
Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.1

 4 Allgemeines zu Pascal und Turbo-Pascal

 Einleitende Programmbeispiele in Turbo-Pascal
Aufbau eines Turbo-Pascal-Programms
Reservierte Wörter. Bezeichner. Formatbeschreibung
Programmbeispiel Zahlenumwandlung
Register der Turbo-Pascal-Begriffe

Gliederung

4.1 Allgemeines zu Pascal und Turbo-Pascal...2

4.2 Einleitende Programmbeispiele in Turbo-Pascal3

4.3 Aufbau eines Pascal-Programms ..7

4.4 Reservierte Wörter ...8

4.5 Selbstdefinierte Bezeichner und Standardbezeichner9

4.6 Die Begriffe Konstante, Variable und Ausdruck10

4.7 Zur Formatbeschreibung...11

4.8 Programmbeispiel Zahlenumwandlung ..12

4.9 Zur Gestaltung von Pascal-Quelltexten..14

4.10 Register der Turbo-Pascal-Begriffe ..19

4.2 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

4.1 Allgemeines zu Pascal und Turbo-Pascal

Wie bereits erwähnt, wurde die Sprache Pascal um 1970 von Prof. Dr. NikolausWirth
an der Eidgenössischen Technischen Hochschule Zürich (ETH Zürich) als Aus-
bildungssprache entwickelt. Das Ziel war, die Studenten zu einem neuen Program-
mierstil, dem strukturierten Programmieren, anzuleiten. Pascal war somit nicht als
Brotsprache konzipiert. Dennoch hat sich die Sprache relativ schnell durchgesetzt.

Neben einem zwischenzeitlich definierten Standard-Pascal haben sich viele Pascal-Dia-
lekte herausgebildet. Um 1970 gab es noch keine Mikrocomputer im heutigen Sinne.
Der Befehlsvorrat von Standard-Pascal orientiert sich mehr an dem früheren Stand der
Rechentechnik (Batch-Betrieb, Eingabe mit Lochkarten), so daß Standard-Pascal mehr
als Referenz dient als zur praktischen Anwendung. Mit den aufkommenden Mikro-
computern hat Basic eine starke Verbreitung erlangt. Diese Sprache stand auch bei
Mikrocomputern mit kleinem Arbeitspeicher zur Verfügung, war in den meisten Fällen
fest im ROM abgelegt, war leicht erlernbar und einfach in der Anwendung, zumindest
im Vergleich mit den damaligen Pascal-Compilern.

Der große Durchbruch von Pascal im Bereich der Mikrocomputer begann um etwa
1984, als das amerikanische Software-Haus Borland ein neuartiges Pascal-Entwick-
lungssystem, das Turbo-Pascal, herausbrachte. Der Quelltext, der Editor, der Compiler
und das Compilat stehen bei Turbo-Pascal immer im Arbeitsspeicher. Wenn beim Com-
pilieren ein Fehler entdeckt wird, wird sofort der Editor aktiviert und der Quelltext mit
einer Fehlermarkierung angezeigt. Mit Turbo-Pascal kann man fast genau so interaktiv
wie bei einem Interpreter-Basic Programme entwickeln. Optional kann das compilierte
Programm auch auf der Platte/Diskette gespeichert werden. Das so compilierte Pro-
gramm hat die Extension .EXE und kann außerhalb der Turbo-Pascal-Entwicklungs-
systems und ohne ein zusätzliches Laufzeit-Modul benutzt werden. Der Erfolg von
Turbo-Pascal hat zu vielen Nachahmungen geführt.

Die Versionen von Turbo-Pascal: 1.0, 2.0, 3.0, 4.0 (4.0 erstmal mit kompletter Entwick-
lungumgebung, Integrated Development Enviroment, IDE), 5.0, 5.5, 6.0 (6.0 erst mit
Mausbedienung des Editors) und 7.0 (1993). Zusammen mit Version 7.0 erschien die
Windows-Version Borland Pascal 7.0. Mit dieser großen Version war es möglich,
Pascal-Programme für den DOS-Real-Mode, den DOS-Protected-Mode (wichtig für
große Programme) und für Windows zu entwickeln. Die große Version wurde wegen
der Schwierigkeiten mit der Windows-Programmierung ein Flop. Wesentlich besser
sieht es mit der 1995 erschienen reinen Windows-Version Delphi aus, mit der – ähnlich
wie mit Visual Basic (VB) von Microsoft – Windows-Anwendungen in weiten Teilen
visuell entwickelt werden können. Es bleibt abzuwarten, ob Delphi den Vorsprung von
VB aufholen kann. Delphi setzt fast den gesamten Sprachumfang von Turbo-Pascal

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.3

vorraus. DOS-Anwendungen können mit Delphi nicht entwickelt werden, es sei denn,
man mißbraucht Delphi nur als Editor.

Turbo-Pascal besitzt gegenüber Standard-Pascal sehr viele Erweiterungen. Allerdings
darf nicht übersehen werden, daß Turbo-Pascal auf das Betriebssystem MS-DOS und
somit auf die Intel-Prozessoren 8088, 8086, 80x86 und Pentium abgestimmt ist. Die
Nutzung der Spracherweiterungen erschwert die Übertragung des Programms in der
Quellcode-Form auf Rechnersysteme mit anderen Prozessoren und Betriebssystemen. In
der Regel muß der Quellcode geändert werden.

Im Rahmen der Ausbildung im Studiengang Druckereitechnik werden die Erweite-
rungen von Turbo-Pascal im sinnvoll erscheinenden Umfang genutzt. Auf die Unter-
schiede zu Standard-Pascal wird nur in Sonderfällen hingewiesen.

Hinweis: Das Turbo-Pascal-System enthält eine Menü-Version von Turbo-Pascal
(Dateiname Turbo.EXE), als auch eine Kommandozeilen-Version (Dateiname
TPC.EXE). Beide Versionen sind inhaltlich identisch, unterscheiden sich in der äußeren
Erscheinungsform gänzlich. Die Menü-Version bedient sich einer anwenderfreundlichen
Entwicklungsumgebung, die Kommandozeilen-Version ähnelt in der Handhabung mehr
den klassischen Compilern. Die Kommandozeilen-Version wird z.B. für die
Entwicklung größerer Programme gebraucht, die Programm-Module aus anderen
Programmiersprachen enthalten. Die Kommandozeilen-Version wird hier nicht be-
handelt; auf die Turbo-Pascal-Handbücher wird verwiesen.

4.2 Einleitende Programmbeispiele in Turbo-Pascal

1. Beispiel:

program Hallo;
begin
 WriteLn('Hallo Welt,');
 WriteLn('das ist das erste Programm von Anton Huber');
end.

Dieses Programm benutzt die Pascal-Standardprozedur WriteLn und schreibt die in
Hochkommata eingeschlossene Zeichenfolgen (Zeichenkette, engl. string) auf den Bild-
schirm. Man beachte den Punkt nach end. Er zeigt den Compiler das Programmende
an. Man achte auch auf die Semikolons, die Programmanweisungen abschließen. Die
hier fettgedruckten Wörter program, begin und end sind sog. reservierte Wörter.

4.4 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Nach der Eingabe des Quelltextes und dem Start mit Strg+F9 (Taste Strg gedrückt
halten und dann Funktionstaste F9 drücken) zeigt der Bildschirm folgendes an:

Hallo Welt,
das ist das erste Programm von Anton Huber

Die Anzeige verschwindet so schnell wieder und das System kehrt zum Editor zurück,
daß die Anzeige auch vom schnellsten Auge nicht wahrgenomen wird. Mit Alt+F5
(Taste Alt gedrückt halten und dann die Funktionstaste F5 drücken) kann der (DOS-)
Ausgabebildschirm wieder angezeigt werden. Mit nochmaligen Alt+F5 kehrt man zum
Editor zurück. Später werden andere Methoden gezeigt, um das lästige Umschalten zu
umgehen.

2. Beispiel:

begin end.

Das kürzeste Pascal-Programm der Welt! Es tut gar nichts und ist denoch korrekt. Es
zeigt, daß Pascal formatfrei ist und daß der Programmkopf mit dem reserviertenWort
program in Turbo-Pascal optional ist. Der Verfasser ist der Meinung, daß ein Pro-
grammkopf schon angegeben werden sollte. In Standard-Pascal wäre noch mehr zu tun.

3. Beispiel:

program Test3;

var
 x: Integer;
 y: Real;

begin
 x := 4711;
 y := 47.11;
 WriteLn(x, y);
end.

Dieses Programm schreibt die Ganzzahl (Integerzahl) 4711 und die Kommazahl (Real-
zahl) 47.11 nebeneinander auf den Bildschirm. Es zeigt, daß in Pascal alle Variablen
deklariert werden müssen und zwar nach Datentypen getrennt. Die Belegung einer Vari-
ablen mit einem Wert erfolgt von rechts nach links. Das Symbol für die Zuweisung
(Zuweisungsoperator ":=") besteht aus den Zeichen Doppelpunkt und Gleichheits-

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.5

zeichen. Dazwischen darf kein Leerzeichen (engl. blank, space) stehen. Davor und
danach dürfen Leerzeichen stehen. Der besseren Lesbarkeit halber sollte man
Leerzeichen setzen. Regel: Wo ein Leerzeichen stehen darf, können beliebig viele
stehen. Hinweis: In den Programmiersprachen Basic und C wird das Gleichheitszeichen
alleine als Zuweisungssymbol benutzt. Die Formatfreiheit von Pascal benutzt man dazu,
durch sinnvoll angeordnete Leerzeichen und Leerzeilen eine optisch-logische Struktur in
den Quelltext zu bringen.

4. Beispiel:

program Test4;

var
 x: Integer;
 Name: string[20]; { Zeichenkette mit max. 20 Zeichen }

begin
 x := 4711;
 x := x + 1; { Zuweisung von rechts nach links }
 Name := 'Anton Huber.'; { Auch hier eine Zuweisung }
 Write(Name, ' Der Wert von x: ', x);
end.

Die Ausgabe des Programms: Anton Huber. Der Wert von x: 4712

In das Programm können erklärende Kommentare geschrieben werden. Sie sind in ge-
schweifte Klammern zu setzen. Kommentare haben keinen Einfluß auf den Programm-
ablauf, sie werden beim Compilieren ignoriert. Als Ersatzzeichen für die geschweiften
Klammern können auch runde Klammern mit einem nachfolgenden bzw. vorausgehen-
den Stern benutzt werden.

Kommentarklammern: { } oder Ersatzzeichen (* *)

Kommentare können über beliebig viele Zeilen gehen. Nach dem Kommentarbeginn
dürfen Anweisungen stehen; sie werden nicht ausgeführt. Kommentarklammern
müssen immer paarweise auftreten und dürfen nicht verschachtelt werden. Bei der
ersten schließenden Klammer wird der Kommentar als beendet betrachtet; ein Verstoß
gegen die Vorgabe führt in der Regel zu irreführenden Fehlermeldungen des Compilers
und deshalb zu langwieriger Fehlersuche. Einzige Ausnahme ist die Kommentarklam-
merung mit den Ersatz-zeichen; in dieser Klammerung dürfen geschweifte Klammern
enthalten sein.

4.6 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Hinweis: In Basic und in PostScript kennt man nur ein einleitendes Kommentarsymbol.
Nach diesem Symbol wird nur der Rest der Zeile als Kommentar betrachtet.

In den bisherigen Programmbeispielen wurden die reservierten Wörter program, var,
string, begin und end benutzt. Zur besseren Erkennung werden die reservierten Wörter
im Skriptum durch fettgedruckte Kleinbuchstaben hervorgehoben. Auf dem Bildschirm
erscheinen sie in gelber Schrift. Die Farbe ist aber einstell- und somit veränderbar. Die
Schreibweise groß/klein der reservierten Wörter und auch aller anderen Bezeichner
(Bezeichner: Namen von Prozeduren, Funktionen, Units, Datentypen, Konstanten und
Variablen) ist in Pascal frei. Nur die Schreibweise der Zeichenketten (strings) ist
verbindlich. Die Variablen x und X sind somit in Pascal (wie auch in den meisten
BASIC-Dialekten) identisch. Hinweis: Für die Programmiersprache C und für Post-
Script trifft dies nicht zu.

Es ist in Pascal üblich, Bezeichner, vor allem wenn sie aus mehreren Zeichen bestehen,
mit einem großen Anfangsbuchstaben beginnen zu lassen. Bei langen Bezeichnern und
zusammengesetzten Wörtern scheue man sich nicht, den Anfangsbuchstabe der Einzel-
wörter groß zu schreiben. Insbesondere sollte man bei Prozeduren und Funktionen so
verfahren. Wählbare Bezeichner sollten selbsterklärend sein. Für Mehrwertsteuer sollte
man z.B. »Mehrwertsteuer« oder »MwSt« als Bezeichner benutzen und nicht etwa
»x«.

Beispiele für die Schreibweise von frei gewählten Bezeichner:
x, Phi, iMin, iMax, MwSt, FlaechendeckungsgradMurrayDavies

5. Beispiel: Die folgenden beiden Programmvarianten haben gleiche Wirkung:

program Test5a;

var
 x: Integer;
 y: Real;

begin
 x := 3;
 y := 0.3; { führende Null in Pascal anschreiben !! }
 Write(x, y);
end.

PrOgRam tEST5B;
vAr X :INteGeR;y:ReAL;bEgin x
:=3;Y :=0.3;wRitE (x,
y);eND.

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.7

Diese beiden Varianten demonstrieren nochmals die Formatfreiheit von Pascal. Es ver-
steht sich von selbst, daß die erste Variante vorzuziehen ist. Systematische Schreibweise
der Bezeichner, Leerzeichen, Einrückungen, Leerzeilen und sinnvoll gewählte
Bezeichner tragen viel zur Lesbarkeit des Programms bei.

4.3 Der Aufbau eines Pascal-Programms

Ein Pascal-Programm besteht grundsätzlich aus einem Deklarationsteil und einem Aus-
führungsteil (Hauptprogramm). In Standard-Pascal muß zwingend der folgende Aufbau
eingehalten werden. Turbo-Pascal ist liberaler und läßt in gewissen Grenzen eine andere
Reihenfolge der Deklarationen und auch Wiederholungen zu. Optional heißt, daß die so
gekennzeichneten Deklarationen nur bei bestimmten Situationen notwendig sind.

program Beginn des Deklarationteils mit der Deklaration des Programmkopfes. In Turbo-
Pascal ist der Programmkopf optional. Der wählbare Programmname hat nur interne
Bedeutung und wird nicht als Quelltext-Dateiname interpretiert.

uses Deklaration von sog. Units. Optional. Units sind bereits compilierte Programm-
Module, von Borland oder eigene (Kap. 23). Die Deklaration muß aber unmittelbar
nach dem Programmkopf stehen. Die relevanten Standard-Units von Turbo-Pascal:
• CRT Deklarationen für Bildschirm (Cathode Ray Tube) und Tastatur
• PRINTER Deklarationen für den Drucker
• DOS Deklarationen für Betriebssystem-Funktionen
• GRAPH Deklarationen für Bildschirm-Graphik

label Deklaration von Labels (Sprungmarken). Optional. In Turbo-Pascal sind nur Sprünge
innerhalb des Blockes erlaubt, in dem das Label deklariert ist. Die Labels bestehen
aus einem Label-Namen, dem ein Doppelpunkt folgt. Sie werden mit »goto
labelname« angesprungen. Der Label-Name kann in Turbo-Pascal aus Zahlen im
Bereich 0..9999 oder aus beliebigen alphanumerischen Bezeichnern bis maximal 63
Zeichen bestehen. Von besonderen Situationen abgesehen (z.B. vorzeitiger
Programmmabbruch wegen einer Fehlersituation) sollte man in Pascal keine GOTO-
Sprünge programmieren. Beispiel für Labelanwendung:
....
label VorzeitigerAbbruch;
....
goto VorzeitigerAbbruch;
....
VorzeitigerAbbruch:
....

const Deklaration und Belegung von Konstanten und typisierten Konstanten. Optional.

type Deklaration von eigenen Datentypen. Optional.

var Deklaration von Variablen mit Angabe des Datentyps. Optional. Wichtig: Mit der
Deklaration sind die Variablen noch nicht initialisiert und besitzen somit undefi-

4.8 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

nierte Werte, mal so und mal so. Der Compiler erkennt diesen folgenschweren
Fehler nicht!

procedure Deklaration der Prozeduren (Unterprogramme). Optional. Der interne Aufbau der
Prozeduren und der Funktionen ist analog zu dem des Pascal-Programms selbst, d.h.
es können innerhalb der Prozeduren und Funktionen lokale Labels, Konstanten,
Datentypen, Variablen, Prozeduren und Funktionen deklariert werden. Im Gegensatz
zum Hauptprogramm werden Prozeduren und Funktionen mit »end;« statt mit
»end.« beendet. Es können beliebig viele Prozeduren und Funktionen deklariert
werden.

function Deklaration der Funktionen. Optional. Im Gegensatz zu Prozeduren liefern Funktio-
nen immer einen Wert zuück. Weitere Details siehe Punkt vorher.

begin Beginn des Ausführungsteils (Hauptprogramm).

end. Ende des Ausführungsteils. Man beachte den Punkt!

Es ist empfehlenswert, bei einem Pascal-Programm-Listing nach uses, const,
type und var zuerst das am Ende stehende Hauptprogramm zu lesen und dann erst die
procedure und function.

An jeder Stelle des Programms können Kommentare geschrieben werden. Sie sind in
gechweifte Klammern { } zu setzen. Ersatzzeichen: (* *).

Das spätere Demo-Programm "Pas04081.PAS" im Kap. 4.8 zeigt den typischen Aufbau
eines Pascal-Programms mit den Deklarationen program, uses, const, type, var,
procedure, function und dem anschließenden Ausführungsteil (Hauptprogramm,
main).

4.4 Die reservierten Wörter in Turbo-Pascal

Im Gegensatz zu Standardbezeichnern wie z.B. Real, Integer, Write, Sin, Log usw.
dürfen reservierte Wörter nicht umdefiniert oder für eigene Bezeichner benutzt werden.

Der folgende Kasten enthält alle reservierten Wörter von Turbo-Pascal. Wie bei allen
Pascal-Bezeichnern ist Groß-/Kleinschreibung auch bei reservierten Wörtern beliebig.
Es hat sich aber durchgesetzt, reservierte Wörter in Kleinschreibung darzustellen. Im
Druck werden reservierte Wörter vorteilhaft durch Fettdruck hervorgehoben.

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.9

 absolute and array begin case
 const div do downto else
 end external file for forward
 function goto if implementation in
 inline interface interrupt label mod
 nil not of or packed
 procedure program record repeat set
 shl shr string then to
 type unit until uses var
 while with xor

4.5 Selbstdefinierte Bezeichner / Standardbezeichner

Alle Datentypen, Konstanten, Variablen, Prozeduren, Funktionen, Units und der Pro-
grammname werden durch Bezeichner identifiziert. Die Bezeichner können beliebig
lang sein, aber nur die ersten 63 Zeichen sind signifikant, und das ist mehr als genug!

Die zulässigen Zeichen: A..Z, (bzw. a..z), 0..9 und der Unterstrich _.

Das erste Zeichen darf kein Ziffernzeichen sein. Groß-/Kleinschreibung ist beliebig.
Nicht zulässig sind u.a. das Leerzeichen, der Bindestrich, die Umlaute, das Scharf-S und
vor allem der Punkt, da dieser für den Datentyp Record reserviert ist.

Beispiele für zulässige Bezeichner:

1) BetragOhneMehrwertsteuer
2) betragohnemehrwertsteuer
3) Betrag_ohne_Mehrwertsteuer
4) x, x1, x2, i, iMin, iMax, Phi

Die Bezeichner 1) und 2) sind gleichwertig.

Hinweis: In der Programmiersprache C und in PostScript ist die Groß-/Kleinschreibung
der Bezeichner im Gegensatz zu Pascal und den meisten Basic-Dialekten verbindlich.

Pascal und insbesondere Turbo-Pascal kennt ca. 1000 Standardbezeichner (Namen von
vordefinierten Datentypen, Prozeduren (procedure), Funktionen (function) und Units.
Diese Standardbezeichner sind keine reservierten Wörter und könnten somit zu einer
anderen Bedeutung umdefiniert werden. Man hüte sich davor!

Beispiele für Standardbezeichner:

1) Integer für Datentyp Ganzzahl
2) Real für Datentyp Kommazahl
3) True für Standardkonstante Wahrheitswert »wahr«
4) False für Standardkonstante Wahrheitswert »falsch«
5) Write für Standardprozedur Schreiben

4.10 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

6) Read für Standardprozedur Lesen
7) Sin für Standardfunktion Sinus

Die Schreibweise der Standardbezeichner ist bezüglich Groß-/Kleinschreibung ebenfalls
beliebig. Es ist aber üblich, zumindest die Standardprozeduren und Standardfunktionen,
sowie die Datentypen mit einem großen Anfangsbuchstaben zu beginnen. Beachten:
string und array sind reservierte Wörter.

4.6 Die Begriffe Konstante, Variable und Ausdruck

Eine Konstante behält ihren Wert im gesamten Programm bei, d.h. sie kann auch nicht
versehentlich durch eine falsche Anweisung geändert werden, der Compiler würde diese
Anweisung nicht akzeptieren. Es wird empfohlen, wichtige Konstanten in die const-
Deklaration aufzunehmen und im Programm nur noch mit dem vereinbarten Namen
anzusprechen.

Eine Variable kann, muß aber nicht, im Laufe des Programms verschiedene Werte
annehmen. Alle Variablen müssen in der var-Deklaration genannt werden. Die erst-
malige Zuweisung eines Wertes an eine Variable nennt man Initialisierung. Nicht-
initialisierte Variablen werden zwar in Pascal ohne Fehlermeldung verarbeitet, die
Werte sind aber undefiniert, das Ergebnis ist nicht vorhersehbar, mal so und mal so, auf
jeden Fall aber völlig unbrauchbar. Diese Fehler sind schwer zu finden!

Ein Ausdruck (engl. expression) kann Konstanten, Variablen, Funktionen und Kombi-
nationen dieser Elemente enthalten. Zu numerischen Ausdrücken könnte man auch
Formelausdruck oder Term sagen.

Beispiel für numerische Konstante: 4711 { Datentyp: Integer }
Beispiel für String-Konstante: 'Anton Huber'
Beispiel für Variable: x { Datentyp hier nicht erkennbar }
Beispiel für numerischen Ausdruck: y + Sin(z)/2 - 7 { Datentyp Real }
Beispiel für String-Ausdruck: 'Huber' + Copy(s, 3, 5)

{s muß Stringvariable sein }

Wenn eine Formatbeschreibung einen Ausdruck verlangt, dann kann an der betreffen-
den Stelle auch eine Konstante oder eine Variable stehen.

Wenn eine Formatbeschreibung eine Konstante verlangt, dann muß an der betreffenden
Stelle eine Konstante stehen, nicht aber eine Variable oder ein Ausdruck.

Sinngemäßes gilt auch, wenn die Formatbeschreibung eine Variable verlangt. Es muß
dann eine Variable eingegeben werden.

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.11

Pascal kennt darüber hinaus auch noch typisierte Konstanten. Das sind im Grunde
Variablen, die in der const-Deklaration mit Datentyp deklariert und dann mit einem
Wert initialisiert werden. Diese "Konstanten" können im Programm wie Variablen ver-
ändert werden.

Beispiel für (echte) Konstanten und typisierte Konstanten:

program Konstanten;

const
 x = 13; { "echte" Konstante }
 z: Integer = 13; { typisierte Konstante = initialisierte Variable }

begin
 z := z + 1; { Zulässig, da typisierte Konstante, init. Variable }

 x := x + 1; { Unzulässig, da "echte" Konstante. Fehlermeldung }

end.

4.7 Zur Formatbeschreibung

Für die Formatbeschreibung (Syntaxbeschreibung) der Programmteile (reservierte
Wörter, Standardprozeduren, Standardfunktionen usw.) sind verschiedene Symbole
gebräuchlich, die aber an dieser Stelle selbst nicht Bestandteil von Pascal sind. Dazu
zählen eckige Klammern [] für optionale Angaben. In Pascal selbst werden eckige
Klammern für Indizies von Arrays benutzt.

Den Aufbau eines Turbo-Pascal-Programms kann man mit den Optionsklammern ver-
einfacht wie folgt darstellen:

[program]
[uses]
[label]
[const] Reihenfolge von const und type ggf. auch anders
[type]
[var]
[procedure] Reihenfolge von procedure und function beliebig
[function]
begin
end.

Für Wiederholungen von möglichen Eingaben sind in der Formatbeschreibung drei
Wiederholungspunkte ... gebräuchlich. Zwei Wiederholungpunkte werden in Pascal für
Bereichsgrenzen benutzt, dazu später.

4.12 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

Ein Beispiel für die Formatbeschreibung der Standardprozedur Write:

Format: Write(a1 [, a2, ..., an])
 a1, a2, ... an: Ausdrücke

Man sieht, daß in Pascal das Komma als Trennzeichen benutzt werden muß, wenn die
(Ausgabe-) Liste mehr als einen Ausdruck umfaßt.

Konkrete Beispiele (die Variablen seien als deklariert und belegt angenommen):

Write(4711); { nur numerische Konstante }

Write('Der Funktionswert von x = ', x, 'ist: ', x + Sin(x)/2 - 7);
 └─────────────┬─────────────┘ │ └──┬──┘ └─────┬────────┘
 a1 a2 a3 a4

a1 ist eine String-Konstante
a2 ist eine numerische Variable
a3 ist eine String-Konstante
a4 ist ein numerischer Ausdruck

4.8 Programmbeispiel Zahlenumwandlung

Dieses Programmbeispiel ist nur zum Studieren des Programmaufbaus, zum Üben der
Zahlensysteme und zum Üben mit dem Turbo-Pascal-System (Kap. 5) gedacht. Das
Programm wandelt Dezimalzahlen aus dem Bereich 0 bis 255 in binäre, oktale und
hexadezimale Darstellung um.

program Pas04081; { Umwandlung dezimal in binär, oktal und hex }
 { Hier nur für Dezimalbereich von 0 bis 255 }
 { K. Haller, Turbo-Pascal, 77170390 }
 { Der Quelltext des Programms kann vom Anfänger noch nicht voll- }
 { ständig verstanden werden. Er dient lediglich zur Demonstration }
 { des Aufbaus eines einfachen Pascal-Programms mit einer Prozedur }
 { und einer Funktion (alles etwas gekünstelt). Ansonsten dient }
 { das Programm zum Veranschaulichen der Zahlensysteme. }

uses { Deklaration der verwendeten Unit(s) }
 CRT;

type { Deklaration von eigenen Datentypen }
 Str1 = string[1];

const { Deklaration von Konstanten }
 Esc = #27; { Für Taste "Esc" }

var { Deklaration von Variablen }
 Dezimalzahl,
 DezimalTemp: Integer;

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.13

 Basis,
 Laenge,
 Spalte,
 Zeile: Byte;
 Beenden: Boolean;
 Zahlenstring,
 Kommentar: string;
 Symbol: Str1;
 { Es folgt Deklaration einer Prozedur: }
procedure WriteXY(Spalte, Zeile: Byte; Meldung: string);
begin
 GotoXY(Spalte, Zeile);
 Write(Meldung);
end;

function Eingabe: Char; { Deklaration einer Funktion }
var
 Ch: Char; { lokale Variable }
begin
 ClrScr;
 WriteXY(25, 2, 'Fachhochschule München, Stg DR ');
 WriteXY(25, 3, 'Demo Umwandlung Zahlensysteme ');
 WriteXY(25, 4, '-----------------------------------');
 WriteXY(25, 5, '1 Umwandlung dezimal-binär ');
 WriteXY(25, 6, '2 Umwandlung dezimal-oktal ');
 WriteXY(25, 7, '3 Umwandlung dezimal-hexadezimal');
 WriteXY(25, 8, 'Esc Ende ');
 WriteXY(25, 9, '-----------------------------------');
 GotoXY(25, 10);
 repeat
 Ch := ReadKey;
 until Ch in ['1'..'3', Esc];
 WriteLn(Ch);
 WriteLn;
 Eingabe := Ch;
end;

begin { -------- Hauptprogramm, main ------------------------------ }
 TextBackground(Blue);
 TextColor(Yellow);

 repeat
 Beenden := False;

 case Eingabe of
 Esc: Beenden := True;
 '1': begin
 Kommentar := 'Umwandlung in binär: ';
 Basis := 2;
 Laenge := 8;
 Symbol := ''; { Kein sichtbares Symbol. Mitunter 'b' }
 end;
 '2': begin
 Kommentar := 'Umwandlung in oktal: ';
 Basis := 8;
 Laenge := 3;
 Symbol := 'o'; { Auch üblich: 'q' }
 end;
 '3': begin

4.14 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

 Kommentar := 'Umwandlung in hexadezimal: ';
 Basis := 16;
 Laenge := 2;
 Symbol := '$'; { In Pascal '$', sonst meistens 'h' }
 end;
 end;

 if not Beenden then
 repeat
 Spalte := WhereX;
 Zeile := WhereY;
 repeat
 GotoXY(Spalte, Zeile);
 ClrEoL;
 WriteXY(Spalte, Zeile,
 ' Eingabe Dezimalzahl 0..255, Ende mit 0: ');
 {$I-} { "$I-": Compilerbefehl. Vorgriff. Kein Kommentar }
 ReadLn(Dezimalzahl);
 {$I+}
 until (IOResult = 0) and (Dezimalzahl >= 0) and
 (Dezimalzahl <= 255);

 Zahlenstring := '';
 DezimalTemp := Dezimalzahl;
 repeat
 Zahlenstring := Copy('0123456789ABCDEF',
 (DezimalTemp mod Basis) + 1, 1) +
 Zahlenstring;
 DezimalTemp := DezimalTemp div Basis;
 until DezimalTemp = 0;

 while Length(ZahlenString) < Laenge do
 Zahlenstring := '0' + Zahlenstring;

 Zahlenstring := Symbol + Zahlenstring;

 WriteXY(50, WhereY - 1, Kommentar + Zahlenstring + #13#10);
 until Dezimalzahl = 0;
 until Beenden;

end.

4.9 Zur Gestaltung von Pascal-Quelltexten

Die Gestaltung der Quelltexte kann wesentlich zum Verständnis beitragen. Pascal ist
zwar völlig formatfrei was die Quelltexte anbelangt. Bei Mißbrauch der Formatfreiheit
kann vielleicht das Programm fehlerfrei sein, aus dem Quelltext wird man aber wahr-
scheinlich nicht sehr schlau.

Ein Beispiel für einen gut gestalteten Quelltext:

program Test;

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.15

uses
 CRT, PRINTER;
var
 x: Real;
 i: Integer;
 Name: string;

begin
 ClrScr;
 x := Sin(47.11);
 i := 4711;
 Name := 'Huber Toni';
 WriteLn(Lst, 'x = ', x:6:2,',i = ', i, ', Name: ', Name);
end.

... und das gleiche Programm in „formatfreier“ Darstellung:

PRogRAM teSt;useS cRt,priNTER;vAr x:
ReAl;i:intEger;naME:striNg;BegIn ClRSCr;
x:=Sin (47.11);i:=4711;Name:='Huber Toni';wrITeln(lSt,
'x = ', x:6:2, ', i = ',i,', Name: ',NamE) ;eND.

Allgemeine Hinweise für die Gestaltung der Quelltexte:

Die nachstehenden Hinweise für die Gestaltung nehmen notgedrungen einige Pascal-
Begriffe vorweg und sind für späteres Nachschlagen bestimmt.

1. Reservierte Wörter (z.B. begin, end, while, ...) in Kleinschreibung. Bezeichner
(eigene und Pascal-Namen von Konstanten, Variablen, Prozeduren und Funk-
tionen) mit großen Anfangsbuchstaben. Ausgenommen eigene Kurzbezeichner mit
vorrangig mathematischer Bedeutung und max. zwei Zeichen Länge. Bei eigenen
Bezeichnern selbsterklärende Namen verwenden, z.B. „MwSt“ und nicht „x“.

2. Folgende Operatoren sind mit einem vorstehenden und einem nachstehenden Leer-
zeichen freizustellen: Zuweisungsoperator, Vergleichsoperator, Additionsoperator,
Subtraktionsoperator. Bei besonders komplizierten oder wichtigen numerischen
Ausdrücken sind eventuell auch die Multiplikations- und Divisionsoperatoren frei-
zustellen; nicht aber bei einfachen Ausdrücken. Überflüssige Klammern tragen bei
numerischen Ausdrücken nicht zur besseren Lesbarkeit bei!

Beispiele:

x := 47.11;

4.16 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

y := x + Sin(x)/Sqrt(2*x) - 7;
if x >= y

then;

3. Nach allen Trennzeichen (Komma, Strichpunkt, Punkt, Doppelpunkt usw.) ist ein
Leerzeichen einzufügen.

4. Zwischen dem Bezeichner einer Prozedur oder einer Funktion und der öffnenden
Klammer der Parameterliste ist kein Leerzeichen einzufügen. Nach der öffnenden
Klammer können aber bei Bedarf Leerzeichen folgen.

Also: Sin(47.11) und nicht: Sin (47.11)

5. Man spare nicht mit Leerzeilen zwischen logisch verschiedenen Blöcken. So ist
z.B. eine Leerzeile zwischen Deklarationsteil und dem Hauptprogramm sinnvoll.

6. Einrückungen in Form von zwei Leerzeichen) zwischen begin und end. Ansonsten
sind alle Anweisungen bis auf die noch genannten Maßnahmen gleichberechtigt
und werden nicht eingerückt. In den folgenden schematischen Beispielen ist mit a
eine beliebige Anweisung und mit b eine beliebige Bedingung gemeint. Mit i wird
eine beliebige Laufvariable einer for-Schleife, mit aw und ew der Anfangswert
bzw. der Endwert dieser Schleife bezeichnet.

In den folgenden Beispielen soll der Senkrechtstrich │ den linken Rand des Bild-
schirms darstellen.

│....
│begin
│ a1;
│ a2;
│
│end.

Tritt innerhalb des begin/end-Blockes ein weiterer auf, so wird in gleicher
Weise nach begin nochmals eingerückt und mit dem end auf die vorher aktuelle
Spalte wieder ausgerückt.

7. Zusätzliche Einrückungen bei Schleifen:

7a) repeat/until-Schleife

│
│ repeat
│ a1;
│ a2;
│ until b;

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.17

│

7b) while-Schleife mit mehr als einer Anweisung:

│
│ while b do
│ begin
│ a1;
│ a2;
│ end;
│

7c) for-Schleife mit mehr als einer Anweisung:

│
│ for i : aw to ew do
│ begin
│ a1;
│ a2;
│ end;
│

Die while- oder for-Schleifen mit nur einer Anweisung werden wie folgt
geschrieben:

│
│ while b do a;
│
│ { oder schöner: }
│ while b do
│ a;
│

│
│ for i := aw to ew do a;
│
│ { oder schöner: }
│ for i := aw to ew do
│ a;
│

8. Einrückungen bei Deklarationen:

│uses
│ CRT, DOS, PRINTER; { Unit-Namen groß schreiben }
│
│var

4.18 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

│ x, y: Real;
│ s: string;

9. Einrückungen bei if/then mit nur einer Anweisung:

│
│ if b then a;....
│
│ { oder schöner }
│ if b....
│ then a;
│

10. Einrückungen bei if/then/else mit nur je einer Anweisung:

│
│ if b
│ then a1
│ else a2;
│

11. Einrückungen bei if/then mit mehr als einer Anweisung:

│
│ if b then
│ begin
│ a1;
│ a2;
│ end;
│

12. Einrückungen bei if/then/else mit mehr als einer Anweisung in beiden
Zweigen:

│
│ if b
│ then begin
│ a1;
│ a2;
│ end
│ else begin
│ a3;
│ a4;
│ end ;
│

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.19

13. Einrückungen sind auch zu machen, wenn eine Zeile nicht in das Edit-Fenster (77
Zeichen) paßt. Der Zeilenrest ist um zwei Leerzeichen gegenüber der aktuellen
Spalte einzurücken. Die Zeilentrennung kann nach jedem Trennzeichen erfol-gen.
Lange Strinkonstanten können in Teile aufgespalten und mit dem Verknüpfungs-
operator + verbunden werden. Vor oder nach diesem Operator kann eine Zeilen-
trennung erfolgen. Mit den genannten Methoden können beliebig lange Anweisun-
gen erstellt werden, ohne daß der Bildschirm seitlich gescrollt werden muß oder
beim Ausdruck verstümmelte Listings erscheinen.

4.10 Register der Turbo-Pascal-Begriffe

Wichtig: Die Vollständigkeit und Richtigkeit des Registers ist nicht gewährleistet.
Die Studierenden werden um Hinweise zur Ergänzung gebeten.

Art:

R = reserviertes Wort
P = Prozedur
F = Funktion
U = Unit
T = Datentyp
V = vordefinierte Variable
K = vordefinierte Konstante
C = Compilerbefehl (-Schalter, -Parameter, -Bedingung)

Art Begriff Kap. Erläuterung
F # 08.4 Siehe Funktion "Chr(xx)"; Beispiel: #27 ist identisch mit Chr(27)
C {$A+}, {$A-} 05.9 Compilerbefehl
C {$B+}, {$B-} 05.9 Compilerbefehl
C {$D+}, {$B-} 05.9 Compilerbefehl
C {$DEFINE} 05.9 Compilerbefehl
C {$E+}, {$E-} 05.9 Compilerbefehl
C {$ELSE} 05.9 Compilerbefehl
C {$ENDIF} 05.9 Compilerbefehl
C {$I } 23.1 Compilerbefehl: Include-Datei
C {$I datei } 05.9 Compilerbefehl
C {$I-} {$I+} 14.9 Compilerbefehl: Input-Kontrolle Aus/Ein
C {$I+}, {$I-} 05.9 Compilerbefehl
C {$IF} 05.9 Compilerbefehl
C {$IFDEF ...} 05.9 Compilerbefehl
C {$IFNDEF ...} 05.9 Compilerbefehl
C {$IFOPT} 05.9 Compilerbefehl
C {$L+}, {$L-} 05.9 Compilerbefehl
C {$M ...} 05.9 Compilerbefehl
C {$N+}, {$N-} 05.9 Compilerbefehl

4.20 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

C {$O} 05.9 Compilerbefehl
C {$O+}, {$O-} 05.9 Compilerbefehl
C {$R+}, {$R-} 05.9 Compilerbefehl
C {$S+}, {$S-} 05.9 Compilerbefehl
C {$UNDEFINE ...} 05.9 Compilerbefehl
C {$V+}, {$V-} 05.9 Compilerbefehl
C {$X+}, {$X-} 11.16 Comp.-befehl erweit. Syntax: Funktionen wie Prozeduren.
F Abs 08.2
F Abs 08.3
R and 08.2 bitweises AND
R and 08.5 logisches AND
P Arc 21.3
F ArcTan 08.2
R array ... of 12.1
R asm 27.5
P Assign 18.1
P AssignCRT 18.3
P Bar 21.4
R begin 04.2
K BkShlashFill 21.4
K Black 21.2 Farbkonstante = 0
P BlockRead 18.3
P BlockWrite 18.3
K Blue 21.2 Farbkonstante = 1
T Boolean 08.5
K Brown 21.2 Farbkonstante = 6
T Byte 08.2
R case ... of 09.4
T Char 08.4
P ChDir 18.3
F Chr 08.2
F Chr 08.4
P Circle 21.3
P ClearViewPort 21.4
K ClipOff 21.4
K ClipOn 21.4
P Close 18.1
K CloseDotFill 21.4
P CloseGraph 21.1
P ClrEoL 07.12
P ClrScr 07.6
T Comp 08.3
F Concat 14.2 Besser "+" statt "Concat"
R const 04.3
F Copy 14.4
F Cos 08.2
K CPU97 05.9 Zu Compilerbefehl
U CRT 04.3
U CRT 07.3
K Cyan 21.2 Farbkonstante = 3
K DarkGray 21.2 Farbkonstante = 8
P Dec 08.2
P Delay 07.13
P Delete 14.6
P DelLine 07.12
K Detect 21.1
F DiskFree 18.3

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.21

F DiskSize 18.3
P Dispose 19.2
R div 08.2
R do 10.2 Bei while-Scheifen. Auch bei for-Schleifen
R do 16.2 Bei: with ... do
P do 10.3 Bei for-Schleifen. Auch bei while-Scheifen
U DOS 04.3
F DOSError 24.4
F DOSExitCode 24.4
K DottedLn 21.4
T Double 08.3
R downto 10.3
R else 09.2 Bei: if ... then ... else ...
R else 09.4 Bei: case ... of else ...
R end 04.2
F EnvCount 24.3
F EoF 18.1
P EoLn 18.3
P Erase 18.3
P Exclude 15.7
P Exec 24.4
P Exit 11.11
F Exp 08.2
T Extended 08.3
R external 11.13
K False 08.5
P FExpand 18.3
R file of ... 18.1
V FileMode 18.3
F FilePos 18.3
F FileSize 18.1
F FileSize 18.3
P FillChar 22.3
P FillChar 14.11
P FindFirst 18.3
P FindNext 18.3
P Flush 18.3
R for ... downto 10.3
R for ... to ... do 10.3
R forward 11.8
F Frac 08.3
P FreeMem 19.2
F FSearch 18.3
P FSplit 18.3
R function 04.3
R function 11.3
P GetDate 07.15
P GetDir 18.3
P GetFAttr 18.3
F GetMaxX 21.3
F GetMaxY 21.3
P GetMem 19.2
F GetPixel 21.3
P GetTime 07.15
K GothicFont 21.4
R goto 09.5
P GotoXY 07.7

4.22 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

U GRAPH 04.3
K Green 21.2 Farbkonstante = 2
K GrOK 21.4
P Halt 07.16
F Hi 08.2
P HighVideo 07.10
K HorizDir 21.4
R if ... then ... 09.1
R if ... then ... else 09.2
R in 15.2
P Inc 08.2
P Include 15.7
P InitGraph 21.1
R inline 27.5
R inline 11.12
P Insert 14.7
P InsLine 07.12
T Integer 08.2
P Intr 27.6
F KeyPressed 07.4
F KeyPressed 08.5
R label 04.3
F Length 14.3
K LightBlue 21.2 Farbkonstante = 9
K LightCyan 21.2 Farbkonstante = 11
K LightGray 21.2 Farbkonstante = 7
K LightGreen 21.2 Farbkonstante = 10
K LightMagenta 21.2 Farbkonstante = 13
K LightRed 21.2 Farbkonstante = 12
P Line 21.3
P LineTo 21.3
F Ln 08.2
F Lo 08.2
T LongInt 08.2
P LowVideo 07.10
K Lst 25.2
V Lst 07.5
K Magenta 21.2 Farbkonstante = 5
P Mark 19.2
F MaxAvail 19.2
K MaxInt 08.2
K MaxLongInt 08.2
V Mem 12.10
F MemAvail 19.2
V MemL 12.10
V MemW 12.10
P MkDir 18.3
R mod 08.2
P Moveto 21.3
P MsDOS 27.6
P New 19.2
R nil 19.2
P NormVideo 07.10
K NormWidth 21.4
P NoSound 07.14
R not 08.2 bitweise Negation
R not 08.5 logische Negation

Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal 4.23

F Odd 08.2
F Odd 08.5
R of 12.1 Bei: array ... of
R of 15.1 Bei: set of ...
R of 18.1 Bei: file of ...
R of 09.4 Bei: case ... of
T OpenString 14.15 Übergabe von offenen Strings als Routinen-Parameter
R or 08.2 bitweises OR
R or 08.5 logisches OR
F Ord 08.2
P OutText 21.3
P OutTextXY 21.3
F ParamCount 24.2
F ParamStr 24.2
F Pi 08.3
T Pointer 19.2
F Pos 14.5
F Pred 08.2
U PRINTER 04.3
U PRINTER 07.5
R procedure 04.3
R procedure 11.3
R program 04.2
P PutPixel 21.2
F Random 08.3 Real-Zufallszahl aus Bereich [0.0 ... [1.0
F Random(a) 08.2 Word-Zufallszahl aus Bereich [0 ... (a - 1)]
P Randomize 08.2
P Read, ReadLn 07.2 Von Tastatur lesen
P Read, ReadLn 18.1 Von Datei lesen
F ReadKey 07.3
T Real 08.3
R record 16.2
P RectAngle 21.3
K Red 21.2 Farbkonstante = 4
T Registers 27.6
P Release 19.2
P Rename 18.3
R repeat / until 10.1
P Reset 18.1
P Rewrite 18.1
P RmDir 18.3
F Round 08.2
K SansSerifFont 21.4
P Seek 18.1
F SeekEoF 18.3
F SeekEoL 18.3
R set of ... 15.1
P SetDate 07.15
P SetFAttr 18.3
P SetLineStyle 21.4
P SetTextBuf 18.3
P SetTextStyle 21.4
P SetTime 07.15
P SetViewPort 21.4
R shl 08.2
T ShortInt 08.2
R shr 08.2

4.24 Dr. K. Haller Turbo-Pascal Kap. 4: Allgemeines zu Pascal

F Sin 08.2
T Single 08.3
F SizeOf 19.2
K SlashFill 21.4
K SmallFont 21.4
K SolidFill 21.4
P Sound 07.14
F Sqr 08.2
F Sqrt 08.2
P Str 14.8
R string 14.1
F Succ 08.2
P SwapVectors 24.4
V Text 18.1 Textdatei
P TextBackGround 07.11
P TextColor 07.11
P TextMode 07.11
R then 09.1 Bei: if ... then ...
R then 09.2 Bei: if ... then ... else ...
K ThickWith 21.4
R to 10.3
K True 08.5
F Trunc 08.2
P Truncate 18.3
R type 04.3
R type 08.7
R unit 23.3
F UpCase 08.4
R uses 04.3
P Val 14.9
R var 04.2
R var 04.3
R var 11.7 Parameterübergabe an Routinen mit Adresse
K VertDir 21.4
F WhereX, WhereY 07.8
R while ... do 10.2
K White 21.2 Farbkonstante = 15
P Window 07.9
R with ... do 16.2
T Word 08.2
P Write 18.1 In Datei schreiben
P Write, WriteLn 07.1
P WriteLn 18.1 In Datei schreiben
K xHatchFill 21.4
R xor 08.2 bitweises XOR
R xor 08.5 logisches XOR
K Yellow 21.2 Farbkonstante = 14

2200308 Dr. K. Haller

