoden gezeigt, um das listige Umschalten zu
umgehen.

2. Beispiel:

lbegi n end. |

Das kiirzeste Pascal-Programm der Welt! Es tut gar nichts und ist denoch korrekt. Es
zeigt, da3 Pascal formatfrei ist und dall der Programmkopf mit dem reserviertenWort
progr amin Turbo-Pascal optional ist. Der Verfasser ist der Meinung, da3 ein Pro-
grammkopf schon angegeben werden sollte. In Standard-Pascal wire noch mehr zu tun.

3. Beispiel:
program Test 3;
var

X: I nteger;

y: Real;
begi n

X 1= 4711,

y = 47.11;

WitelLn(x, Yy);
end.

Dieses Programm schreibt die Ganzzahl (Integerzahl) 4711 und die Kommazahl (Real-
zahl) 47.11 nebeneinander auf den Bildschirm. Es zeigt, dal in Pascal alle Variablen
deklariert werden miissen und zwar nach Datentypen getrennt. Die Belegung einer Vari-
ablen mit einem Wert erfolgt von rechts nach links. Das Symbol fiir die Zuweisung
(Zuweisungsoperator ": =") besteht aus den Zeichen Doppelpunkt und Gleichheits-

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.5

zeichen. Dazwischen darf kein Leerzeichen (engl. blank, space) stehen. Davor und
danach diirfen Leerzeichen stehen. Der besseren Lesbarkeit halber sollte man
Leerzeichen setzen. Regel: Wo ein Leerzeichen stehen darf, konnen beliebig viele
stehen. Hinweis: In den Programmiersprachen Basic und C wird das Gleichheitszeichen
alleine als Zuweisungssymbol benutzt. Die Formatfreiheit von Pascal benutzt man dazu,
durch sinnvoll angeordnete Leerzeichen und Leerzeilen eine optisch-logische Struktur in
den Quelltext zu bringen.

4. Beispiel:

program Test 4,

var
X: | nt eger;
Nane: string[20]; { Zeichenkette mt max. 20 Zei chen }

begi n
X = 4711;
X =X + 1; { Zuwei sung von rechts nach |inks }
Nane : = 'Anton Huber.'; { Auch hier eine Zuweisung }
Wite(Nane, ' Der Wert von x: ', X);

end.

Die Ausgabe des Programms: ~ Ant on Huber. Der Wert von x: 4712

In das Programm konnen erkldrende Kommentare geschrieben werden. Sie sind in ge-
schweifte Klammern zu setzen. Kommentare haben keinen Einflufl auf den Programm-
ablauf, sie werden beim Compilieren ignoriert. Als Ersatzzeichen fiir die geschweiften
Klammern kénnen auch runde Klammern mit einem nachfolgenden bzw. vorausgehen-
den Stern benutzt werden.

Kommentarklammern: { } oder Ersatzzeichen (* *)

Kommentare konnen iiber beliebig viele Zeilen gehen. Nach dem Kommentarbeginn
diirfen Anweisungen stehen; sie werden nicht ausgefithrt. Kommentarklammern
miissen immer paarweise auftreten und diirfen nicht verschachtelt werden. Bei der
ersten schlieBenden Klammer wird der Kommentar als beendet betrachtet; ein Verstol3
gegen die Vorgabe fiihrt in der Regel zu irrefilhrenden Fehlermeldungen des Compilers
und deshalb zu langwieriger Fehlersuche. Einzige Ausnahme ist die Kommentarklam-
merung mit den Ersatz-zeichen; in dieser Klammerung diirfen geschweifte Klammern
enthalten sein.

4.6 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Hinweis: In Basic und in PostScript kennt man nur ein einleitendes Kommentarsymbol.
Nach diesem Symbol wird nur der Rest der Zeile als Kommentar betrachtet.

In den bisherigen Programmbeispielen wurden die reservierten Worter program, var,
string, begin und end benutzt. Zur besseren Erkennung werden die reservierten Worter
im Skriptum durch fettgedruckte Kleinbuchstaben hervorgehoben. Auf dem Bildschirm
erscheinen sie in gelber Schrift. Die Farbe ist aber einstell- und somit verdnderbar. Die
Schreibweise groB/klein der reservierten Worter und auch aller anderen Bezeichner
(Bezeichner: Namen von Prozeduren, Funktionen, Units, Datentypen, Konstanten und
Variablen) ist in Pascal frei. Nur die Schreibweise der Zeichenketten (strings) ist
verbindlich. Die Variablen x und X sind somit in Pascal (wie auch in den meisten
BASIC-Dialekten) identisch. Hinweis: Fiir die Programmiersprache C und fiir Post-
Script trifft dies nicht zu.

Es ist in Pascal iiblich, Bezeichner, vor allem wenn sie aus mehreren Zeichen bestehen,
mit einem groBen Anfangsbuchstaben beginnen zu lassen. Bei langen Bezeichnern und
zusammengesetzten Wortern scheue man sich nicht, den Anfangsbuchstabe der Einzel-
worter grof3 zu schreiben. Insbesondere sollte man bei Prozeduren und Funktionen so
verfahren. Wéhlbare Bezeichner sollten selbsterkliarend sein. Fiir Mehrwertsteuer sollte
man z.B. »Mehrwertsteuer« oder »MwSt« als Bezeichner benutzen und nicht etwa
»XK.

Beispiele fiir die Schreibweise von frei gewdhlten Bezeichner:
x, Phi, iMn, iMx, M\St, FlaechendeckungsgradMuirrayDavies

5. Beispiel: Die folgenden beiden Programmvarianten haben gleiche Wirkung:

program Test 5a,;

var
X: | nteger;
y: Real;

begi n
X 1= 3
y :=0.3; { fuihrende Null in Pascal anschreiben !! }
Wite(x, vy);

end.

Pr OgRam t EST5B;

VAr X :INteCeR y:ReAL; bEgin x
=3 Y :=0.3;WRItE (X,
y) ; eND.

Dr. K. Haller

Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.7

Diese beiden Varianten demonstrieren nochmals die Formatfreiheit von Pascal. Es ver-
steht sich von selbst, dall die erste Variante vorzuziehen ist. Systematische Schreibweise
der Bezeichner, Leerzeichen, Einriickungen, Leerzeilen und sinnvoll gewéhlte
Bezeichner tragen viel zur Lesbarkeit des Programms bei.

4.3 Der Aufbau eines Pascal-Programms

Ein Pascal-Programm besteht grundsitzlich aus einem Deklarationsteil und einem Aus-
fiihrungsteil (Hauptprogramm). In Standard-Pascal muf3 zwingend der folgende Aufbau
eingehalten werden. Turbo-Pascal ist liberaler und 146t in gewissen Grenzen eine andere
Reihenfolge der Deklarationen und auch Wiederholungen zu. Optional heif3t, daf die so
gekennzeichneten Deklarationen nur bei bestimmten Situationen notwendig sind.

program

uses

| abel

const

type

var

Beginn des Deklarationteils mit der Deklaration des Programmkopfes. In Turbo-
Pascal ist der Programmkopf optional. Der wihlbare Programmname hat nur interne
Bedeutung und wird nicht als Quelltext-Dateiname interpretiert.

Deklaration von sog. Units. Optional. Units sind bereits compilierte Programm-
Module, von Borland oder eigene (Kap. 23). Die Deklaration muf3 aber unmittelbar
nach dem Programmbkopf stehen. Die relevanten Standard-Units von Turbo-Pascal:

« CRT Deklarationen fiir Bildschirm (Cathode Ray Tube) und Tastatur
e PRINTER Deklarationen fiir den Drucker
« DOCS Deklarationen fiir Betriebssystem-Funktionen

« GRAPH Deklarationen fiir Bildschirm-Graphik

Deklaration von Labels (Sprungmarken). Optional. In Turbo-Pascal sind nur Spriinge
innerhalb des Blockes erlaubt, in dem das Label deklariert ist. Die Labels bestehen
aus einem Label-Namen, dem ein Doppelpunkt folgt. Sie werden mit »got O
| abel nanme« angesprungen. Der Label-Name kann in Turbo-Pascal aus Zahlen im
Bereich 0..9999 oder aus beliebigen alphanumerischen Bezeichnern bis maximal 63
Zeichen bestehen. Von besonderen Situationen abgesehen (z.B. vorzeitiger
Programmmabbruch wegen einer Fehlersituation) sollte man in Pascal keine GOTO-
Spriinge programmieren. Beispiel fiir Labelanwendung:

| abel Vorzeitiger Abbruch;
goto \VorzeitigerAbbruch;

Vor zei ti ger Abbruch:

Deklaration und Belegung von Konstanten und typisierten Konstanten. Optional.
Deklaration von eigenen Datentypen. Optional.

Deklaration von Variablen mit Angabe des Datentyps. Optional. Wichtig: Mit der
Deklaration sind die Variablen noch nicht initialisiert und besitzen somit undefi-

4.8 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

nierte Werte, mal so und mal so. Der Compiler erkennt diesen folgenschweren
Fehler nicht!

procedure Deklaration der Prozeduren (Unterprogramme). Optional. Der interne Aufbau der
Prozeduren und der Funktionen ist analog zu dem des Pascal-Programms selbst, d.h.
es konnen innerhalb der Prozeduren und Funktionen lokale Labels, Konstanten,
Datentypen, Variablen, Prozeduren und Funktionen deklariert werden. Im Gegensatz
zum Hauptprogramm werden Prozeduren und Funktionen mit »end; « statt mit
»end. « beendet. Es konnen beliebig viele Prozeduren und Funktionen deklariert
werden.

function Deklaration der Funktionen. Optional. Im Gegensatz zu Prozeduren liefern Funktio-
nen immer einen Wert zuiick. Weitere Details sieche Punkt vorher.

begin Beginn des Ausfithrungsteils (Hauptprogramm).

end. Ende des Ausfiihrungsteils. Man beachte den Punkt!

Es ist empfehlenswert, bei einem Pascal-Programm-Listing nach uses, const,
t ype und var zuerst das am Ende stehende Hauptprogramm zu lesen und dann erst die
procedur e und f uncti on.

An jeder Stelle des Programms konnen Kommentare geschrieben werden. Sie sind in
gechweifte Klammern { } zu setzen. Ersatzzeichen: (* *).

Das spitere Demo-Programm "Pas04081.PAS" im Kap. 4.8 zeigt den typischen Aufbau
eines Pascal-Programms mit den Deklarationen pr ogr am uses, const, type, var,
procedure, function und dem anschlieBenden Ausfiihrungsteil (Hauptprogramm,
main).

4.4 Die reservierten Worter in Turbo-Pascal

Im Gegensatz zu Standardbezeichnern wie z.B. Real , | nt eger, Wi te, Si n, Log usw.
diirfen reservierte Worter nicht umdefiniert oder fiir eigene Bezeichner benutzt werden.

Der folgende Kasten enthélt alle reservierten Worter von Turbo-Pascal. Wie bei allen
Pascal-Bezeichnern ist GroB3-/Kleinschreibung auch bei reservierten Wortern beliebig.
Es hat sich aber durchgesetzt, reservierte Worter in Kleinschreibung darzustellen. Im
Druck werden reservierte Worter vorteilhaft durch Fettdruck hervorgehoben.

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.9

absol ute and array begi n case
const di v do downt o el se
end ext er nal file f or forward
function got o if i npl enentation in
inline interface i nterrupt | abel mod

ni | not of or packed
procedur e pr ogr am record r epeat set

shl shr string t hen to

type uni t unti | uses var

whi | e with xor

4.5 Selbstdefinierte Bezeichner / Standardbezeichner

Alle Datentypen, Konstanten, Variablen, Prozeduren, Funktionen, Units und der Pro-
grammname werden durch Bezeichner identifiziert. Die Bezeichner konnen beliebig
lang sein, aber nur die ersten 63 Zeichen sind signifikant, und das ist mehr als genug!

Die zuldssigen Zeichen: A. . Z, (bzw. a. . z), 0. . 9 und der Unterstrich _.

Das erste Zeichen darf kein Ziffernzeichen sein. GroB-/Kleinschreibung ist beliebig.
Nicht zuléssig sind u.a. das Leerzeichen, der Bindestrich, die Umlaute, das Scharf-S und
vor allem der Punkt, da dieser fiir den Datentyp Record reserviert ist.

Beispiele fiir zulissige Bezeichner:

1) Bet r agChneMehr wer t st euer

2) bet ragohnenehr wer t st euer
3) Bet r ag_ohne_Mehrwert st euer
4) X, X1, x2, i, iMn, iMx, Phi

Die Bezeichner 1) und 2) sind gleichwertig.

Hinweis: In der Programmiersprache C und in PostScript ist die GroB-/Kleinschreibung
der Bezeichner im Gegensatz zu Pascal und den meisten Basic-Dialekten verbindlich.

Pascal und insbesondere Turbo-Pascal kennt ca. 1000 Standardbezeichner (Namen von
vordefinierten Datentypen, Prozeduren (procedure), Funktionen (function) und Units.
Diese Standardbezeichner sind keine reservierten Worter und kdnnten somit zu einer
anderen Bedeutung umdefiniert werden. Man hiite sich davor!

Beispiele fiir Standardbezeichner:

1) Integer fiir Datentyp Ganzzahl

2) Real fiir Datentyp Kommazahl
3) True fiir Standardkonstante Wahrheitswert »wahr«
4) Fal se fiir Standardkonstante Wahrheitswert »falsch«

5) Wite fiir Standardprozedur Schreiben

4.10 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

6) Read fiir Standardprozedur Lesen
7) Sin fiir Standardfunktion Sinus

Die Schreibweise der Standardbezeichner ist beziiglich Grof3-/Kleinschreibung ebenfalls
beliebig. Es ist aber iiblich, zumindest die Standardprozeduren und Standardfunktionen,
sowie die Datentypen mit einem groBen Anfangsbuchstaben zu beginnen. Beachten:
string und ar r ay sind reservierte Worter.

4.6 Die Begriffe Konstante, Variable und Ausdruck

Eine Konstante behilt ihren Wert im gesamten Programm bei, d.h. sie kann auch nicht
versehentlich durch eine falsche Anweisung geédndert werden, der Compiler wiirde diese
Anweisung nicht akzeptieren. Es wird empfohlen, wichtige Konstanten in die const-
Deklaration aufzunehmen und im Programm nur noch mit dem vereinbarten Namen
anzusprechen.

Eine Variable kann, muf} aber nicht, im Laufe des Programms verschiedene Werte
annehmen. Alle Variablen miissen in der var-Deklaration genannt werden. Die erst-
malige Zuweisung eines Wertes an eine Variable nennt man Initialisierung. Nicht-
initialisierte Variablen werden zwar in Pascal ohne Fehlermeldung verarbeitet, die
Werte sind aber undefiniert, das Ergebnis ist nicht vorhersehbar, mal so und mal so, auf
jeden Fall aber vollig unbrauchbar. Diese Fehler sind schwer zu finden!

Ein Ausdruck (engl. expression) kann Konstanten, Variablen, Funktionen und Kombi-
nationen dieser Elemente enthalten. Zu numerischen Ausdriicken konnte man auch
Formelausdruck oder Term sagen.

Beispiel fiir numerische Konstante: 4711 { Datentyp: |Integer }

Beispiel fiir String-Konstante: " Ant on Huber'

Beispiel fiir Variable: x { Datentyp hier nicht erkennbar }
Beispiel flir numerischen Ausdruck: y + Sin(z)/2 - 7 { Datentyp Real }
Beispiel fiir String-Ausdruck: "Huber' + Copy(s, 3, 5)

{s muB3 Stringvariable sein }

Wenn eine Formatbeschreibung einen Ausdruck verlangt, dann kann an der betreffen-
den Stelle auch eine Konstante oder eine Variable stehen.

Wenn eine Formatbeschreibung eine Konstante verlangt, dann muf3 an der betreffenden
Stelle eine Konstante stehen, nicht aber eine Variable oder ein Ausdruck.

SinngemifBes gilt auch, wenn die Formatbeschreibung eine Variable verlangt. Es muf}
dann eine Variable eingegeben werden.

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.11

Pascal kennt dariiber hinaus auch noch typisierte Konstanten. Das sind im Grunde
Variablen, die in der const-Deklaration mit Datentyp deklariert und dann mit einem
Wert initialisiert werden. Diese "Konstanten" konnen im Programm wie Variablen ver-
andert werden.

Beispiel fiir (echte) Konstanten und typisierte Konstanten:

pr ogr am Konst ant en;

const

x = 183; { "echte" Konstante }

z: Integer = 13; { typisierte Konstante = initialisierte Variable }
begin

z =z + 1; { Zul &ssig, da typisierte Konstante, init. Variable }

X =X + 1; { Unzul 8ssi g, da "echte" Konstante. Fehlermeldung }
end.

4.7 Zur Formatbeschreibung

Fiir die Formatbeschreibung (Syntaxbeschreibung) der Programmteile (reservierte
Worter, Standardprozeduren, Standardfunktionen usw.) sind verschiedene Symbole
gebriuchlich, die aber an dieser Stelle selbst nicht Bestandteil von Pascal sind. Dazu
zdhlen eckige Klammern [] fiir optionale Angaben. In Pascal selbst werden eckige
Klammern fiir Indizies von Arrays benutzt.

Den Aufbau eines Turbo-Pascal-Programms kann man mit den Optionsklammern ver-
einfacht wie folgt darstellen:

program
uses
| abel
const Rei henf ol ge von const und type ggf. auch anders
type
var
procedur e Rei henf ol ge von procedure und function beliebig
function

begi n

end.

Fiir Wiederholungen von moglichen Eingaben sind in der Formatbeschreibung drei
Wiederholungspunkte ... gebrduchlich. Zwei Wiederholungpunkte werden in Pascal fiir
Bereichsgrenzen benutzt, dazu spéter.

4.12 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Ein Beispiel fiir die Formatbeschreibung der Standardprozedur Write:

Format: Wite(al [, a2, ..., an])
al, a2, ... an: Ausdr ticke

Man sieht, da3 in Pascal das Komma als Trennzeichen benutzt werden muf}, wenn die
(Ausgabe-) Liste mehr als einen Ausdruck umfaft.

Konkrete Beispiele (die Variablen seien als deklariert und belegt angenommen):

Wite(4711); { nur nunerische Konstante }
Wite(' Der Funktionswert von x = ', x, 'ist: ', x + Sin(x)/2 - 7);
L | L | L |
T | T T
al a2 a3 a4

al ist eine String-Konstante

a2 ist eine numerische Variable
a3 ist eine String-Konstante

a4 ist ein numerischer Ausdruck

4.8 Programmbeispiel Zahlenumwandlung

Dieses Programmbeispiel ist nur zum Studieren des Programmaufbaus, zum Uben der
Zahlensysteme und zum Uben mit dem Turbo-Pascal-System (Kap. 5) gedacht. Das
Programm wandelt Dezimalzahlen aus dem Bereich 0 bis 255 in binire, oktale und
hexadezimale Darstellung um.

pr ogr am Pas04081; { Umnandl ung dezi mal in binar, oktal und hex }
{ Hier nur fur Dezimal bereich von 0 bis 255 }
{ K Haller, Turbo-Pascal, 77170390 }
{ Der Quelltext des Programms kann vom Anf anger noch nicht voll- }
{ sténdi g verstanden werden. Er dient lediglich zur Denobnstration }
{ des Aufbaus eines einfachen Pascal -Programs nit einer Prozedur }
{ und einer Funktion (alles etwas gekinstelt). Ansonsten dient }
{ das Programm zum Ver anschaul i chen der Zahl ensystene. }
uses { Dekl aration der verwendeten Unit(s) }
CRT;
type { Dekl aration von ei genen Datentypen }

Strl = string[1];

const { Dekl aration von Konstanten }
Esc = #27; { Fir Taste "Esc" }
var { Dekl aration von Variablen }

Dezi mal zahl ,
Dezi mal Temp: | nt eger;

Dr. K. Haller Turbo-Pascal

Kap. 4: Allgemeines zu Pascal

4.13

Basi s,

Laenge,

Spal t e,

Zeil e: Byt e;
Beenden: Bool ean;
Zahl enst ri ng,

Konment ar : string;
Synbol : Strl;

{ Es folgt Deklaration einer

procedure WiteXY(Spalte
begin
Got oXY(Spalte, Zeile);
Wi te(Ml dung);

, Zeile: Byte; Meldung:

Prozedur: }
string);

end;
function Ei ngabe: Char; { Dekl aration einer Funktion }
var
Ch: Char; { lokale Variable }
begin
CrsScr;
WiteXY(25, 2, 'Fachhochschule Minchen, Stg DR ")
WiteXY(25, 3, 'Denp Umwandl ung Zahl ensystene ")
A R S T L e T DR
WiteXY(25 5, '1 Umnvandl ung dezi nal - bi néar ")
WiteXY(25 6, '2 Umnvandl ung dezi nal - okt al ")
WiteXY(25 7, '3 Umnvandl ung dezi nmal - hexadezi mal ') ;
WiteXY(25, 8, 'Esc Ende ")
WiteXY(25, 9, '------omi ")
Got oXY(25, 10);
repeat
Ch : = ReadKey;
until Chin ["1".."'3", Esc]l;
WitelLn(Ch);
WiteLn;
Ei ngabe : = Ch;
end;
begin { -------- Hauptprogramm main ------------------------------ }

Text Backgr ound(Bl ue) ;
Text Col or (Yel | ow) ;

repeat
Beenden : = Fal se;
case Ei ngabe of
Esc: Beenden : = True;
"1': begin
Kommrentar := ' Umwandl ung in binéar: ';
Basi s = 2
Laenge = 8;
Synbol ='"; { Kein sichtbares Synbol
end;
"2': begin
Kommrentar : = 'Umwandlung in oktal: ';
Basi s = 8
Laenge = 3
Synbol ='0"; { Auch Oblich: "q' }
end;
"3': begin

Mtunter 'b

}

4.14 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Komrent ar : = ' Umwandl ung i n hexadezi nal :

Basi s = 16;

Laenge = 2

Synbol ='$,; { In Pascal '$', sonst neistens 'h' }
end;

end;

if not Beenden then

r epeat
Spalte : = \WereX;
Zeil e = \WhereY;
r epeat
Got oXY(Spal te, Zeile);
Cl r EoL;

WiteXY(Spalte, Zeile,
Ei ngabe Dezi mal zahl 0..255, Ende nit 0: ');

{$I-} { "$I-": Conpilerbefehl. Vorgriff. Kein Konmentar }
ReadLn(Dezi mal zahl) ;
{$1+}

until (I1OResult = 0) and (Dezi mal zahl >= 0) and
(Dezi mal zahl <= 255);

Zahl enstring := "'";
Dezi mal Tenp : = Dezi mal zahl ;
r epeat

Zahl enstring : = Copy(' 0123456789ABCDEF'

(Dezi mal Tenp nmod Basis) + 1, 1) +
Zahl enst ri ng;

Dezi mal Tenp := Dezi mal Tenp di v Basi s;

until Dezimal Tenp = 0;

whi | e Lengt h(Zahl enString) < Laenge do
Zahl enstring := '0" + Zahlenstring;

Zahl enstring := Synbol + Zahlenstring;
WiteXY(50, WiereY - 1, Komentar + Zahl enstring + #13#10);
until Dezimal zahl = 0;
until Beenden;

end.

4.9 Zur Gestaltung von Pascal-Quelltexten

Die Gestaltung der Quelltexte kann wesentlich zum Verstindnis beitragen. Pascal ist
zwar vollig formatfrei was die Quelltexte anbelangt. Bei Mi3brauch der Formatfreiheit
kann vielleicht das Programm fehlerfrei sein, aus dem Quelltext wird man aber wahr-
scheinlich nicht sehr schlau.

Ein Beispiel fiir einen gut gestalteten Quelltext:

|progr am Test ;

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.15

uses

CRT, PRI NTER;
var

X: Real ;

i I nt eger;
Nane: string;

begi n

drScr;

X = Sin(47.11);

i = 4711;

Nanme := 'Huber Toni';

WiteLn(Lst, 'x ="', x:6:2,",i ="', i, ', Nane: ', Nane);
end.

... und das gleiche Programm in ,,formatfreier” Darstellung:

PRogRAM t eSt ; useS cRt, pri NTER; VAr x:

ReAl ;i :intEger; naME: stri Ng; Begln O RSCr;
x:=Sin (47.11);i:=4711; Nane: = Huber Toni';wl Teln(l St,
"X ="', X:6:2, ", =",i,", Nane: ', NanE) ;eND.

Allgemeine Hinweise fiir die Gestaltung der Quelltexte:

Die nachstehenden Hinweise fiir die Gestaltung nehmen notgedrungen einige Pascal-
Begriffe vorweg und sind fiir spiteres Nachschlagen bestimmt.

1. Reservierte Worter (z.B. begin, end, while, ...) in Kleinschreibung. Bezeichner
(eigene und Pascal-Namen von Konstanten, Variablen, Prozeduren und Funk-
tionen) mit groBen Anfangsbuchstaben. Ausgenommen eigene Kurzbezeichner mit
vorrangig mathematischer Bedeutung und max. zwei Zeichen Lénge. Bei eigenen
Bezeichnern selbsterkldrende Namen verwenden, z.B. ,, MwSt* und nicht ,,x*.

2. Folgende Operatoren sind mit einem vorstehenden und einem nachstehenden Leer-
zeichen freizustellen: Zuweisungsoperator, Vergleichsoperator, Additionsoperator,
Subtraktionsoperator. Bei besonders komplizierten oder wichtigen numerischen
Ausdriicken sind eventuell auch die Multiplikations- und Divisionsoperatoren frei-
zustellen; nicht aber bei einfachen Ausdriicken. Uberfliissige Klammern tragen bei
numerischen Ausdriicken nicht zur besseren Lesbarkeit bei!

Beispiele:

X = 47.11;

4.16

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

y :=Xx + Sin(x)/Sgrt(2*x) - 7;
if x >=vy
then;

Nach allen Trennzeichen (Komma, Strichpunkt, Punkt, Doppelpunkt usw.) ist ein
Leerzeichen einzufiigen.

Zwischen dem Bezeichner einer Prozedur oder einer Funktion und der 6ffnenden
Klammer der Parameterliste ist kein Leerzeichen einzufligen. Nach der 6ffnenden
Klammer konnen aber bei Bedarf Leerzeichen folgen.

Also: Sin(47.11) und nicht: Sin (47.11)

Man spare nicht mit Leerzeilen zwischen logisch verschiedenen Blocken. So ist
z.B. eine Leerzeile zwischen Deklarationsteil und dem Hauptprogramm sinnvoll.

Einrlickungen in Form von zwei Leerzeichen) zwischen begin und end. Ansonsten
sind alle Anweisungen bis auf die noch genannten Malnahmen gleichberechtigt
und werden nicht eingeriickt. In den folgenden schematischen Beispielen ist mit a
eine beliebige Anweisung und mit b eine beliebige Bedingung gemeint. Mit i wird
eine beliebige Laufvariable einer for-Schleife, mit aw und ew der Anfangswert
bzw. der Endwert dieser Schleife bezeichnet.

In den folgenden Beispielen soll der Senkrechtstrich | den linken Rand des Bild-
schirms darstellen.

Tritt innerhalb des begi n/ end-Blockes ein weiterer auf, so wird in gleicher
Weise nach begi n nochmals eingeriickt und mit dem end auf die vorher aktuelle
Spalte wieder ausgeriickt.

Zusétzliche Einriickungen bei Schleifen:

7a) repeat/unti | -Schleife

| ...
| repeat

| al;

| az;

| until b;

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.17

7b) whi | e-Schleife mit mehr als einer Anweisung:

| ...

| while b do
| begi n

| al;

| a2;

| end;

I

7¢) f or -Schleife mit mehr als einer Anweisung:

| ...

| for i : awto ew do
| begi n

| al;

| az;

| end;

|

Die whi | e- oder f or-Schleifen mit nur einer Anweisung werden wie folgt

{ oder schoner: }
for i := awto ew do
a,

geschrieben:

| ...

| while b do a;

| ...

| { oder schoner: }
| while b do

| a

I

| ...

| for i := awto ew do a;
I

|

I

|

I

8. Einriickungen bei Deklarationen:

|uses
| CRT, DOS, PRINTER;, { Unit-Nanmen grofRR schreiben }
I

|var

4.18 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

| x, y: Real;
| s: string;

9. Einriickungen bei i f/t hen mit nur einer Anweisung:

if.b then a;....

I

|

| ...

| { oder schoner }
| if b....

| then a;

I

10. Einriickungen beii f/t hen/ el se mit nur je einer Anweisung:

| ...

| if b

| then al
| el se az;
|

11. Einriickungen bei i f/t hen mit mehr als einer Anweisung:

| ...

| if b then
| begi n
| al;

| a2;

| end;

I

12. Einriickungen bei i f/then/ el se mit mehr als einer Anweisung in beiden
Zweigen:

| ...

| if b

| then begin
| al;
| az;
| end

| el se begin
| a3;
| a4;
| end ;
|

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.19

13. Einriickungen sind auch zu machen, wenn eine Zeile nicht in das Edit-Fenster (77
Zeichen) palit. Der Zeilenrest ist um zwei Leerzeichen gegeniiber der aktuellen
Spalte einzuriicken. Die Zeilentrennung kann nach jedem Trennzeichen erfol-gen.
Lange Strinkonstanten konnen in Teile aufgespalten und mit dem Verkniipfungs-
operator + verbunden werden. Vor oder nach diesem Operator kann eine Zeilen-
trennung erfolgen. Mit den genannten Methoden konnen beliebig lange Anweisun-
gen erstellt werden, ohne daf3 der Bildschirm seitlich gescrollt werden muf3 oder
beim Ausdruck verstiimmelte Listings erscheinen.

4.10 Register der Turbo-Pascal-Begriffe

Wichtig: Die Vollstindigkeit und Richtigkeit des Registers ist nicht gewahrleistet.
Die Studierenden werden um Hinweise zur Erginzung gebeten.
Art:

R =reserviertes Wort
P = Prozedur

F = Funktion
U = Unit
T = Datentyp

V = vordefinierte Variable
K = vordefinierte Konstante
C = Compilerbefehl (-Schalter, -Parameter, -Bedingung)

Art Begriff Kap. Erlduterung

F # 08.4 Siehe Funktion "Chr(xx)"; Beispiel: #27 ist identisch mit Chr(27)
C {$A+}, {$A-} 059 Compilerbefehl

C {8B+},{$B-} 05.9 Compilerbefehl

C {$D+},{$B-} 059 Compilerbefehl

C {$DEFINE...} 05.9 Compilerbefehl

C {$E+}, {$E-} 059 Compilerbefehl

C {$ELSE} 059 Compilerbefehl

C {$ENDIF} 05.9 Compilerbefehl

c 8.} 231 Compilerbefehl: Include-Datei

C {9l datei} 059 Compilerbefehl

C {8I-}{8I+} 14.9 Compilerbefehl: Input-Kontrolle Aus/Ein
C {$1+}, {31} 059 Compilerbefehl

C {$IF..} 05.9 Compilerbefehl

C {SIFDEF ..} 05.9 Compilerbefehl

C {SIFNDEF ...} 05.9 Compilerbefehl

C {$IFOPT..} 059 Compilerbefehl

C {8L+},{$L} 05.9 Compilerbefehl

C {M.} 059 Compilerbefehl

C {SN+}, {N-} 05.9 Compilerbefehl

4.20 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

C {$0..} 05.9 Compilerbefehl
C {$0+}, {30} 059 Compilerbefehl
C {SR+},{$R-} 059 Compilerbefehl
C {$5+}, {$S-} 059 Compilerbefehl
C {$UNDEFINE ..} 05.9 Compilerbefehl
C {$V+}, {$Vv-} 059 Compilerbefehl
C {8X+}, {$X-} 11.16 Comp.-befehl erweit. Syntax: Funktionen wie Prozeduren.
F Abs 08.2

F Abs 08.3

R and 08.2 bitweises AND
R and 08.5 logisches AND
P Arc 21.3

F ArcTan 08.2

R array...of 12.1

R asm 215

P Assign 18.1

P AssignCRT 18.3

P Bar 214

R begin 04.2

K BkShlashFill 214

K Black 21.2 Farbkonstante =0
P BlockRead 18.3

P BlockWrite 18.3

K Blue 21.2 Farbkonstante = 1
T Boolean 08.5

K Brown 21.2 Farbkonstante = 6
T Byte 08.2

R case..of 09.4

T Char 08.4

P ChDir 18.3

F Chr 08.2

F Chr 08.4

P Circle 213

P ClearViewPort 214

K ClipOff 214

K ClipOn 214

P Close 18.1

K CloseDotFill 214

P CloseGraph 2141

P CirEoL 07.12

P ClrScr 07.6

T Comp 08.3

F Concat 142 Besser "+" statt "Concat"
R const 04.3

F Copy 14.4

F Cos 08.2

K CPU97 05.9 Zu Compilerbefehl
U CRT 04.3

U CRT 07.3

K Cyan 21.2 Farbkonstante = 3
K DarkGray 212 Farbkonstante = 8
P Dec 08.2

P Delay 07.13

P Delete 14.6

P DelLine 07.12

K Detect 211

F DiskFree 18.3

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.21

F DiskSize 18.3
P Dispose 19.2
R div 08.2
R do 10.2 Bei while-Scheifen. Auch bei for-Schleifen
R do 16.2 Bei: with ... do
P do 10.3 Beifor-Schleifen. Auch bei while-Scheifen
U DOS 04.3
F DOSError 244
F DOSExitCode 244
K DottedLn 214
T Double 08.3
R downto 10.3
R else 09.2 Bei:if...then ... else ...
R else 094 Bei:case...of else ...
R end 04.2
F EnvCount 24.3
F EoF 18.1
P Eoln 18.3
P Erase 18.3
P Exclude 15.7
P Exec 24.4
P Exit 11.11
F Exp 08.2
T Extended 08.3
R external 11.13
K False 08.5
P FExpand 18.3
R fileof.. 18.1
V FileMode 18.3
F FilePos 18.3
F FileSize 18.1
F FileSize 18.3
P FillChar 22.3
P FillChar 1411
P FindFirst 18.3
P FindNext 18.3
P Flush 18.3
R for...downto 10.3
R for..to..do 10.3
R forward 11.8
F Frac 08.3
P FreeMem 19.2
F FSearch 18.3
P FSplit 18.3
R function 04.3
R function 11.3
P GetDate 07.15
P GetDir 18.3
P GetFAttr 18.3
F GetMaxX 21.3
F GetMaxY 21.3
P GetMem 19.2
F GetPixel 21.3
P GetTime 07.15
K GothicFont 214
R goto... 09.5
P GotoXY 07.7

4.22

Dr. K. Haller

Turbo-Pascal

Kap. 4: Allgemeines zu Pascal

GRAPH
Green
GrOK

Halt

Hi
HighVideo
HorizDir

if ... then ...
if ... then ... else
in

Inc

Include
InitGraph
inline

inline
Insert
InsLine
Integer

Intr
KeyPressed
KeyPressed
label
Length
LightBlue
LightCyan
LightGray
LightGreen
LightMagenta
LightRed
Line
LineTo

Ln

Lo

Longint
LowVideo
Lst

Lst
Magenta
Mark
MaxAvail
MaxInt
MaxLonglnt
Mem
MemAvail
MemL
MemW
MkDir

mod
Moveto
MsDOS
New

nil
NormVideo
NormWidth
NoSound
not

not

DDV OUVRNRUVOD UV VIO IIOS<<TIT<AAXXTIUOXRN<AXTUATTMTUIUOXRNXXXXXXTXOTMMTU—-LTUTUXONXOUUVUTUVTXIOOOXTVTTNTTXXC

04.3
21.2
214
07.16
08.2
07.10
214
09.1
09.2
15.2
08.2
15.7
211
271.5
11.12
14.7
07.12
08.2
27.6
07.4
08.5
04.3
14.3
21.2
21.2
21.2
21.2
21.2
21.2
213
213
08.2
08.2
08.2
07.10
25.2
07.5
21.2
19.2
19.2
08.2
08.2
12.10
19.2
12.10
12.10
18.3
08.2
213
27.6
19.2
19.2
07.10
21.4
07.14
08.2
08.5

Farbkonstante = 2

Farbkonstante = 9
Farbkonstante = 11
Farbkonstante = 7
Farbkonstante = 10
Farbkonstante = 13
Farbkonstante = 12

Farbkonstante = 5

bitweise Negation
logische Negation

Dr. K. Haller

Turbo-Pascal

Kap. 4: Allgemeines zu Pascal

4.23

V20U UUUUUOUOXONTNMTMUXTTUUUXN U UAXTUVXO-1TMTUUUTTMUOXTXOXOCCTTHTTT U UTMXOXOX-H2X0XO020X0TT

OpenString
or

or

Ord

OutText
OutTextXY
ParamCount
ParamStr

Pi

Pointer

Pos

Pred
PRINTER
PRINTER
procedure
procedure
program
PutPixel
Random
Random(a)
Randomize
Read, ReadlLn
Read, ReadlLn
ReadKey
Real

record
RectAngle
Red
Registers
Release
Rename
repeat / until
Reset
Rewrite
RmDir
Round
SansSerifFont
Seek
SeekEoF
SeekEoL
setof ...
SetDate
SetFAttr
SetLineStyle
SetTextBuf
SetTextStyle
SetTime
SetViewPort
shi

Shortint

shr

08.2
08.5
12.1
15.1
18.1
09.4
14.15
08.2
08.5
08.2
213
213
24.2
24.2
08.3
19.2
14.5
08.2
04.3
07.5
04.3
1.3
04.2
21.2
08.3
08.2
08.2
07.2
18.1
07.3
08.3
16.2
213
21.2
27.6
19.2
18.3
10.1
18.1
18.1
18.3
08.2
214
18.1
18.3
18.3
15.1
07.15
18.3
21.4
18.3
21.4
07.15
21.4
08.2
08.2
08.2

Bei: array ... of

Bei: set of ...

Bei: file of ...

Bei: case ... of

Ubergabe von offenen Strings als Routinen-Parameter
bitweises OR

logisches OR

Real-Zufallszahl aus Bereich [0.0 ... [1.0
Word-Zufallszahl aus Bereich [0 ... (a - 1)]

Von Tastatur lesen
Von Datei lesen

Farbkonstante = 4

4.24 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal
F Sin 08.2

T Single 08.3

F SizeOf 19.2

K SlashFill 214

K SmallFont 214

K SolidFill 214

P Sound 07.14

F Saqr 08.2

F Sqrt 08.2

P Str 14.8

R string 14.1

F Succ 08.2

P SwapVectors 244

VvV Text 18.1 Textdatei

P TextBackGround 07.11

P TextColor 07.11

P TextMode 07.11

R then 09.1 Bei:if... then ...

R then 09.2 Bei:if...then ... else ...
K ThickWith 214

R to 10.3

K True 08.5

F Trunc 08.2

P Truncate 18.3

R type 04.3

R type 08.7

R unit 23.3

F UpCase 08.4

R uses 04.3

P Vval 14.9

R var 04.2

R var 04.3

R var 11.7 Parameterlibergabe an Routinen mit Adresse
K VertDir 214

F WhereX, WhereY 07.8

R while ...do 10.2

K White 21.2 Farbkonstante = 15
P Window 07.9

R with..do 16.2

T Word 08.2

P Write 18.1 In Datei schreiben
P Write, WriteLn 071

P WriteLn 18.1 In Datei schreiben
K xHatchFill 214

R xor 08.2 bitweises XOR

R xor 08.5 logisches XOR

K Yellow 21.2 Farbkonstante = 14

2200308 Dr. K. Haller

